

First results of W[±] boson production in high-energy polarized p+p collisions at RHIC at BNL

Bernd Surrow

Massachusetts

Institute of Technology

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

How do we probe the structure and dynamics of matter in ep / pp scattering?

What do we know about the polarized quark and gluon distributions?

 $\Delta G(Q^2) =$

 $\Delta g(x,Q^2)dx$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx$$

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

Polarized semi-inclusive DIS results: HERMES / COMPASS

- Semi-inclusive DIS: Correlation of flavor content of hadron with flavor of quark / antiquark probed
- O Good agreement of COMPASS and HERMES LO analysis
- Good agreement with global fit analysis / Sea quark distributions compatible with zero
- Great value of independent probe at large momentum scales (sub-leading twist effects unimportant) without hadronic fragmentation

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

STAR W program in e-decay mode at mid-rapidity and forward/backward rapidity

- W boson kinematics relevant for STAR rapidity acceptance
 - Leptonic rapidity inherits relation to mean x
 - Forward rapidity:
 □ η > 0
 - $\Box \quad \langle x_1 \rangle \text{ larger than } \langle x_2 \rangle$
 - Backward rapidity:
 Π η < 0
 - $\Box \quad \langle x_1 \rangle \text{ less than } \langle x_2 \rangle$
 - Mid-rapidity:
 - $\Box \quad \eta \sim 0$
 - \Box <x1> similar to <x2>

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

A_L behavior for STAR mid-rapidity and forward/backward rapidity region

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010 8

Collider: The First polarized p+p collider at BNL

RHIC Performance - Overview

C Long 200GeV production runs at √s=200GeV (long. polarization): Run 5 / Run 6 / Run 9

• First collisions of polarized proton beams at $\int s=500 \text{GeV}$ (long. polarization): Run 9

Collider: The First polarized p+p collider at BNL

RHIC polarized p+p running

RHIC RUN	s [GeV]	Lrecorded [pb ⁻¹] Lrecorded [pb ⁻¹] (trans.) (long.)		Polarization [%]	
RUN 2	200	0.15	0.3	15	
RUN 3	200	0.25	0.3	30	
RUN 4	200	0	0.4	40-45	
RUN 5	200	0.4	3.1	45-50	
RUN 6	200	3.4/6.8	8.5	60	
RUN 8	200	7.8	-	45	
RUN 9	200 / 500	-	25 / 14	55 / <mark>40</mark>	

O Transverse program: A_N measurement of forward π^0 and η production (Run 2 / Run 6 / Run 8)

- O Gluon polarization program: Inclusive jet and hadron production (Run 3/4, Run 5, Run 6 and Run 9)
- W program: First A_L measurement W⁺ and W⁻ boson production from Run 9

Overview

- Calorimetry system with 2π coverage: BEMC (-1< η <1) and EEMC (1< η <2)
- TPC: Tracking and particle ID
- ZDC: Relative luminosity and local polarimetry
- BBC: Relative luminosity and Minimum bias trigger

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010 First collisions of polarized proton beams at STAR at $\int s = 500 \text{GeV}$: Run 9 (P~40% / L~14pb⁻¹)

- **O STAR Mid-rapidity W program (-1< \eta <1): BEMC and TPC**
- STAR Forward/Backward W program (1< η <2): EEMC and TPC /

FGT (Installation in summer 2011)

11

W reconstruction - Algorithm : Idea

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

Event display (W event candidate) and detector signature

13

W production results: QCD Background event

Event display (Di-Jet event candidate) and detector signature

We recorded and rejected ~1.5M of those kinds of events!

Event display (Z event candidate) and detector signature

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010 16

W reconstruction - Algorithm : Details (1)

General:

- O Select L2W-E_T triggered events
- O Select vertices with |Z|<100 cm

Electron isolation cuts:

- Electron candidate is any primary TPC track with global $P_T > 10 \text{ GeV/c}$
- Extrapolate TPC track to BTOW tower
- O Compute 2x2 tower cluster E_T , require E_T sum > 15 GeV
- ${\rm O}$ Require the excess $E_{\rm T}$ in 4x4 tower patch over 2x2 patch to be below 5%
- Require distance of 2x2 cluster vs. TPC track below 7 cm

Near-cone veto:

- Compute near-cone E_T sum of BEMC+TPC over $\triangle R=0.7$ in eta-phi space
- **O** Require near-cone excess E_T below 12%

Away-'cone' cuts: pT balance requirement

- ${\rm O}$ Vector sum > 15GeV/c of: 2X2 tower cluster p_T and p_T of any number of jets outside near-cone
- O E_T of jet > 3.5GeV

CERN, Switzerland, July 26, 2010

W production results: Algorithm Details

W reconstruction - Algorithm : Details (2) 4**x**4 • Lepton meas. in TPC (direction) and in BEMC (energy) Select 2x2 cluster 2x2 with highest E_T sum □ TPC & BEMC matching TPC track extrapolated to BTOW tower grid Suppress background **BEMC** cluster isolation 603000 events Near-side veto balance (GeV M-C: W's M-C: QCD Away-side veto Counts STAR data 40 $E_T^e/E_T^{4\times 4}$ Transverse plane view 20Signed p_T 300 nearCone ()delR=0.7 Counts ptBalance 'egg' 4pi - n<u>earCone</u> 200awayCone delPhi=0.7 -20100**Di-Jet events** sum only sum all jets -400.5204060 () $E_{T}^{e}/E_{T}^{R<0.7}$ E_T^e (GeV)

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

Bernd Surrow

Evolution of E_T distribution vs. cut ID

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

\Box Mid-rapidity high $p_T e^{\pm}$ charge separation

positron $p_T = 5 \text{ GeV/c}$ electron $p_T = 5 \text{ GeV/c}$ +/- distance D: ~1/P_T $p_T = 5 \text{ GeV/c}$: D ~15 cm $p_T = 40 \text{ GeV/c}$: D ~2 cm

Assign: $Q/p_T > 0$ positrons $Q/p_T < 0$ to be electrons

Successful separation of different charge states!

Charge separated raw Signal / Jacobian Peak Distributions

- Charged separated W⁺/W⁻ candidate distributions of the BEMC cluster transverse energy E_T (GeV)
- Cuts: All previously discussed cuts!

W production results: Background

Background subtraction

- Background distribution and 0 background-subtracted signal distribution
- 0 B/(S+B) (E_T > 25GeV) W⁻: 16%
- B/(S+B) (E_T > 25GeV) W⁺: 8% 0

Background Events $(E_T > 25 \text{ GeV})$	$W^- \rightarrow e^- + \bar{\nu}_e$	$W^+ \to e^+ + \nu_e$
$W \to \tau + \nu_{\tau}$	2.7 ± 0.7	8.4 ± 2.2
Missing Endcap	14 ± 4	13 ± 4
Normalized QCD	$8.0 \stackrel{+20}{-4}$	$25 \ ^{+36}_{-9}$
Total	$25 \ ^{+21}_{-7}$	$46 \begin{array}{c} +36 \\ -11 \end{array}$

70

Data/MC Comparison of charge-separated Jacobian peak distributions

• Comparison of data and PYTHIA+GEANT simulations for W signal events at $\int s = 500 \text{GeV}$

 Systematic uncertainties were estimated by varying cuts and normalization regions for QCD background and by varying BEMC energy scale uncertainty (±7.5%)

W production results: Cross-Section

Total W⁺/W⁻ Cross-section results

$W^- \rightarrow e^- + \bar{\nu}_e W^+ \rightarrow e^-$	$^+ + \nu_e$
N_W^{obs} 156 513	
N_{back} 25 $^{+21}_{-7}$ 46 $^{+36}_{-11}$	
ϵ_{total} 0.56 $^{+0.11}_{-0.09}$ 0.56 $^{+0.12}_{-0.09}$	2
$\int Ldt \ (pb^{-1}) 13.7 \pm 3.2 \qquad 13.7 \pm 3.2$.2

STAR Preliminary Run 9 (p+p √s=500 GeV)

$$\sigma_{W^+ \to e^+ + \nu} = 61 \pm 3 \text{ (stat.)} ^{+10}_{-13} \text{ (syst.)} \pm 14 \text{ (lumi.) pb}$$

 $\sigma_{W^- \to e^- + \bar{\nu}} = 17 \pm 2 \text{ (stat.)} + \frac{3}{-4} \text{ (syst.)} \pm 4 \text{ (lumi.) pb}$

Reasonable agreement between measured and theory evaluated cross-sections within

uncertainties!

W production results: Asymmetry measurement

A_L determination STAR W-event candidate p+p 500 GeV April 2009 $u / \Delta u (d / \Delta d)$ $\nu_e \ (\bar{\nu}_e)$ $A_{L}^{W^{+}(W^{-})} = \frac{1}{P} \frac{N^{+}(W) - N^{-}(W)}{N^{+}(W) + N^{-}(W)}$ $e^{+}(e^{-})$ 뤔 Versus x_2 $\Delta \bar{d} / \bar{d} (\Delta \bar{u} / \bar{u})$ Counts Run 9 STAR Preliminary \sqrt{s} = 500 GeV First measurement of 0 $p+p \rightarrow W^+ \rightarrow e^+ + v_e$ $A_L^{W^+} = \frac{1}{2} \left(\frac{\Delta d}{\bar{d}} - \frac{\Delta u}{u} \right)$ positron |η|<1 80 - w⁺ candidates parity-violation in 150 Backg. est. Backg. subtr. W 60 polarized proton-proton negative A_L oftware threshold $(P_1 + P_2)$ 100 Counts collisions at RHIC 20 W⁺: Observe directly u 50 0 quark polarization! + 10 20 30 50 60 70 Δ Ω EMC cluster E_{τ} (GeV)

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

W production results: Asymmetry result

D Parity-violating single-spin asymmetry $W^+/W^- A_L$ results

STAR Preliminary Run 9 (p+p $\int s=500 \text{ GeV}$) $A_L(W^+) = -0.33 \pm 0.10(\text{stat.}) \pm 0.04(\text{syst.})$ $A_L(W^-) = 0.18 \pm 0.19(\text{stat.}) \stackrel{+0.04}{_{-0.03}}(\text{syst.})$

- $A_L(W^*)$ negative with a significance of 3.3 σ
- $A_L(W^-)$ central value positive
- Systematic errors of A_L under control
- TPC charge separation works up to $p_T \sim 50 GeV$
- Measured asymmetries are in agreement with theory evaluations using polarized pdf's (DSSV) constrained by polarized DIS data
 - \Rightarrow Universality of helicity distribution functions!

27

CERN, Switzerland, July 26, 2010

Future W program: Forward GEM Tracker

G FGT layout

APV chip

Future W program: Projections

A_L projections

lepton |η|<1: 2 beams, eff=0.65 w/ 9MHz RF, Run9 QCD bckg, rhicbos σW*,W '=82, 19 pb lepton [η]∈[1,2]: 1 beam, eff=0.60 w/ 9MHz RF, M-C QCD bckg, rhicbos σW^{*},W ^{*}=5.3, 4.7 pb

- Assumptions:
 - □ Efficiency:
 - Mid-rapidity: 0.65 0
 - Forward rapidity: 0.6
 - Assume availability o[.] 9MHz RF
 - Background:
 - Mid-rapidity: Run 9 0
 - O Forward rapidity: QC MC simulations

□ Full charge-sign discrimination at high-

рт

• Conclusions:

- **W** Program at RHIC is a multi-year program -Initial sample of ~100pb⁻¹ / ~50% is only a step along the way!
- Critical:
 - 0 Design polarization performance of 70% to collect at least 300pb⁻¹
 - 0 Polarization
 - uncertainty ~5%

CERN Seminar - COMPASS Meeting CERN, Switzerland, July 26, 2010

Future W program: Projections

CERN, Switzerland, July 26, 2010

Summary

- STAR High-energy polarized p-p program
 - pQCD: Critical role to interpret measured asymmetries
 - First global analysis incl. RHIC SPIN data \Rightarrow Evidence for small gluon polarization for 0.05<×<0.2
 - Correlation measurements (Di-Jets / γ -Jets) will allow to provide needed constrain on the partonic

kinematics \Rightarrow First Di-Jet cross-section measurement at RHIC at $\int s=200 \text{GeV}$

- O Run 9 analysis of 200GeV in full swing Strong focus on di-jet measurements!
- First Run 9 STAR W result (Cross-section and A_L for W⁺/W⁻ at mid-rapidity) important milestone!
- Forward rapidity: Complete FGT construction in ~fall 2010 followed by full system test and subsequent full installation in ~summer 2011
 - \Rightarrow Ready for anticipated long 500GeV polarized pp run in FY12 (Run 12)
- Future measurements of A_L at STAR at mid-rapidity and forward rapidity (Wide rapidity coverage!) are expected to play an important role in our understanding of the polarized QCD sea!

Outlook

Outlook - PHTC SPTN						
0 Out	Three key	Recorded Luminosity	Main physics Objective	Remarks		
el	elements:	~50pb ⁻¹	Gluon polarization using di-jets and precision inclusive measurements	200 GeV		
 Gluon po Quark / Quark Polarizat Transvei dynamics 	 Gluon polarization Quark / Anti- 	~100pb ⁻¹	W production (Important consistency check to DIS results - Phase I) Gluon polarization (Di-Jets / Photon-Jets)	500 GeV		
	Quark Polarization	~300pb ⁻¹	W production (Constrain antiquark polarization - Phase II) Gluon polarization (Di-Jets / Photon-Jets)	500 GeV		
	dynamics	~30pb ⁻¹	Transverse spin gamma-jet	200 GeV		
0	Critical:	~250pb ⁻¹	Transverse spin Drell-Yan (Long term)	200 GeV		

Beam polarization: 70% / Narrow vertex region / Spin flipper

Critical: Sufficient running time!