

LHeC Large Hadron electron Collider project

Anna Staśto Penn State & BNL & INP Krakow

http://www.cern.ch/lhec

CERN, 8 February 2013

Project Development

- 2007: Invitation by SPC to ECFA and by (r)ECFA to work out a design concept
- 2008: First CERN-ECFA Workshop in Divonne (1.-3.9.08)
- 2009: 2nd CERN-ECFA-NuPECC Workshop at Divonne (1.-3.9.09)
- 2010: Report to CERN SPC (June)
 3rd CERN-ECFA-NuPECC Workshop at Chavannes-de-Bogis (12.-13.11.10)
 NuPECC puts LHeC to its Longe Range Plan for Nuclear Physics (12/10)
- 2011: Draft CDR (530 pages on Physics, Detector and Accelerator) (5.8.11) refereed and being updated
- 2012: Discussion of LHeC at LHC Machine Workshop (Chamonix) Publication of CDR – European Strategy New workshop (June14-15, 2012)

LHeC has some history already ..

Conceptual Design Report

ISSN 0954-3899

Journal of Physics G

Nuclear and Particle Physics

A Large Hadron Electron Collider at CERN Report on the Physics and Design Concepts for Machine and Detector LHeC Study Group

iopscience.org/jphysg

IOP Publishing

LHe R Styd R Steel Design

J.L.Ab**Kikhter, Hule Dr.C.A** (OFER, A), Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², S.Alekhin^{17,54}, P.Allport **i example:**^{14,17,24}, J. Bartel¹⁸, O. Behrkel¹⁷, J. Behr¹⁷, A.S. Belyaev^{15,56}, I.Ben-Zvi³⁷, M.Bari³⁷, D. Barber^{14,17,24}, J. Bartel¹⁸, O. Behrkel¹⁷, J. Behr¹⁷, A.S. Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard⁴⁵, S.Bertonuct¹⁹, S.Bettonl⁶⁵, S.Biswal⁴⁴, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz⁴⁶, C.Bracd¹⁵, M.B. Catin²⁸, O. Bartel¹⁸, O. Bartel¹⁷, J. Daimton¹⁶, E. Bulyak¹², A. Buniatyan¹⁷, H.Burkherdel¹⁶, I.T. Catin²⁸, O. Collins⁴⁸, O. Brüning¹⁶, E. Bulyak¹², A. Buniatyan¹⁷, A.K.Cifte¹⁰, B.A. Cole²⁸, J.C. Collins⁴⁸, O. Badoun¹², J.Daimton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudat²⁰, M.Fikhel¹⁹, O. Collins⁴⁸, O. Badoun¹², J.Daimton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudat²⁰, M.Fikhel¹⁹, O. Collins⁴⁸, O. Badoun¹², J.Daimton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudat²⁰, M.Fikhel¹⁹, O. Collins⁴⁸, O. Badoun¹², J.Daimton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudat²⁰, M.Fikhel¹⁹, C. Collins⁴⁹, O. Badoun¹², J.Daimton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, A.Dudat²⁰, M.Fitterer¹⁶, T. Greenshaw²⁴, A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenla⁴⁴, T.Han⁵⁰, Y.Hao³, T.Haug², V. Heff⁴⁷, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸, M.Jacquet⁴², B.Jeannert¹⁶, J.M.Jin**Georgenthometry**, M.Hervé²⁷, B.J.Holzer¹⁶, M.Kayran³⁷, A.Kilic⁶², K.Kimura⁵⁸, M.Klein¹¹, H.KFe²¹, T.Kuge², BINDCak⁶², M.Korostelev²⁴, A.Kosmick¹⁶, P.Kostka¹⁷, H.Kowal⁶⁴, T. G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonth⁴⁷, S.K.Kuthenko³⁷, A.Lombard¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milar Mell S.Mair K.S. I(Goock⁴Croftultoni¹⁶, S.Myers¹⁶, S.Nadi5⁵, Z.Nergia³⁹, P.R.Newan⁰⁶, T. Owei², J. D.Soborg⁶, F.F.Pilcef⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Bojlin¹⁰⁷, V.Pittsyh⁴ U.F.F. Kolin⁴⁰, W.StiffAman⁴⁸, K.Sampei

New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) Precision QCD and Electroweak Guido Altarelli (Roma) Vladimir Chekeliao (MPDAQUES) Alan Martin (Durham) Physics at High Pareor Densities Alfred Mueller (Columbia) Raju Venugopalan (BN10 DTETS Michele Arneodo (INFN Torino) 14 SECTIONS

arXiv:1206.2913

Organisation for CDR

Scientific Advisory Committee

Guido Altarelli (Roma) Sergio Bertolucci (CERN) Stan Brodsky (SLAC) Allen Caldwell (MPI Muenchen) - Chair Swapan Chattopadhyay (Cockcroft Institute) John Dainton (Liverpool) John Ellis (CERN) Jos Engelen (NWO) Joel Feltesse (Saclay) Roland Garoby (CERN) Rolf Heuer (CERN) Roland Horisberger (PSI) Young-Kee Kim (Fermilab) Aharon Levy (Tel Aviv) Lev Lipatov (St. Petersburg) Karlheinz Meier (Heidelberg) Richard Milner (MIT) Joachim Mnich (DESY) Steve Myers (CERN) Guenther Rosner (Glasgow) Alexander N. Skrinsky (INP Novosibirsk) Stefano Forte (Milano) Anthony Thomas (JLab) Steve Vigdor (Brookhaven) Ferdinand Willeke (Brookhaven) Frank Wilczek (MIT)

Steering Committee

Oliver Bruening(CERN) John Dainton (Liverpool) Albert De Roeck (CERN) Max Klein (Liverpool) - Chair Paul Laycock (Liverpool) Paul Newman (Birmingham) Emmanuelle Perez (CERN) Wesley Smith (Wisconsin) Bernd Surrow (MIT) Katsuo Tokushuku (KEK) Urs Wiedemann (CERN) Frank Zimmermann (CERN)

Working Group Convenors

Accelerator Design

Oliver Bruening (CERN) John Dainton (Liverpool)

Interaction Region

Bernhard Holzer(CERN) Uwe Schneekloth (DESY) Pierre van Mechelen (Antwerpen)

Detector Design

Peter Kostka (DESY) Alessandro Polini (Bologna) Rainer Wallny (Zurich)

New Physics at Large Scales

Georges Azuelos (Montreal) Emmanuelle Perez (CERN) Georg Weiglein (Hamburg)

Precision QCD and Electroweak

Olaf Behnke (DESY) Paolo Gambino (Torino) Thomas Gehrmann (Zurich) Claire Gwenlan (Oxford)

Physics at High Parton Densities Alan Martin (Durham)

Néstor Armesto (Santiago de Compostela) Brian A. Cole (Columbia) Paul R. Newman (Birmingham) Anna M. Stasto (PennState)

CERN Referees

Ring Ring Design Kurt Huebner (CERN) Alexander N. Skrinsky (INP Novosibirsk) Ferdinand Willeke (BNL) Linac Ring Design Reinhard Brinkmann (DESY) Andy Wolski (Cockcroft) Kaoru Yokoya (KEK) **Energy Recovery** Georg Hoffstaetter (Cornell) Ilan Ben Zvi (BNL) Magnets Neil Marks (Cockcroft) Martin Wilson (CERN) Interaction Region Daniel Pitzl (DESY) Mike Sullivan (SLAC) **Detector Design** Philippe Bloch (CERN) Roland Horisberger (PSI) Installation and Infrastructure Sylvain Weisz (CERN) New Physics at Large Scales Cristinel Diaconu (IN2P3 Marseille) Gian Giudice (CERN) Michelangelo Mangano (CERN) Precision QCD and Electroweak Guido Altarelli (Roma) Vladimir Chekelian (MPI Munich) Physics at High Parton Densities Alfred Mueller (Columbia) Raju Venugopalan (BNL) Michele Arneodo (INFN Torino)

LHeC is the latest & most promising idea to take ep physics to the TeV centre-of-mass scale at high luminosity

Outline of the talk:

- Physics motivation
 - Accelerator and detector design
 - Physics possibilities
 - Timeline and outlook

Deep inelastic electron-proton collider

HERA Hamburg 1992-2007

Other results: measurement of coupling constant, jets, photon structure, diffractive processes, charm and bottom structure functions, limits for new physics (leptoquarks).

Limitations of HERA

HERA in one box the first ep collider

 $E_{p}*E_{e}=$ 920*27.6GeV² $Vs=2VE_{e}E_{p}=320$ GeV

L=1..4 10³¹cm⁻²s⁻¹ → ΣL=0.5fb⁻¹ 1992-2000 & 2003-2007

Q²= [0.1 -- 3 * 10⁴] GeV² -4-momentum transfer²

x=Q²/(sy) ≅10⁻⁴ .. 0.7 Bjorken x

y≅0.005 .. 0.9 inelasticity

- Low luminosity for high precision(large x)
- No deutrons
- No heavy nuclei
- Low x saturation ?(too small s)
- Precision measurement of α_s (overall not precise enough)

HEP needs a TeV energy scale machine with 100 times higher luminosity than HERA to develop DIS physics further and to complement the physics at the LHC. The Large Hadron Collider p and A beams offer a unique opportunity to build a second ep and first eA collider at the energy frontier.

Physics motivation for ep/eA in TeV range

- Details of parton structure of the nucleon (from ep,ed/eA), full unfolding of PDFs. Measurement of GPDs and unintegrated PDFs.
- Mapping the gluon field down to very low x. Saturation physics.
- Heavy quarks, factorization, diffraction, electroweak processes.
- Properties of Higgs. Very good sensitivity to: H to bbar, H to WW coupling in the 120-130 GeV mass range.
- Searches and understanding of new physics. Very precise measurement of the coupling constant. Leptoquarks, excited leptons...
- Deep inelastic scattering off nuclei. Nuclear parton distributions. Pinning down the initial state for heavy ion collisions.

Accelerator design in linac-ring option

500 MeV injection 3 turns 2 linacs, 10 GeV energy recovery 90% polarisation $L = 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Higher energy: 140 GeV linac ILC type 31.5 MV/m without energy recovery lower luminosity

Design Parameters

parameter [unit]	LHeC	
species	$e p, {}^{208}\text{Pb}^{82+}$	
beam energy (/nucleon) [GeV]	60 7000, 2760	
bunch spacing [ns]	25,100 $25,100$	
bunch intensity (nucleon) $[10^{10}]$	0.1 (0.2), 0.4 17 (22), 2.5	
beam current [mA]	6.4(12.8) 860(1110), 6	
rms bunch length [mm]	0.6 75.5	
polarization [%]	90 (e^+ none) none, none	
normalized rms emittance $[\mu m]$	50 3.75 $(2.0), 1.5$	
geometric rms emittance [nm]	0.43 0.50 (0.31)	
IP beta function $\beta_{x,y}^*$ [m]	0.12 (0.032) 0.1 (0.05)	
IP spot size $[\mu m]$	7.2(3.7) $7.2(3.7)$	
synchrotron tune Q_s	$ 1.9 \times 10^{-3}$	
hadron beam-beam parameter	$0.0001 \ (0.0002)$	
lepton disruption parameter D	6 (30)	
crossing angle	0 (detector-integrated dipole)	
hourglass reduction factor H_{hg}	0.91 (0.67)	
pinch enhancement factor H_D	$1.35 (0.3 \text{ for } e^+)$	
CM energy [TeV]	1.3, 0.81	
luminosity / nucleon $[10^{33} \text{ cm}^{-2} \text{s}^{-1}]$	1(10), 0.2	

Designed for synchronous ep and pp operation during the HL-LHC phase.

Energy Recovery Linac (3 pass)

Figure 1: Schematic view on the LHeC racetrack configuration. Each linac accelerates the beam to 10 GeV, which leads to a 60 GeV electron energy at the collision point with three passes through the opposite linear structures of 60 cavity-cryo modules each. The arc radius is about 1 km, mainly determined by the synchrotron radiation loss of the 60 GeV beam which is returned from the IP and decelerated for recovering the beam power. Comprehensive design studies of the lattice, optics, beam (beam) dynamics, dump, IR and return arc magnets, as well as auxiliary systems such as RF, cryogenics or spin rotators are contained in the CDR [1], which as for physics and detector had been reviewed by 24 referees appointed by CERN.

Ring-Ring option as fall back;

Detector Acceptance Requirements

Access to $Q^2=1$ GeV² in ep mode for all x > 5 x 10⁻⁷ requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

--3

--5

operation.

X

10⁻¹

10⁻³

10⁻⁴

10⁻²

Detector design

Forward/backward asymmetry in energy deposited and thus in geometry and technology Present dimensions: LxD =14x9m² [CMS 21 x 15m², ATLAS 45 x 25 m²] Taggers at -62m (e),100m (γ,LR), -22.4m (γ,RR), +100m (n), +420m (p)

Physics possibilities

Beyond Standard Model

Leptoquarks Contact Interactions Excited Fermions Higgs in MSSM Heavy Leptons 4th generation quarks Z' SUSY ???

QCD and EW precision physics

Structure functions Quark distributions from direct measurements Strong coupling constant to high accuracy Higgs in SM Gluon distribution in extended x range to unprecedented accuracy Single top and anti-top production Electroweak couplings Heavy quark fragmentation functions Heavy flavor production with high accuracy Jets and QCD in photoproduction Partonic structure of the photon

...

Small x and high parton densities

New regime at low x Saturation Diffraction Vector Mesons Deeply Virtual Compoton Scattering Forward jets and parton dynamics DIS on nuclei Generalized/unintegrated parton distribution functions

3	Pre	cision	QCD and Electroweak Physics	3 4
	3.1	Inclus	ive deep inelastic scattering	35
		3.1.1	Cross sections and structure functions	35
		3.1.2	Neutral current	35
		3.1.3	Charged current	37
		3.1.4	Cross section simulation and uncertainties	39
		3.1.5	Longitudinal structure function $\mathbf{F}_{\mathbf{L}}$	41
	3.2	Deterr	mination of parton distributions	47
		3.2.1	QCD fit ansatz	48
		3.2.2	Valence quarks	49
		3.2.3	Probing $q \neq \bar{q}$ and $u^p \neq d^n$	52
		3.2.4	Strange quarks	54
		3.2.5	Releasing PDF constraints	54
		3.2.6	Top quarks	55
	3.3	Gluon	distribution	58
3.4 Prospects to measure the strong coupling constant				
		3.4.1	Status of the DIS measurements of α_s	62
		3.4.2	Simulation of α_s determination $\ldots \ldots \ldots$	63
	3.5	Electr	on-deuteron scattering	65
	3.6	Charn	a and beauty production	68
		3.6.1	Introduction and overview of expected highlights	68
		3.6.2	Total production cross sections for charm, beauty and top quarks	71
		3.6.3	Charm and beauty production in DIS	72
		3.6.4	Determination of the charm mass parameter in VFN schemes	76
		3.6.5	Intrinsic heavy flavour	77
		3.6.6	D^* meson photoproduction study	78
	3.7	High p	p_t jets	81
		3.7.1	Jets in ep	81
		3.7.2	Jets in γA	87
	3.8	Total _I	photoproduction cross section	89
	3.9	Electro	oweak physics	90
		3.9.1	Context	91
		3.9.2	Light quark weak neutral current couplings	92
		3.9.3	Determination of the weak mixing angle	93

F₂,F_L structure functions

Reduced cross section: huge kinematic range and excellent accuracy

Longitudinal structure function: lowering electron energy

Figure 3.6: Reduced charged current cross sections with statistical uncertainties corresponding to 1 fb^{-1} electron (top data points, red) and positron (lower data points, blue) proton scattering at the LHeC, The curves are determined by the dominant valence quark distributions, u_v for e^-p and d_v for e^+p . In the simulation the lepton polarisation is taken to be zero. The valence-quark approximation of the reduced cross section is seen to hold at $x \ge 0.3$. A precise determination of the u/d ratio up to large x appears to be feasible at very high Q^2 .

Constraining the pdfs

Mapping the Gluon Distribution

Valence Quarks

Long time to understand d/u. LHeC: free of higher twist

0.8

1

0.6

10⁻³

0.2

0.4

Physics with heavy flavors

Luminosity $10 fb^{-1}$

LHeC is a flavor factory!

Charm

Beauty

Q² = 100000 GeV²,i=11

10⁻¹

1

X

Strange quark distributions: results from LHC

Previous MSTW, NNPDF analysis indicated strangeness suppression. ATLAS points to SU(3) symmetry with 0.5(sbar+s)/dbar ratio

Strange pdf from LHeC

Why deuteron?

Deuteron as effective neutron beam

Quark flavor decomposition $F_2(p) \propto 4u + d$ $F_2(n) \propto u + 4d$

Particularly important at large x

- Large d-quark uncertainty
- d/u ratio at x → 1 probes
 non perturbative proton structure
 Accardi et al. [CTEQ-JLab collab.] PRD84(2011)
- At $x \lesssim 10^{-2}$ sea quarks dominate, expect $F_2(p) \approx F_2(n)$

Complementarity of LHeC to LHC

With high energy and luminosity, the LHC search range will be extended to high masses, up to \sim 5 TeV in pair production, and PDF uncertainties come in $\sim 1/(1-x)$.

Gluon-Gluon Luminosity

NNLO gg luminosity at LHC ($\sqrt{s} = 14$ TeV)

(July 2012) G. Watt

Monica d'Onofrio talk at Chavannes-de-Bogis What the LHeC can do

- M.Kramer and R.Klees working on impact of improved PDF fits on theoretical predictions for SUSY process:
 - Example: gl-gl production (assuming m_gl = m_sq)
 - without(blue, CTEQ6) and with (green) LHeC PDF

Improve of factor of 2-3 @ 2 TeV factor of 10 at 3.5 TeV

Electroweak precision

Also measurement of weak mixing angle below and above Mz (scale variation)

Signal and background cut flow

Talk by Masaki Ishitsuka at Chavannes-de-Bogis

Beam energy:			H→bb	CC DIS	NC bbj	S/N	S∕√N
 Proton beam 	7 TeV	NC rejection	816	123000	4630	6.38×10 ⁻³	2.28
SM Higgs mass	120 GeV	+ b-tag requirement + Higgs invariant mass	178	1620	179	9.92×10 ⁻²	4.21
Luminosity	10 fb ⁻¹	All cuts	84.6	29.1	18.3	1.79	12.3

Beam energy:	150 GeV ⇒ 60 GeV 7 TeV		$E_{e} = 150 \text{ GeV}$ (10 fb ⁻¹)	E _e = 60 GeV (100 fb ⁻¹)
Electron beamProton beam		$\mathbf{H} ightarrow \mathbf{bb}$ signal	84.6	248
SM Higgs mass	120 GeV	S/N	1.79	1.05
Luminosity	$10 \text{ fb}^{-1} \Rightarrow 100 \text{ fb}^{-1}$	S∕√N	12.3	16.1

- We can explore other channels
 - NC Higgs production in ZZ fusion
 - Other light Higgs decay channels

Heasurement of strong coupling

Unification of coupling constants?

Strong coupling is least known of all couplings Grand unification predictions suffer from uncertainty DIS tends to be lower than the world average LHeC: per mille accuracy (now percent accuracy)

A dedicated study was performed to determine the accuracy of alphas from the LHeC was performed using for the central values the SM prediction smeared within its uncertainties assuming Gauss distribution and taking into account correlations

case	cut $[Q^2 \ (\text{GeV}^2)]$	α_S	uncertainty	relative precision $(\%)$
HERA only (14p)	$Q^2 > 3.5$	0.11529	0.002238	1.94
HERA+jets (14p)	$Q^{2} > 3.5$	0.12203	0.000995	0.82
LHeC only (14p)	$Q^2 > 3.5$	0.11680	0.000180	0.15
LHeC only $(10p)$	$Q^{2} > 3.5$	0.11796	0.000199	0.17
LHeC only $(14p)$	$Q^2 > 20.$	0.11602	0.000292	0.25
LHeC+HERA (10p)	$Q^2 > 3.5$	0.11769	0.000132	0.11
LHeC+HERA $(10p)$	$Q^2 > 7.0$	0.11831	0.000238	0.20
LHeC+HERA $(10p)$	$Q^2 > 10.$	0.11839	0.000304	0.26

4	Phy	sics at	High Parton Densities	101
	4.1	Physic	s at small x	101
		4.1.1	High energy and density regime of QCD	101
		4.1.2	Status following HERA data	109
		4.1.3	Low- x physics perspectives at the LHC $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	116
		4.1.4	Nuclear targets	119
	4.2	Prospe	ects at the LHeC	124
		4.2.1	Strategy: decreasing x and increasing A	124
		4.2.2	Inclusive measurements	124
		4.2.3	Exclusive production	132
		4.2.4	Inclusive diffraction	152
		4.2.5	Jet and multi-jet observables, parton dynamics and fragmentation	166
		4.2.6	Implications for ultra-high energy neutrino interactions and detection	178

Low x and saturation

HERA established strong growth of the gluon density towards small x
Parton saturation: recombination of gluons at sufficiently high densities leading to nonlinear modification of the evolution equations.
Emergence of a dynamical scale: saturation scale dependent on energy.

LHe Strategy for making target more 'black'

LHe **F**₂, **F**_L structure functions at low x

Precision measurements of structure functions at very low x: test DGLAP, small x, saturation inspired approaches.

Interestingly, rather small band of uncertainties for models based on saturation as compared with the calculations based on the linear evolution. Possible cause: the nonlinear evolution washes out any uncertainties due to the initial conditions, or too constrained parametrization used within the similar framework.

approx. 2% error on the F2 pseudodata, and 8% on the FL pseudodata ,should be able to distinguish between some of the scenarios.

Heavy Ion Physics

EIC programme: see recent workshop arXiv:1108.1713 [nucl-th] Initial conditions of QGP Hadronization in Media Nuclear Parton Distributions Black body limit Saturation in *ep* AND in *eA*? Diffraction in *eA* scattering **Deuterons**: tag *p* in *en* to beat Fermi motion and exploit

LHeC eA is natural continuation of (part of) the heavy ion physics of the LHC (AA and pA, forward)

diffraction-shadowing relation

UHP Nuclear structure functions at LHeC

Nuclear ratio for structure function or a parton density:

$$R_f^A(x,Q^2) = \frac{f^A(x,Q^2)}{A \times f^N(x,Q^2)}$$

Nuclear effects
$$R^A \neq 1$$

LHeC potential: precisely measure partonic structure of the nuclei at small x.

Nuclear structure functions measured with very high accuracy.

Nuclear parton distributions

R_i = Nuclear PDF i / (A * proton PDF i)

Current status: nuclear parton distribution functions are poorly known at small x. Especially gluon density, below x=0.01 can be anything between 0 and 1....

UHPO Nuclear parton distributions at LHeC

Global NLO fit with the LHeC pseudodata included

Diffraction

$$x_{IP} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2}$$
$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}$$

 $x_{Bj} = x_{IP}\beta$

momentum fraction of the Pomeron w.r.t hadron

momentum fraction of parton w.r.t Pomeron

Methods: Leading proton tagging, large rapidity gap selection

Diffractive mass distribution

New domain of diffractive masses. M_X can include W/Z/beauty

Inclusive diffraction in eA

Study of diffractive dijets, heavy quarks for the factorization tests

Exclusive diffraction

- Exclusive diffractive production of VM is an excellent process for extracting the dipole amplitude and GPDs
- Suitable process for estimating the 'blackness' (the interaction.
- t-dependence provides an information about the impact parameter profile of the amplitude.

Central black region growing with decrease of x.

Large momentum transfer t probes small impact parameter where the density of interaction region is most dense.

LHO Exclusive diffraction: t-dependence

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus. Possible nuclear resonances at small t?

W (GeV)

- LHeC has an unprecedented potential as a high luminosity, high energy DIS machine. Offering a unique window for small x physics and high parton density regime.
- Precision DIS measurements: constraining and unfolding PDFs, heavy flavor physics, precision strong coupling , precision electroweak measurements. Higgs properties.
- eA at high energy essential to untangle the complex nuclear structure at low x and constrain the initial conditions for AA at the LHC. Complementary to pp/pA/AA.
- CDR for the project is complete: arXiv:1206.2913
- Next steps in the near future:
 - Reorganization of the working groups. Forming a collaboration.
 - Detailed evaluation of the relation of ep/eA program to LHC (esp. pp and pA) is needed.
 - First steps towards Technical Design Report.

http://cern.ch/lhec

backup

CHOP Photoproduction cross section

Explore dual nature of the photon: pointlike interactions or hadronic behavior.

Tests of universality of hadronic cross sections, unitarity, transition between perturbative and nonperturbative regimes.

Dedicated detectors for small angle scattered electrons at 62m from the interaction point.

Kinematics of events:

$$Q^2 \sim 0.01$$

 $y \sim 0.3$

Systematics is the limiting factor here. Assumed 7% for the simulated data as in H1 and ZEUS.

$$\begin{array}{rcl} & \mathcal{F}_{L} &= & \frac{\alpha_{em}}{\pi} \sum_{f} e_{f}^{2} \int d^{2}\mathbf{r} \int_{0} dz \ 4 \ Q^{2} \ z^{2}(1-z)^{2} \ K_{0}^{2}(Qr) \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$$

Dipole model at high energy: photon fluctuates into gabar pair and undergoes written in the following annipate faction, with the starget ically in Fig. 3.1,

$$\sigma_{T,L}(x,Q^2) = \int d^2 \mathbf{r} \int_0^1 dz \sum_f |\Psi_{T,L}^f(\mathbf{r},z,Q^2)|^2 \hat{\sigma}(x,\mathbf{r}).$$
(3.7)

Chapter 3. Inclusive DIS at small x

where the photon wave functions $\Psi_{T,L}^{f}$ describe the splitting of the virtual pho-

2/Q

$$= K_{0,1} \text{ are the Bessel-Mc Donal function for the product of the set o$$

one It docor there the photon wave fu

 $\sigma_L = \frac{\alpha_{em}}{\pi} \sum_{f} e_f^2 \int d^2 \mathbf{r} \int_0^{t} dz \, 4 \, Q^2 \, z^2 (1-z)^2 \, K_0^2(Qr)$

 $\int d^2 \mathbf{l}$, $d^2 \mathbf{l}$, $d^2 \mathbf{l}$

Accelerator design

Multi-lab involvement: CERN, BNL, Novosibirsk, Cockroft, Cornell, DESY, EPFL Lausanne, JLab, KEK, Liverpool, SLAC, TAC Turkey, NTFU Norway, INFN, ...

Design constraint: power consumption < 100 MW. Electron energy 60 GeV in ring-ring

Installation Im above LHC and 60cm to By-passes of existing experiments. Challenging, but possible.

5	Nev	v Phys	ics at High Energy	182
	5.1	New p	by sics in inclusive DIS at high Q^2	. 182
		5.1.1	Quark substructure	. 183
		5.1.2	Contact interactions	. 184
		5.1.3	Kaluza-Klein gravitons in extra-dimensions	. 186
	5.2	Leptoc	quarks and leptogluons	. 188
		5.2.1	Phenomenology of leptoquarks in ep collisions	. 188
		5.2.2	The Buchmüller-Rückl-Wyler Model	. 189
		5.2.3	Phenomenology of leptoquarks in pp collisions	. 189
		5.2.4	Contact term approach	. 191
		5.2.5	Current status of leptoquark searches	. 191
		5.2.6	Sensitivity on leptoquarks at LHC and at LHeC	. 192
		5.2.7	Determination of LQ properties	. 192
		5.2.8	Leptoquarks as R-parity violating squarks	. 198
		5.2.9	Leptogluons	. 200
	5.3	Excite	d leptons and other new heavy leptons	. 200
		5.3.1	Excited fermion models	. 201
		5.3.2	Simulation and results	. 202
	5.4	New p	by sics in boson-quark interactions	. 205
		5.4.1	An LHeC-based $\gamma \mathbf{p}$ collider $\ldots \ldots \ldots$. 205
		5.4.2	Anomalous single top production at a γp collider	. 205
		5.4.3	Excited quarks in γp collisions at the LHeC	. 208
		5.4.4	Quarks from a fourth generation at LHeC	. 209
		545	Diquarks at LHeC	209
		5.4.6	Quarks from a fourth generation in Wa interactions	210
	55	Sensiti	ivity to a Higgs boson	210
	0.0	5 5 1	Introductory remarks	211
		5.5.1	Higgs production at the LHeC	213
		5.5.2	Observability of the signal	214
		5.5.0 5.5.4	Probing anomalous HWW couplings at the LHeC	220
		0.0.4		. 220

Leptoquarks appear in many extensions of the SM.

May help explain remarkable symmetry between lepton and quark sectors.

Produced via fusion of electron with the quark (antiquark) from the proton.

In pp leptoquarks mainly produced in pairs. Single production in ep. Better suited for studies of properties (quantum numbers etc.)

Mass sensitivity to 1.0-1.5 TeV. Comparable with LHC, much cleaner!

Scalar LQ, λ =0.1, single production 10 (qd) LHeC, $e^+ d$ (E_e = 70 GeV) LHeC, $e^- d$ (E_e = 70 GeV) 10 6 10^{2} LHeC, $e^+ d$ (E_e = 140 GeV) ······ LHeC, $e^{-}\overline{d}$ (E_a = 140 GeV) 10 10 10 10 10 -HC. d q LHC. d a + d γ 10 1200 1400 1600 1000 400 800 600 LQ Mass (GeV)

Leptoquark properties

Quantum numbers and couplings:

• F: fermion number can be obtained from asymmetry in single LQ production, since q have higher x than \overline{q}

1200 1400 1600 M _{LQ} (GeV)

600

800

1000

e* Mass [GeV]

Monica d'Onofrio talk at Chavannes-de-Bogis

SUSY @ LHeC

- Possible searches in R-parity violation SUSY scenarios
- complementarities with LHC:
 - Implication of LHC findings for LHeC reach
 - Implication of LHeC PDF constraints on SUSY for the LHC
 - New uncharted scenarios

Strong production

xsection ~ 2.5 pb for m = 1000 GeV, ~ 0.01 pb for m(squark, gluino) = 2 TeV → clearly, high stats samples are needed.

Decay chain might be complex, including Z or Higgs

Monica d'Onofrio talk at Chavannes-de-Bogis

Importance of PDF

- If we see deviations from SM, will be important to characterize the physics underneath
- The case of strong production:

