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Abstract

As traditional methods for photon reconstruction in electromagnetic calorimeters at the
COMPASS and AMBER experiments at CERN are pushed to their limits, we consider an
alternative approach using artificial neural networks. This thesis is a proof of principle study
on whether neural networks can improve the reconstruction of photon positions and energies
detected with the calorimeter on simulated data. The network can determine the position of a
single photon with higher precision than the traditional fit method and shows roughly the same
performance in energy reconstruction. Although the network was trained on simulated data,
it succeeds in reconstructing real-data photons with the same accuracy as the traditional fit
method. In the case of two overlapping photons, the network still performs better in position
determination than the traditional method, however the energy prediction of the traditional
method remains superior. This lack of performance might be due to the network’s architecture
being chosen too simply. Examination of the network’s ability to count the amount of photons
detected on the calorimeter showed that using neural networks might improve the separation of
small-distance photon showers but should be trained sensibly to predict the correct number of
photons in all cases. In short, artificial neural networks show potential in photon reconstruction
in electromagnetic calorimeters but the network’s complexity and training process must be
chosen carefully to achieve better results than traditional methods.
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1 Introduction

To prove new theories in high-energy physics, we need the ability to reconstruct particles produced
in a high-energy particle collision. Therefore, precise particle detectors and detailed knowledge
about advanced post-processing of data are needed. Modern high-energy physics often requires
high precision experiments, such as the COMPASS[7] and AMBER[5] experiments at CERN. Inter-
action and decay photons are measured in electromagnetic calorimeters (ECAL). Reconstructing
the energy and position of these photons with high accuracy is needed for conclusive physics re-
sults. Traditional reconstructing methods which rely on fitting photon-shower profiles to clusters
measured with the ECAL show sufficient results and are thus eagerly developed further.

In recent years, a new method, machine learning, has been attracting more and more atten-
tion with performances showing potential to outperform traditional algorithms. Today, machine
learning is easily accessible to anyone through free open-source software libraries like Tensorflow[2]
that support python-interface implementations such as Keras[1]. Therefore, we consider machine
learning as an alternative approach for photon reconstruction. We will use deep learning, more
precisely artificial neural networks, to determine the correct amount of photons hitting the ECAL
and their positions and energies from the ECAL signals. The method appears to be a reasonable
approach as other experiments at CERN are also exploring reconstruction with the help of deep
learning[8]. The main research question investigated in this thesis is as follows:

Research question

Can neural networks improve the reconstruction of photons measured in electromagnetic
calorimeters with respect to the position and energy determination of one or more photons?

This is a proof-of-principle study. Therefore, the research question will be evaluated on simulated
data using a realistic experimental setup from the COMPASS experiment.
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2 COMPASS and AMBER experiments

2.1 The COMPASS experiment

COMPASS (COmmon Muon and Proton apparatus for Structure and Spectroscopy) is a fixed
target experiment at the M2 beamline at CERN[7]. It took data between 2002 and 2022. It
addresses a variety of open questions from Quantum Chromodynamics (QCD) by investigating
the hadron structure and by looking for bound states of the strong interaction in spectroscopy
experiments[9]. Depending on the physics program, it uses different targets. Also, the M2 beam line
can provide a wide variety of different beams; hadrons, electrons, or muons with different energies
and intensities. The spectrometer setup follows a two stage approach[7]: First, particles traveling
in larger angles with respect to the beam axis are detected with the large-angle spectrometer
setup containing a magnet (SM1), a ring imaging Cherenkov counter (RICH), an electromagnetic
calorimeter (ECAL1), a hadronic calorimeter (HCAL1) and a muon filter. Then the set-up repeats
similarly (SM2, ECAL2, HCAL2 and muon filter 2) in form of the small-angle spectrometer to
detect particles with smaller angles as they are now, further away from the target, spread out
wider. The experimental setup can be seen in figure 1.

Figure 1: Sketch of the 60 m long COMPASS two-stage spectrometer. From[4]

Multiple of the COMPASS physics programs require good photon detection in the reconstructed
final states[7]. Therefore, two electromagnetic spectrometers, ECAL1 and ECAL2, are imple-
mented in the setup. An example of a physics program, which relies on high-resolution calorime-
try, is the Primakoff program. The program addresses open questions in low-energy QCD in the
non-perturbative regime which can be addressed in so-called Primakoff reactions. In these reac-
tions ultra-relativistic particles scatter electromagnetically on heavy target nuclei. The COMPASS
Primakoff program uses a negative pion beam which scatters on nuclear targets such as nickel[9].
There are different final states of interest for the program: π−γ, π−π0, π−π0π0 and π−π+π−.
Neutral pions decay almost instantly into two photons. This results in final states with one, two,
or four photons which need to be reconstructed in the calorimeters. The physically interesting
region for the physics program covers decay-photon energies within 2 to 180 GeV[9].
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2.2 The AMBER experiment

The AMBER experiment is the successor experiment of COMPASS at the M2 beam line of the
CERN SPS[5]. Three physics programs are envisaged in phase-1:

1) Proton charge-radius measurement using elastic muon-proton scattering

2) Drell-Yan and J/ψ production experiments using the conventional M2 hadron beam

3) Measurement of proton-induced antiproton production cross sections for dark matter searches

The initial data taking started in 2022. Again we give an example for the need of a precise
electromagnetic calorimeter. Therefore, we will examine the proton charge-radius measurement in
more detail. The measurement aims to contribute to a solution of the proton-radius puzzle. There
are currently no measurements of the Q2-dependence of the electric form factor using muon-proton
scattering in high-energy regimes. AMBER aims to provide a proton charge-radius with a statistical
accuracy of 0.01 fm and even smaller systematic uncertainty. This is a high precision experiment.
AMBER can investigate the sources of the discrepancy too. The insufficient description of radiative
effects might be one of them. The electromagnetic calorimeter will detect the radiative events by
measuring the emitted soft photons with energies up to 2 GeV[5].

2.3 ECAL2 and its event reconstruction

We have seen that precise electromagnetic calorimeters are needed in the experimental setup of
the COMPASS and AMBER experiments. Therefore, we have a closer look at the ECAL2, in
the following referred to as ECAL, which is located at z = 33.2 m and is part of the small-angle
spectrometer. It consists of 3068 modules with dimension of 3.83 x 3.83 cm2[4]. The active area
from the front (244 x 183 cm) is illustrated in figure 2. The ECAL has three different types of
cells: lead glass (1332 modules) also called GAMS, hardened lead glass (848 modules) also called
GAMS-R and shashlik (888 modules). Four modules are missing in the center part of the ECAL for
beam particles to pass. The shashlik modules are 39 cm long and can detect particles with energies
up to 200 GeV. If an electron, positron or photon hits the ECAL, it interacts via bremsstrahlung
or pair-production. A cascade of secondary particles, a so-called shower, is produced which can
be measured due to ionization and light signals[16]. From this signature the energy of the initial
particle and its hit position on the ECAL can be determined.

lead glass (LG)

hardened LG

Shashlik

244 cm

1
8
3
 c

m

Figure 2: Active area of ECAL2. There are three different types of cells: lead glass (white),
hardened lead glass (green) and Shashlik (blue) from the outer parts to the center. There is a hole
of 2 x 2 modules in the middle-right part of the ECAL. Taken from[10]
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The event reconstruction is performed using time and signal amplitude information[4]. All
adjacent modules which detect a signal at the same time form a cluster. The energy deposition in
a cluster needs to be associated with one or multiple incident particles. A single particle produces a
shower in the ECAL. One cluster can contain multiple showers. We try to reconstruct the showers
to determine the exact energy and hit position of the particle. In the following, the separation of
clusters into showers and the determination of the energy and position of the initial particle will be
referred to as ”Lednev fit”, or short ”Lednev”, after one of the creators of the ECAL reconstruction
algorithm A. A. Lednev[14]. The algorithm has been further developed by Sebastian Uhl[19].

Figure 3: Cumulative function F (x) that describes the energy deposition of a shower integrated
along an axis x. Taken from[4].

The analysis starts by defining the clusters. Then lateral shower profiles need to be fitted
into each cluster. Therefore, precise knowledge about the shower profile is needed. Empirical
cumulative functions are used to describe shower profiles[13]. If the shower is projected onto an
axis, we can integrate the energy from −∞ to a point x from the shower center. The function
converges to one when x reaches the end of the cluster. This gives an arcustangens-like function
as seen in figure 3. To describe the different slopes, multiple arcustangens are added up so that
the cumulative function in one dimension can be written as:

F (x) =
1

2
+

1

π

∑
ai arctan

x

bi
(1)

The shower profile can be parameterized by ai and bi which give the relative contribution and
the width of contribution i correspondingly. The idea can be expanded to two dimensions. The
parameters are once determined for real data with an electron calibration beam and single-photon
events, and once for the simulation framework. Additionally, the ECAL cells are calibrated to the
π0 mass by using the decay channel of the neutral pion into two photons which are measured with
the ECAL. The invariant mass mγγ is calculated from a whole dataset in an iterative procedure
for each cell individually so that each cell is calibrated with an energy-dependent constant to shift
the mγγ peak to the true pion mass.

Now that we have a precise knowledge of the shower profile, we can start fitting showers into
clusters. We start with one shower in a cluster and place the middle of the shower profile onto
the cell with the highest energy[4]. Then a log-likelihood fit is performed. Considering some
constraints, we add a second shower to the cluster and perform the log-likelihood fit again. As
we have twice as many free parameters, the cluster is fitted better. To judge whether it was
physically sensible to describe the cluster with two showers instead of one, meaning to avoid
artificial splitting, we compare the log-likelihood normalized to the number of degrees of freedom.
If two showers describe the cluster better, the whole procedure is repeated with three showers.
The procedure ends at a maximum of six showers in one cluster. The fit returns the energy E of
a shower and the position x, y, z of a shower in the ECAL. If the fit already fails in the beginning,
the energy will be returned as the sum of the energies deposited in all modules and the position
will be given as the center of gravity of the deposited energy.
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3 Neural networks

Deep Learning, which is a subdomain of Artificial Intelligence, being more precise a subdomain
of Machine Learning, describes learning from data with computation through multi-layer neural
networks and processing[17]. The word ”deep” likes to emphasize the concept of multiple levels
through which data is processed.

3.1 Supervised learning

In principle there are three different types of machine learning tasks[11]: Supervised, unsupervised
and semi-supervised learning. We will focus on supervised training. This means the network can
learn from a knowledge database with labeled data. Most commonly the dataset is split into three
parts:

- Training set: Data used for training the network

- Validation set: Data used to evaluate the performance of the network during the training

- Test set: Only used after the training and validation phase to predict the final performance
of the network.

The trainings set is normally chosen to be the largest dataset. A 80:20 split between trainings
set and test is commonly used. The validation set can be taken as a subset of the training set.
Supervised training is a two-phase algorithm: First, there is the training and validation phase,
then the testing. Supervised learning can be split into two different families[11]:

- Classification: The labeled data is discrete. The aim is to learn the classification boundaries
to predict the correct label.

- Regression: The target data is continuous. The aim is to predict a continuous value.

A common way to present a classifier’s performance is the confusion matrix. Considering a
binary classification problem, a confusion matrix shows the true positive and the true negatives
values on the diagonal and the false positives and false negatives values on the anti-diagonal. The
rows represent the actual class while columns show the predicted class.

Parametric models can be described using a function f(θ) with parameters θ[11]. Learning
describes the procedure of adapting the parameters θ to a given input X and a desired output Y .
A model used for fitting data must match the complexity of the problem: Trying to fit a parabola
with a linear function represents the data insufficiently (underfitting) but an 8th order polynomial
will fit through every point instead and looses generality (overfitting). To learn generality, neural
networks need to be trained on a sufficiently large training dataset.

3.2 Network architectures

A network is build by connecting many layers of nodes[11]. How the nodes and layers are connected
is defined by the network architecture. Networks with the most-simple architectures are:

- Fully connected networks (FCN): Nodes between two adjacent layers are all connected to
each other, but neurons within a layer have no connection.

- Convolutional neural networks (CNN): Local connections of the nodes, meaning they are only
connected to their local neighbors in the subsequent layer, and parameter sharing are used.
CNN are very popular as they can extract relevant features e.g. from pictures efficiently[6].
They use fewer parameters which simplifies the training and increases the speed.
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The concept of CNN in 2D will be explained in the following. One convolutional layer consists
of a collection of convolutional filters called kernels. In our case they are two-dimensional. A kernel
K slides over the whole image I while the dot product is calculated at each point. Mathematically,
this can be written as[11]:

(K · I)i,j =
∑
m

∑
n

K(m,n)I(i−m, j − n) (2)

The procedure is illustrated for an easy example image and kernel in figure 4a. This operation
generates a feature map. Normally a pooling layer is added after a convolutional layer. This is
done to downsize the feature maps. A pooling layer also slides kernels over the image and returns
a single value for each kernel position, e.g. the mean or the maximum value. Max pooling is
graphically illustrated in figure 4b. In these examples shown in figure 4 the kernels always moves
by one. This is not mandatory, e.g. they can also slide by two each time. How much a kernel
moves is referred to as a stride.

(a) Example of a convolutional operation in 2D.
The kernelK slides over the image I and performs
the dot product at each point.

(b) Max pooling operation. A kernel slides over
the image and for each position the maximum
value is returned.

Figure 4: Graphical explanation of common CNN features: The convolutional operation (left) and
pooling operation (right).

Let us come back to nodes. We will focus on feed-forward neural networks, meaning nodes are
not connected in cycles. Nodes which are inspired by biological neurons take input data, process
it and decide whether to fire a signal. The mathematical model[11] of a node can be written as

σ(b+
∑

wixi) = y (3)

where σ is the non-linear activation function, b the bias and wi the weights which are applied
to each input xi. The weights and the bias of each node will be adapted during training. A node
is graphically illustrated in figure 5.

Σ

𝑥1

…

Input 𝑥𝑖

𝑥2

𝑥𝑛 Weights 𝑤𝑖

𝑤𝑛

𝑤2

𝑤1

Bias 𝑏

𝜎 Output 𝑦

Figure 5: Illustration of the mathematical description of a node
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Activation functions need to be non-linear so that the network is able to approximate any
function. If otherwise, a multi-layer network could always be reduced to a network with a single
hidden layer which could only separate the input data linearly. The most commonly used activation
function is ReLU (Rectified Linear Unit)[11].

σ(x)ReLU = max(0, x) (4)

In classification problems the N outputs should sum up to 1 as probabilities of the input
being classified into the different categories are returned. This can be achieved using the softmax
activation function[6].

σ(x)softmax,i =
expxi∑N
j=1 expxj

(5)

3.3 Training the network

After defining our model, we can discuss how to train it. The relationship between the output of
a model ŷ and the desired output y can be measured using a loss function L. This can be the
mean-squared error[11]:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (6)

In the training phase we aim to minimize the loss by small iterative adjustments of the model’s
parameter[11]. The parameters are usually initialized randomly and follow a normal distribution.
We search for the global minimum by guiding the searching process towards the direction of
the maximum descent of the loss function. This method is called gradient descent. The model
parameters W are updated in one step like[11]:

Ws =Ws−1 − η∆L(dataset;Ws−1) (7)

η is the learning rate and one of most important hyperparameters for the learning phase[11].
Choosing it too high will make the training unstable while choosing it too small may not lead
into the global minimum. Nowadays adaptive learning rate optimization methods are used. The
most common one is the Adaptive Moment Estimation (ADAM)[11]. To apply the adaption of
parameters to all layers and nodes backpropagation is used. If a network has processed all samples
of the training set, we call it one trained epoch. We train the network over many epochs until it
reaches the global minimum. To decide whether a network is fully trained, we look at the loss of
the validation and training data over the epochs. If the validation loss rises again and overfitting
happens then the best trained network is the one at the epoch of the validation loss minimum.
This is illustrated in figure 6.
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Epochs

Loss
Validation
Training

Fully trained network

Figure 6: Illustration of training and validation loss over the epochs. A network shows overfitting
if the validation loss rises again. The best and fully trained model is given at the epoch of the
validation loss minimum.

Overfitting is a common problem when using neural networks. This means the network only
adapts explicitly to the given training data but shows poor performance on the unseen test sample.
To overcome this problem, regularization is used. The most common regularization is known as
dropout[11]. New network architectures are build by dropping neurons, so setting their output
to zero, with the probability p. Which neurons are dropped out is chosen randomly at each new
training iteration. A single node can therefore not rely on the others and co-adaptation between
them, which hinders generalization, is reduced[11].

3.4 Slot Attention: A modern approach to object-centric representa-
tions

After introducing the basics about neural networks, a modern and more advanced network archi-
tecture, Slot Attention[15], will be explored in the following. The Slot Attention module is an
architectural component of a neural network. It produces a set of abstract representations of the
objects detected in an image. We call them slots. One slot can bind to any object in the input.
The binding of the slots to the objects happens through a competitive procedure over multiple
rounds of attention[15]. The Slot Attention method produces a set of output vectors that hold
permutation symmetry. Slot Attention is highly competitive with other related approaches but
is more efficient in memory consumption and faster to train[15]. Figure 7 illustrates the working
principle of a Slot Attention module. Three objects can be seen in the initial picture. The slots
in green, blue and red bind to the three objects over three rounds of attention. The fourth orange
slot describes the background.
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Figure 7: Illustration of a Slot Attention module. Taken from[15]. Four slots (green, orange, blue
and red) compete over three round of attention (t = 1, 2, 3) for the three objects in the picture.
At round three t = 3, three of the slots (green, blue, red) hold one object each. The other slot
(orange) describes the background.

There are multiple ways to implement Slot Attention. It can either be used for object discovery
or for set predictions[15]. In object discovery we consider unsupervised learning. The input image
gets encoded into a set-structured hidden representation of the objects in the image. This can be
done using CNN followed by the Slot Attention module. Then each slot will be decoded into an
image which shows the object represented by this slot. Adding up all the decoded slots should
return the initial image. Set prediction uses supervised learning. The input image gets encoded
again by a CNN and the Slot Attention module. Then a multi-layer perceptron (MLP), which is
similar to a small FCN, is applied to each slot. The outcome can then be compared to the labeled
data using a permutation invariant loss function as the order of predictions and labels is arbitrary.
The state-of-the-art permutation invariant loss function uses the Hungarian algorithm[12].

Furthermore, Slot Attention holds the potential to detect a varying number of objects. Figure 8
shows the performance of a Slot Attention model on a modified version of a dataset called CLEVR,
provided by the Multi-Object Datasets library[15]. The dataset holds images with up to six objects
per image. Figure 8 illustrates how an image gets separated into different pieces by the slots. If
there are more slots than objects, for example in the first image, then the background is spread
uniformly across the empty slots, in this case slot 3 and 5.

Figure 8: Visualization of per-slot reconstruction of a Slot Attention model on a modified dataset
of CLEVR. Taken from[15].
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4 Photon reconstruction with neural networks

We will explore photon reconstruction in the ECAL2, from now on only referred to as ECAL, with
neural networks as an alternative approach to the analytic Lednev fit. We use simulated data from
the Monte Carlo (MC) simulation framework COMGEANT based on GEANT3[4]. The data is
then processed using the COMPASS reconstruction framework called CORAL. The Lednev fit is
a part of the CORAL framework[3]. The simulated data is generated using the same simulation
and reconstruction settings as the Primakoff run in 2009. The MC simulation is performed by
Dominik Ecker. Simulated data offers information about the true position, energy, and number of
photons. It is hence a convenient starting point for this proof of principle study because we can
use supervised learning. We will also evaluate whether a network trained on simulated data gives
reasonable results on real data, see section 4.1.7.

4.1 Reconstruction of one photon

We start with attempting to reconstruct single photons hitting the ECAL one at a time. The aim
is to correctly determine the energy E of the entering photon and its position (x, y) on the ECAL
surface at z = 3302.7 cm.

4.1.1 The simulated MC data

In supervised learning, neural networks will learn any existing correlation in the given data. So the
used dataset is extremely important and will be presented in the following. The ECAL consists
of different cell types as explained in section 2.3. In this study only events in the shashlik region
are considered to avoid different ECAL cell responses. In addition, there must be at least one cell
with no energy response in between a cluster and the edge of shashlik-GAMSR modules as well as
to the hole in the middle so that no signal gets lost. How do we give the event as an input to the
neural network? One can consider every cell output in the shashlik region as one input parameter
of the network. For the entire shashlik area, this corresponds to 888 input nodes[4]. However, a
single photon event typically deposits energy in less than 25 cells while the rest of the cells has a
response of zero energy. By cutting out the region where the photon hits the ECAL, we reduce the
complexity of the problem without loss of information. As even high-energy photons form clusters
that fit into 5x5 cells, we take a 5x5 grid with the measured energy of each cell as the network’s
input. If a cluster is smaller than 5x5 cells, it is randomly placed in the grid. Cells that are not
hit have a value of zero. An example is shown in figure 9. In addition to the photon energy, the
network is supposed to learn the position of the incoming photon. However, by only considering
the cut-out region of the ECAL the information about the global position of the photon in the
ECAL is lost. Therefore, we introduce a new coordinate system which has its origin in the middle
of the lower left cell of the 5x5 grid. The network then learns the (x, y) position of the photon
with respect to the new coordinate system.
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Figure 9: Example event with cut out cluster.

The first dataset (dataset 1) contains photons travelling parallel to the beam axis z. They
cover an energy range of Eγ ∈ [2, 200] GeV. This energy range covers the sensitive and most
precise range of the shashlik ECAL2 modules[4]. They illuminate the whole shashlik region evenly.
Dataset 1 has 753 956 suitable clusters after removing problematic events which are too close to
the hole or to the GAMS-R area. The second dataset (dataset 2) contains photons which reach the
calorimeter not perpendicular to the z-axis but at an angle αz ∈ [0, 0.027] rad so that the photons
point back to the target. Since the target dimension is small compared to the calorimeter, every
point on the ECAL surface can be correlated to a narrow angle range. The photons in dataset
2 have the same energy range as dataset 1. Dataset 2 contains 628 548 suitable clusters. The
distributions of photon energies and positions in this dataset are shown in figure 10. The events
are again distributed equally over the whole shashlik part and there are slightly more events at
low energies than at high energies.
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(b) Energy distribution of all used clusters.

Figure 10: Distributions of dataset 2.

We use 80% of the data for training the network and save 20% as the test sample. 10% of the
training set is used as validation data.
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4.1.2 Architecture of the neural network

As the single-photon case can be reduced to 25 input parameters corresponding to the deposited
energy in each pixel of the 5x5 grid, we use a FCN to determine the energy and position of the
photon. This is a regression problem. The conceptional architecture can be seen in figure 11.
The output of the network has the form [x,y,E] with the units of cm and GeV. The network has
86 339 parameters, uses the ReLu activation function in all layers but one as the last layer has no
activation function. It consists of seven layers with different amount of nodes. We use the Adam
optimizer with a learning rate of α = 0.00001 and the mean squared error (MSE) as a loss function.
The batch size is chosen to be 64. We use the same network architecture for dataset 1 and 2 only
that we add a normalization layer for dataset 2. Therefore, we calculate the mean of 3.9 GeV over
all cell energy values of dataset 2 and a variance of 16.2 GeV.

𝑥 𝐸𝑦

Cluster
(25)

Fully connected: 64 nodes

Fully connected: 128 nodes

Fully connected: 256 nodes

Fully connected: 128 nodes

Fully connected: 64 nodes

Fully connected: 32 nodes

ReLu

None

Normalization layer

Figure 11: Illustrated architecture of the neural network.

4.1.3 Results and comparison to Lednev

To begin with, the networks are trained for 200 epochs on each dataset to get a first impression of
the performance. The fully trained network is shown in chapter 4.1.6. The networks are evaluated
on the test samples. The outputs of the neural networks can now be compared to the simulated
quantities xMC, yMC and EMC. To estimate the performances on the two datasets the difference
between the positions xNN − xMC, yNN − yMC and the relative difference of the energies ENN−EMC

EMC

are shown in the histograms in figure 12 and 13. For comparison, the performance of the Lednev
fit is shown too.
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Figure 12: Performance of the neural network (”NN”, green) and Lednev (orange) on dataset 1
(αz = 0). Differences between the predicted and true values of (left) the x-position, (middle)
the y-position and (right) the energy E. While the Lednev fit shows two peaks in the position
determination, the network is centered with one peak closely around zero. The network and Lednev
fit show similar performance on the energy E.

Figure 12 shows the differences between the predicted and true values for x, y, and E for
both, the Lednev fit and the network. The variance can be interpreted as the spatial and energy
resolution of the ECAL achieved with the different methods. The network performs better than the
Lednev fit on dataset 1 with αz = 0 in the determination of photon position (x, y) as the variance is
1.7 times smaller, and it shows no double peak. The double-peak structure from Lednev indicates
one of the drawbacks of this algorithm: Showers hitting the left part of the cell have their positions
pushed further to the right, and showers hitting the right part of the cells are moved to the left by
the algorithm. The performance on the energies of the neural network and the Lednev fit have the
same variance of σE = 2.2% but the Lednev fit shows a stronger shift in the mean value µ. This
is a known feature of the used COMGEANT simulation framework[10]. The network has a longer
tail compared to Lednev.
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Figure 13: Performance of the network (green) and Lednev (orange) on dataset 2 (αz ̸= 0).
Differences between the predicted and true values of (left) the x-position, (middle) the y-position
and (right) the energy E. The performance of the network and Lednev on x is poorer than on y.

Looking at the performance on dataset 2 with αz ̸= 0 in figure 13, the performance on the
energies stays roughly the same for both with σE = 0.022 when comparing to the performance
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on dataset 1. The performance on x drops drastically for both. The variance σx of the network
doubles. The performance on y also drops but only by 23% for the Lednev fit and 38% for the
network. As the only difference between dataset 1 and 2 are the angles of the photons towards
the beam axis, this must be the source for the poorer performance on (x, y). If a photon enters
the ECAL with an angle, the particle shower happening in the cells will propagate with this angle.
This means that the position with the highest-deposited energy in the ECAL does not equal the
inertial position of the photon on the ECAL surface. It is plausible that the variance of the neural
network for x is larger than for y as the angles towards the x-axis can be larger than towards the
y-axis due to the shape of the shashlik region. The 2D-histogram in figure 14 proves the missing
angle correction of the network. There is a linear shift of the positions x and y as a function of
the angles.
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Figure 14: Normalized 2D-histogram of (left) xNN − xMC and (right) yNN − yMC against the angle
towards the corresponding axis. The linear shift shows that the network does not correct for the
angle of the entering photon

We have to conclude that the distortion of the cluster shapes due to the angles of the photons
is too subtle compared to the relatively rough cell structure. The network is hence not able to
reconstruct small angles from the cluster shapes and the information is lost.

4.1.4 Position correction due to angles

To confirm the hypothesis and check for plausibility, we check whether the network learns the
correlation between the cluster position and the angle: We give the global position (xcoord, ycoord)
of the new coordinate system of the 5x5 grid as an additional input to the network. The network
can then technically learn the correlation between the position of the cluster in the ECAL and the
angle it needs to correct for. If the network learns the correction with this additional information,
we can confirm that the shower shapes of the clusters in the shashlik region change too subtle with
varying angles for the network to detect.

We use the same network as before for dataset 2 but change the input size from 25 to 27 as
the global position of the coordinate system in the 5x5 grid is added. The performance of this
network on x, y and E can be seen in figure 15 in orange. The network with local information
only is shown in green as comparison.
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Figure 15: Performance of the network with added information about the global position of the
cluster (orange) and for comparison the network with local information only (green) on dataset 2.
Differences between the predicted and true values of (left) the x-position, (middle) the y-position
and (right) the energy E. The network with global information shows an increase of performance
on the position determination compared to the network with local information.

The performance on (x, y) of the network with global information about the cluster position
increases significantly compared to the network with local information. The variance drops from
σx = 3.175 mm to 1.579 mm and σy = 1.963 mm to 1.577 mm and is comparable to the perfor-
mance on dataset 1 with σx = 1.395 mm and σy = 1.436 mm. The performance on the energy
determination stays the same. The 2D-histograms 16 of the position deviation against the angles
αi show that the network with global information about the cluster position learns the linear shift
with respect to the angle.
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Figure 16: Normalized 2D-histogram of (left) xNN − xMC and (right) yNN − yMC against the
angle towards the corresponding axis of the network with the global information about the cluster
position. The straight line shows that the network performs for every angle with the same precision.

Further, the shift of the reconstructed position with respect to the position of the photon
on the calorimeter surface depends on the penetration depth. The deeper a photon deposits its
energy, the more its reconstructed position is shifted. The higher the energy of a photon, the
larger the penetration depth into the ECAL. This means that the correction in x or y due to
angles is smaller for low-energy photons than for high-energy photons with same angles. To check
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whether the network corrected better than a linear shift and therefore also learned about the
energy dependence of the correction, the shift on the performance with local information was done
manually for comparison. We fit the linear function α(x) = a · x + b to the data in figure 14
with a = −0.050 rad/cm and b = 1.570 rad so that every x can be corrected: xcorr = x − α−b

a .
Now the corrected x-histogram can be compared to the x-histogram from the network with global
information about the cluster. The comparison is shown in figure 17.
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Figure 17: xNN−xMC histogram of the network with information about the global cluster position
(orange) and manually-corrected xNN − xMC histogram of the network with no information about
the cluster position on the ECAL (green). The variance is smaller when doing the shift manually.

The manually shifted result has an 11% lower variance than the neural network with information
about the global cluster position. This means that the network did not learn the energy dependence
of the shift as otherwise it would have outperformed the manual analytic correction. The greater
variance shows that the network did not learn the linear shift of the position with the same precision
as the manual shift. The energy dependence of the angle correction might be a small correction
compared to other effects. For example one point of the ECAL does not correspond to a single
angle but to a narrow angular distribution. This is because the place of origin (x0, y0, z0) of the
photons is not point-like at (0,0, ztarget) but expands over the target in x, y and z. By performing
the manual shift, every coordinate gets shifted using the angle and not the position on the ECAL
which leads to a more precise result.

To summarize: Giving the global position of the cluster on the ECAL to the network improves
its performance on the photon position significantly. The learned correction is the linear relation-
ship between the angle and position shift with no energy dependence. This correction could only
be learned as the position on the ECAL and the angles are correlated in dataset 2 as all photons
start at the target. This will not be the case in real data where photons and other particles, which
generate an electromagnetic shower in the ECAL, can also be created in secondary vertices. There-
fore, a position on the ECAL can not be correlated with an angle anymore. The performance of the
network will drop in this case, although the cluster shape might deform into an ellipse for larger
angles which might then be traceable for the network, so that it may learn the angle correction
from the cluster shapes.

To reduce the effect of the photon angles on the reconstructed position, we can shift the
z-position of our reconstruction. By placing z to the average penetration depth of the shower
profile in the ECAL instead of on the ECAL surface, the angle effect will reduce significantly. We
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calculate the average penetration depth s as s = 2
ax+ay

= −20.07 cm where ax,y are the fitted

parameters of the manual shift in figure 14. We will apply this z shift from now on, meaning that
the reconstructed position will now be at z = 3322.77 cm instead of at the ECAL surface.

4.1.5 Placing the clusters in the grid

Coming back to the basics, one might be wondering whether placing the clusters randomly in the
grid is the best method. To study this, we look at the network with global information about the
grid position. Of particular interest are the clusters which the network has had the most difficulties
to learn. Therefore, we will analyze all values that lie more than one σ away from the average µ
when looking at the plots in figure 15. The histograms of this study can be seen in figure 18.
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Figure 18: Histogrammed values of quantities x, y, E that lie more than one σ away from the mean
µ of figure 15. The histograms are normalized to the amount of all events per bin. E.g. the first
(second/third) row shows events whose energy values E (x/y) are badly learned. For these badly
learned events all quantities x, y, E are histogrammed as a fraction of all events. The symbol ∆
indicates the difference to the MC truth value so ∆x = xNN − xMC, ∆y = yNN − yMC and the
relative difference of the energy ∆E = ENN−EMC

EMC
. Events with low energy or events hitting the

grid close to the edge are learned worst.

The first row in figure 18 shows that if the energy of an event is badly learned the energy values
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are probably low. This is reasonable. Each cell has an energy threshold before firing a signal. So
part of the photon energy will always stay undetected below this threshold. For smaller energies
this fraction is larger compared to the total energy of the photon. The position of low-energy
events is also detected worse (first plots in the second and third row in figure 18) as low-energy
photons stimulate fewer cells. The extreme example is the one-cell event where only one cell fires.
The uncertainty of this event in the position must be half the cell size ±1.92 cm and can not be
specified with any more precision. If more cells are hit, the center of gravity can be determined
with more precision. Events with badly learned energy often lie more to the outside of the 5x5
grid as can be seen in the second and third plot of the first row. There is no physical explanation
for this behavior, so it must be a learned bias by the network. Looking at the photon distribution
over the 5x5 grid of the training data in figure 19a, the amount of photons hitting the grid closer to
the edge is drastically lower than the amount of photons hitting the grid in the center. Although
the photons are placed randomly in the 5x5 grid the shape of the cluster is limiting the uniform
illumination of the grid. This bias in the training data leads to the bias in the neural network.
This effect can also be seen when looking at the second and third plots in the second (third) row
of figure 18 that show the position of events with badly learned x (y) values. Nearly 100% of the
events hitting the grid on the edge lie more than one σ away from the distribution. The spikes in
these plots may come from the periodic structure on the cells. Events that hit closer to the cell
edge will probably also stimulate a neighboring cell so that the center of gravity can be determined
with more precision compared to a photon hitting a cell center. To reduce the effect of badly
learned events close to the grid edge, a more uniform distribution of the photons in the grid is
desirable. This can be achieved by placing the clusters as centered as possible as seen in figure
19b. Therefore, the clusters will be placed in the middle of the grid from now on.
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(a) Clusters placed randomly in the grid. The
distribution peaks in the middle and drops to the
edges
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(b) Clusters placed in the middle of the grid which
makes the distribution more uniform in the hit
area

Figure 19: Photon distribution within the 5x5 grid

4.1.6 The fully trained model

To finish the single-photon study, we will present a fully trained network using a dataset similar
to dataset 2 but with twice the amount of clusters (1 377 741). We will call it dataset 3. The
network used is the same as in the last chapters which is graphically illustrated in figure 11. As
mentioned in the last chapters 4.1.4 and 4.1.5, we let the network determine the position of the
clusters 20.07 cm behind the ECAL surface to reduce effects due to angles and place the clusters
centered in the grid to get a more uniform distribution. The same hyperparameters are used for
the training as before (MSE loss function and Adam optimizer with a learning rate of α = 0.00001,
batch size of 64). How to decide whether a model is fully trained is discussed in chapter 3.3.
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We increase the number of epochs from 200 to 3000 epochs. But the network still shows no
overfitting, so no increase of the validation loss over 3000 epochs, which can happen if the network
is too small to learn the full complexity of a problem. Therefore, we add another 256 nodes fully-
connected layer after the already existing one. The network has now 152 131 parameters instead
of 86 339. We will refer to this model as ”final model” or ”final network” from now on.

The loss function of the final model can be seen in figure 20 and shows overfitting. We save
the network at the minimum validation loss after 1849 epochs. The training to this epoch took
around 9h on one GPU.
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Figure 20: Loss function of the final model. Overfitting occurs after 1849 epochs as the validation
loss rises again. This shows that the network is fully trained after this point.

The performance of the final model is shown in figure 21. It shows a clear sharpening on the
predicted position compared to the previous networks. The variances are σx,NN = 0.909±0.005 mm,
σy,NN = 0.888 ± 0.005 mm and σE,NN = (2.01 ± 0.01) · 10−2. The network improves the spatial
resolution by a factor of 2.6 for x and 2.7 for y and the energy resolution by a factor of 1.1 for E
compared to the Lednev resolution.
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Figure 21: Performance of the final model network on the parameters x, y, E from left to right.
The network outperforms Lednev in the position parameters but the performance on the energy is
similar.

One-cell events are good candidates to check the final model for plausibility and validity. Events
where only one cell is hit have low energy and will probably hit the cell closer to its center as
otherwise a second cell will fire. If the network has no trained bias one would expect a sharp peak
in the middle of this cell. The outcome of this study is shown in figure 22. The network shows indeed
a centered peak with only few outliers. The mean of the true photon positions is xMC = 1.935 cm
and yMC = 1.917 cm. The mean of the predicted photon positions is xNN = 1.930 cm and
yNN = 1.812 cm. The predicted mean positions match the mean MC position well. The y position
shows a slight shift compared to the MC position. The total deviations between true and predicted
means are much smaller than the variances of the true photon distribution which are primarily
determined by the cell size. All-in-all, we can conclude that the network is reasonably trained on
one-cell events.
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Figure 22: Left: MC truth distribution of photon positions (x, y) of one-cell events. The photons
illuminate the cell completely but not uniformly. The cell is more likely hit near the center. Right:
Performance of the final network on one-cell events. The network shows a centered peak in the
middle of the cell with few outliers and a small shift in y.
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4.1.7 Evaluation on real data

The final model in the previous section showed improvement on the photon position reconstruction
compared to Lednev. One might hope that the photon simulation reflects reality to a sufficient
level so that a network trained on simulated data may be applied on real data. This will now
be investigated by attempting to reconstruct the pion and eta masses using their decay into two
photons.

π0 → γγ, η → γγ (8)

We take the data of weeks 45, 46, and 47 of the COMPASS Primakoff run 2009 and apply a
basic event selection: Only events with two separated photon clusters which were selected with
the Lednev prediction were used. The showers must be separated as otherwise the neural network
can not be used. We apply more constraints: The minimum energy of one cluster must be at
least 2 GeV and is determined via the Lednev prediction. This is important as the network is not
trained on photon showers below 2 GeV. Additionally, there must be one reconstructed primary
vertex at the target area between -72.3 < z < -72.9 cm. The coordinates of the primary vertex
can be interpreted as the point of production of the two photons. A primary vertex is determined
by matching a beam trajectory to at least one outgoing tack. 392 930 events fulfill all demands.

To determine the invariant mass of the two photons, we use four-momentum conservation:

m2
γγ = (pµγ1

+ pµγ2
)2 = 2Eγ1Eγ2(1− ˆpγ1 · ˆpγ2) (9)

The energies Eγi
are simply the measured energy on the ECAL. The unit vectors p̂γi

can be
determined by knowing the coordinates of production and the position (x, y, z) on the ECAL. We
choose the coordinates of production to be the ones of the reconstructed primary vertices. Now the
invariant photon mass can be calculated using the Lednev prediction of x, y and E on the ECAL
or using the prediction of the final model neural network. The result can be seen in figure 23.
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Figure 23: Reconstructed invariant two-photon masses with help of the network (green) or Lednev
(orange).

The mass mγγ is predicted to be between 0 and 1400 MeV/c2 and shows two peaks at the
pion and eta masses. The background is low compared to the peaks. The two mass peaks can be
investigated by fitting background and signal over the peaks.
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Figure 24: Invariant mass prediction with fitted π peak of neural network and Lednev. The variance
of the network σNN = 5.365 MeV/c2 is by 3.0% smaller than the Lednev variance σL = 5.531
MeV/c2 while the signal strength of Lednev AL = (2.51 ± 0.08) · 104 c2/MeV is by 2.8% higher
than the networks signal strength ANN = (2.44± 0.14) · 104 c2/MeV.

The signal of the π peak is fitted with two Gaussian functions Ai√
2π·σi

exp (−(x−µi)
2

2σ2
i

) and a

second order polynomial ax2 + bx + c for the background as this gives a good fit with a reduced
χ2 around 1. Lednev is closer to the true pion mass of mπ = 134.9768± 0.0005 MeV/c2[20] than
the network although Lednev shows a shift when evaluating on the simulated data. This is due
to that fact that, unlike the neural network, the Lednev fit is calibrated on real data. In order
to compare Lednev and the network the variances and the strength of the signal corresponding to
the amplitude of each peak are the important variables. As the mean of the two Gaussians are not
identical and the Gaussians are therefore difficult to combine, we subtract the fitted polynomial

background of each bin and calculate the mean of the distribution µ =
∑

mi·ni∑
ni

with ni being the

amount of counts in bin i of mass mi. The variance is then calculated by σ =
√∑

(mi−µ)2·ni

(
∑

ni)−1 . This

gives σNN = 5.365 MeV/c2 and σL = 5.531 MeV/c2. So the network shows a small improvement of
3.0%. The signal strength of the two Gaussian fits can be calculated by adding the two amplitudes.
One obtains ANN = (2.44 ± 0.14) · 104 c2/MeV and AL = (2.51 ± 0.08) · 104 c2/MeV. The signal
strength of Lednev is 2.8% stronger. The two methods show similar results for the π mass peak.
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Figure 25: Invariant mass prediction with fitted η peak of neural network and Lednev. The variance
is by 5.4% smaller using Lednev while the signal strength is 2.4% higher using the neural network

The η peak with one Gaussian as signal and a second order polynomial is shown in figure 25.
Here the variance σ and amplitude A can be compared directly. While the variance of the Lednev
fit is slightly smaller (5.4%) than the network’s, the signal strength of the network is a bit higher
(2.4%).

To summarize the study on real data: With a suitable event selection of the real data the
neural network can be trained on simulated data and still give reasonable results on real data. We
conclude this due to the results of the reconstruction of the invariant mass of two photons and
comparison of the signals for pion and eta masses between the network and Lednev. One should
highlight that the Lednev fit was calibrated on real data using an electron beam[4] and is hence
expected to give good results on real data while the neural network can only be as good as the
simulation it was trained on. To improve the performance of the network on real data in the future,
one might think about training the network on electron beam data.

4.2 Reconstruction of two photons

As the neural network succeeded to reconstruct the energy and position of one entering photon,
we increase the complexity of the problem to two photons hitting the ECAL at the same time. If
separated, this can be seen as two single-photon events but if the showers of two photons overlap
and form one cluster, the problem gets more complicated. Again the network should reconstruct
the position (x, y) and energy E of the photons hitting the ECAL.
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4.2.1 The simulated MC data
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Figure 26: Examples of two photons in a 9x9 grid.

The simulated data used for this problem is equally obtained as for the one photon case. But
instead of a 5x5 grid a 9x9 grid is used. The clusters are placed as centered as possible in the
grid. This gives a circular distribution of all showers in the grid. Showers that do not fit into
the 9x9 grid are not interesting as they have distances large enough to be easily treated as two
single-photon events. The dataset contains 1 961 747 events (dataset 4). Two example events are
shown in figure 26. The whole shashlik region gets illuminated but the beam-line hole is cut. The
distribution of energies and the distance between the two photons can be seen in figure 27.
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(a) Distribution of the distance dγ1γ2 between
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Figure 27: Distributions of the two-photon dataset 4

All events with a photon distance smaller than 4 cm are cut. Otherwise, the photons will hit
the same cell as one cell has the dimension of 3.83 cm x 3.83 cm. It is very hard to separate two
showers of photons hitting the same cell. This modified dataset contains 1 056 051 events (dataset
5).

As for the single-photon case 80% of the data is used for training the network and 20% is saved
as the test sample. 10% of the training set is used as validation data.
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4.2.2 Permutation-invariant loss function

When approaching the problem, one needs to think about labeling the photons as the solution to
the two-photon problem is ambiguous. The output of the network has six parameters x1, y1, E1

and x2, y2, E2. Which photon corresponds to the index 1 and which to index 2? First, we tried
to sort the photons after energy. The photon with higher energy corresponds to photon 1 and the
other one to photon 2. This training did not lead to good results as the network struggled with
the assignment. It is more promising to make the loss function invariant under permutation. It
should not matter whether the network is labeling a photon as 1 or 2 as long as it can determine
the position and energy correctly. Such a loss function with true values Y and predicted values Ŷ
can be defined as:

loss = min((x1 − x̂1)
2 + (y1 − ŷ1)

2 + (E1 − Ê1)
2 + (x2 − x̂2)

2 + (y2 − ŷ2)
2 + (E2 − Ê2)

2,

(x1 − x̂2)
2 + (y1 − ŷ2)

2 + (E1 − Ê2)
2 + (x2 − x̂1)

2 + (y2 − ŷ1)
2 + (E2 − Ê1)

2)
(10)

Two units, GeV and cm, get mixed in the loss function. In order to penalize both quantities
equally we introduce weights. The position gets divided by the desired resolution of 0.9 mm which
was achieved in the single-photon case. The energy gets divided by 2% of the true energy value as
a relative resolution of 2% was achieved in the single-photon case.

4.2.3 Architecture of the neural network

As the fully-connected network is sufficient in the single-photon case, this is a reasonable approach
for the two photon case too. A FCN network learned the positions and energies of the two photons
to some extent. Convolutional networks are commonly used for image recognition[6], and it appears
to be the leading solution for the two-photon reconstruction too. At first a zero-padding is added
around the 9x9 grid so that the used kernel of the CNN can fully stride over the clusters. We choose
a kernel size of 4x4 as all single-photon events fit into 5x5 cells. A 4x4 kernel should therefore be
able to learn the shower shape of one photon. After that we apply a max-pooling layer to reduce
the dimensionality and extract the most important features. A fully connected network is attached
afterwards. The network has 537 686 parameters in total. This is 3.5 times more than for the
single-photon case. A graphical illustration of the network can be seen in figure 28.

𝑥1 𝐸2𝑦1

Cluster
(9,9,1)

Convolutional 2D (16 filters, kernel=(4,4))

Max pooling 2D (2,2)

Fully connected: 256 nodes
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Fully connected: 64 nodes

ReLu

None

Zero padding ((3,3), (3,3))

ReLu

Flatten

𝑥2 𝑦2𝐸1

Figure 28: Illustrated architecture of the neural network used for reconstructing two photons.
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4.2.4 Results and comparison to Lednev

The network which is illustrated in figure 28 was trained on dataset 5 with the permutation-
invariant loss function with weights described in chapter 4.2.2. The Adam optimizer with a learning
rate of α = 0.00001 and a batch size of 64 was used. The loss over the epochs can be seen in figure
29. There is no clear overfitting after 3000 epochs, although the minimum validation loss appears
at epoch 1614. Training 3000 epochs took approximately 14:30 h on one GPU. This network will
be referred to as ”basic network” or ”basic model” from now on.
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Figure 29: Loss over the epochs of the two-photon basic network. The smallest validation loss is
at epoch 1614.

Figure 30 shows the results of photon 1 and photon 2 merged. This is reasonable as the loss
function is permutation invariant and labeling the photons as 1 and 2 has no meaning. The
histogram showing Lednev has fewer entries as we only consider events of which Lednev was able
to identify the correct amount of photons, in this case two. The network performs better than
Lednev by a factor of 1.7 for the variances in x and y and therefore improves the spatial resolution
compared to the traditional Lednev fit. Comparing this to the final model of the single-photon
case shown in figure 21, the performance of the basic network drops by a factor of 1.8 for x
and y. We need to be careful with this comparison as the problem also got more difficult by
overlapping clusters. The performance of Lednev drops too when comparing single-photon and
two-photon events. Evaluating the relative performance between the network and Lednev, the
network performs better than Lednev on the position determination in both cases, by a factor of
∼ 2.6 for one photon and a factor of 1.7 for two photons. Looking at the determination of energy
in the two-photon case in figure 30, Lednev shows a 1.4 times smaller variance than the network.
In the single-photon case the performances of the network and Lednev were roughly the same. So
the relative performance of the network to Lednev dropped in all quantities too. This is a hint
that the basic network shows a worse performance not only due to the more complex task.
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Figure 30: Performance of the basic network (green) and Lednev (orange) on dataset 5 with two
photons on the parameters x, y, E from left to right. While the network has a better spatial
resolution than Lednev, Lednev can determine the energy better when comparing σ.

4.2.5 Analysis of the network’s performance

Before the examination of the worse performance of the two-photon basic network compared to the
single-photon final model, it is interesting to investigate what exactly the basic network has learned
and what it is struggling with. Some selected 2D-relation plots can be seen in figure 31. Subfigure
1 and 2 give information about confusing photon 1 with photon 2. Other approaches than the
permutation-invariant loss function have shown an anti-diagonal (diagonal) correlation between
the distance of the photons in x against the deviation of x1 (x2). These relations gave a hint that
the network confused the x-positions of the two photons. These plots looked identical for y. This
effect vanished nearly completely now, only some very few outliers can be seen on the anti-diagonal
(diagonal) in subfigure 1 (2) of figure 31. Subfigure 3 shows that there is no correlation between
learning the x and y position. That events with low energy have a worse position resolution can be
seen in subfigure 4. This is due to the earlier discussed fact that fewer cells are hit and therefore
the center of gravity can be determined with less accuracy. Subfigure 5 shows that energies are
learned worse if the distance between the clusters is small. This is reasonable as the clusters start
to overlap more. It is harder to assign every photon the correct energy. Subfigure 6 illustrates
that there is no correlation between the relative energies. This is expected as the weight applied
on the deviation of the energy in the loss function is determined by 2% of the true energy value.
Therefore, the relative deviations are equally penalized over the whole range of energy. But as
a consequence the deviation of energy 1 and energy 2 to the true values is biased as shown in
subfigure 7. Even if one energy is learned well the other one can still be far off. Subfigure 8
illustrates that the sum of the energies is mostly learned correctly, but the energy of some events
is estimated too low. A possible solution to this problem might be to implement the condition
of the sum of the energies into the loss function. Subfigure 9 shows that the relative energies are
nicely learned over all ranges of energies as expected due to the loss function. Only lower energies
are learned a bit worse as discussed before. The last subfigure 10 shows similar to subfigure 8 that
badly learned energies are mostly too low.
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Figure 31: Correlation plots between the quantities x, y and E for the performance of the basic
network. The network does not confuse photon 1 with photon 2. The correlation between position
arguments and energy are as expected. It struggles to learn the correct energies which are some-
times too low.

In analogy to the one-photon case, we look at events for which the basic network performed
badly so the prediction deviates from the truth more than one σ. The histograms for the two-
photon network can be seen in figure 32. As the plots for badly learned x values look similar to
the ones for y, only the plots for y are shown. The first subplot illustrates that events with badly
learned energies have either low or high energies. The low energies were already discussed in the
single-photon case. That high energies are badly learned might be due to the data distribution
shown in figure 27b. There are fewer events with high energies so that the network has fewer
examples to learn on. Besides that, a reason might be that high energy clusters have more overlap
and the energies are not correctly assigned to the individual showers. Subplots 2 and 3 are expected
to be flat or slightly higher to the edges of the grid. Instead, they are a bit unsteady. The few
peaks below x = 0 cm and y = 0 cm can be explained. We set the coordinate system to be in
the center of the lower left cell. As we place the clusters as centered as possible, we neglected
that there is still a possibility that showers have negative coordinates. In fact 112 do, which is
1.0% of the whole dataset. The network uses the ReLu activation function which only fires for
positive values. So negative coordinates will not be learned. This could be easily fixed by setting
the coordinate system to the lower left corner of the lower left cell in the grid. The second row in
figure 32 shows badly learned y values. These events are more likely to have low energy or high
energy. We have discussed this earlier. One would expect the distribution of x values to be flat.
As for the third plot in the first row it increases for lower values. We can not explain this bias.
When looking at the y values with badly learned y positions, the cell structure of the grid can be
seen as indicated in red. If a photon hits a cell more to the edge it will most likely also hit the
neighboring cell. Therefore, the center of gravity of the energy deposit can be determined with
more precision. It follows that photons hitting the ECAL in a cell center have worse resolution.
This can be seen by the small increase of events at these positions indicated in red. As said before,
we can not explain why events closer to the left edge of the grid are learned worse than on the
right. The bad performance of events with positions below zero are again due to combination of
using the ReLu activation function and the choice of coordinate system.
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Figure 32: Histogrammed values of quantities x, y, E that lie more than one σ away from the mean
µ, see figure 30. The histograms are normalized to the amount of all events per bin. The first
(second) row shows events whose energy values E (y) are badly learned. For these badly learned
events all quantities x, y, E are histogrammed as a fraction of all events per bin. The symbol ∆
indicates the difference to the MC true value so ∆y = yNN − yMC and the relative difference of
the energy ∆E = ENN−EMC

EMC
. Events with very low and very high energies are learned badly. Due

to the ReLu activation function and the choice of the coordinate system position values below zero
are not learned. The cell structure of the grid can be seen due to relatively higher counts in the
cell centers indicated in red.

4.2.6 Non-overlapping clusters

The basic network shows a drop of performance compared to the single-photon network. The
reason for the worse performance might be the more complex task. If photon showers overlap,
the positions and energies are harder to separate. To exclude this possibility, we check whether
the performance increases and meets the performance on the single-photon network if only two
separated showers are used. We use a dataset of 417 438 two-photon events with no overlap
between the photon showers. The distributions of this dataset can be seen in figure 33. The energy
distribution shows an increase towards small energies as it is more likely that photons with less hit
cells, so low energies, do not overlap. Almost all photons have a distance greater than 10 cm. We
will refer to this dataset as dataset 6.
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(a) Distribution of the distance dγ1γ2 between
photon 1 and photon 2. Only 2.8% of the events
have a photon-distance smaller than 12 cm due to
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Figure 33: Distributions of dataset 6 with non-overlapping clusters.

We train the network for 3000 epochs. The lowest validation loss occurs at epoch 1970. The
results of the study can be seen in figure 34. The network improves the spatial resolution by a
factor of 2.2 on x and 2.1 on y compared to Lednev. Lednev predicts the energy better by a factor
of 1.1 when comparing the variances σ. Comparing the results to the basic network in figure 30,
the performance of the network increases by a factor of 1.1 for x and y and by 1.2 for the energy.
When comparing the relative differences to Lednev the performance of the network increases from
a factor of 1.7 to ∼ 2.1 on the positions. The network can still not predict the energies better than
Lednev, although the factor between them decreases from 1.4 to 1.1. The overall performance of
the two-photon network increased when using separated clusters but does it match the performance
of the single-photon network?
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Figure 34: Performance of the network (green) and Lednev (orange) on dataset 6 with two non-
overlapping photon showers on the parameters x, y, E from left to right. The network has a better
the spatial resolution compared to Lednev but Lednev predicts the energy better when comparing
the variances σ.
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4.2.7 Comparison with the single-photon network

To get a clear comparison of the two-photon network’s performance on non-overlapping cluster to
the performance of the final model network of the single-photon case, we take the same network
architecture and hyperparameters of the final model network but train and evaluate it on the non-
overlapping dataset 6 by separating the two clusters manually. To get an equal comparison we
train the network on the same amount of events (417 438) with single photons and for the same
amount of epochs. The lowest validation loss appears at epoch 2687. We evaluate it on the same
test sample as the two-photon-non-overlapping network in section 4.2.6. The result can be seen in
figure 35 together with the performance of the two-photon network.
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Figure 35: Performance of the single-photon network (green) and two-photon network (orange) on
dataset 6 with non-overlapping photon showers on the parameters x, y, E from left to right. The
single-photon network outperforms the two-photon network on all quantities.

Comparing the two performances of the single-photon and two-photon network, the position
determination is 1.4 times more precise for x and 1.6 times more precision for y if the single-photon
network is used. The energy resolution of the single-photon network is better by a factor of 1.2.
It gets clear that evaluating two separated showers on the single-photon network gives a better
result than evaluating them together as a two-photon event with the two-photon network. We can
conclude that the two-photon basic network presented in 4.2.4 does not show worse performance
because of the more complex task but shows a lack of precision in general.

4.2.8 Separate determination of position and energy

There is the possibility that the basic network is showing bad performance because the weights
in the loss function do not compensate enough for the mix of units (cm and GeV). Therefore, we
use the same network as the basic model in section 4.2.4 but only require to a) learn the positions
(xi, yi) and b) learn the energies Ei. We train for 3000 epochs and the lowest validation loss
appears at epoch 2543 for a) and epoch 766 for b). The results can be seen in figure 36a for a)
and 36b for b).
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Figure 36: Performance of the network with separately learned and evaluated quantities (green)
on dataset 5 on the parameters x, y, E from left to right. The performance of the basic network
(BN) is shown in orange for comparison.

The networks with separately learned position and energy show a better performance as the
variances sank from σx = 1.628 to 1.547 mm, σy = 1.636 to 1.474 mm and σE = 3.31 to 2.62.
Therefore, the position determination improved by 5.0 % on x, 9.9 % on y and 20.8 % on E. The
stronger improvement on the energy shows that learning the energy gets suppressed by learning
the positions in the merged network and the deviation of the energy has less impact on the loss.
This is probably the result of a not optimal chosen weight. The weights could either be adapted
or data preprocessing could be used. By applying the standard score to the data, the imbalance
of the units might be reduced. Applying the logarithm to the energies might also help to deal
with the large range of energies of three orders of magnitude (2-200 GeV). All quantities show
an improvement when being learned separately. This is a hint that the complexity of the basic
network is too small to learn all quantities at once. We have seen in the single-photon case that
mixing units in a loss function even without weights leads to reasonable results. If one quantity
gets suppressed, the network must be in a situation that requires to decide which quantity to learn
as the capacity is not sufficient to learn all. This ”decision” is taken via the impact of the quantities
in the loss.

Even though the performance increases when separating the determination of the position and
energy, the network still shows a worse performance compared to the single-photon final network
shown in figure 21. The performance dropped by a factor of 1.7 for x and y and 1.3 for E when
comparing variances. We can conclude that the mixing of the units in the loss function can not be
the predominate reason for the worse performance of the basic network.

4.2.9 Mono-energetic dataset

The generally worse performance of the two-photon basic network raises the question if the network
is even able to determine quantities of two photons at the same time. To check this, we simplify
the task drastically by using a mono-energetic dataset of E = 80 GeV and investigate how well
the network is able to learn the positions. This task might be easier for the network to learn as all
showers should have a very similar shape due to the same energy. We will use two modifications:
One dataset (290 968 events) will still have the condition of at least 4 cm between the photons,
the other one will not have any constraints on the distance between the photons (513 439 events).
The network stays the same as illustrated in figure 28, only the last output layer has four instead
of six nodes as we do not require to learn the energy due to the constant value.

We train the 4-cm-network for 3000 epochs with the same hyperparameters as on the other
dataset described in chapter 4.2.4. The lowest validation loss is at epoch 2920 which indicates that
the network is not fully trained. If we spent time fine-tuning the network, we would also decrease
the learning rate. The results of the 4-cm-network can be seen in figure 37. The results are similar
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to the performance of the single-photon final model network in figure 21 as the standard deviations
are nearly the same. Comparing the network’s performance on the mono-energetic dataset to the
performance of the basic network discussed in section 4.2.4, the spatial resolution increased by a
factor of 1.8 for x and 1.9 for y. Why did the network perform so much better on this dataset
than on dataset 5? The performance of Lednev improved too. This is an indicator that the
whole problem is easier. When using an energy of E = 80 GeV, on average 18.2 cells are hit per
event. This means 9.1 cells per shower. These are huge showers and the center of gravity can be
determined with large accuracy. Additionally, the network only has to learn a single shower shape
of clusters with E = 80 GeV. Once it learned the shower shape the position of the photon is easy
to determine. The network shows a great performance with a standard deviation 2.7 times smaller
than Lednev.
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Figure 37: Performance on the E = 80 GeV dataset with a minimum distance of 4 cm on the
parameters x, y from left to right. The network outperforms Lednev.

We drop the 4 cm condition to test the limits of the network. The smallest distance between
the photons is 5 mm. The distribution of dγ1γ2

increases for small distances. The lowest validation
loss appears at epoch 795. The results of the study can be seen in tabular 1. The performance of
the network compared to the 4 cm dataset drops by 7.9% on x and by 10.0% on y. Still, compared
to Lednev, the spatial resolution is better by a factor of 2.9 in x and a factor of 3.0 in y. One
needs to keep in mind that the histogram of Lednev holds fewer entries as we always only consider
events with correctly identified number of photons. In this dataset Lednev miss-identified 22.7%
of the events. The network has the advantage of having no choice than to predict two clusters.

σx [mm] σy [mm]
NN 0.983 ± 0.007 0.950 ± 0.006

Lednev 2.868 2.816

Table 1: Performance on the E = 80 GeV two-photon dataset with at least 5 mm between photon
positions.

This study has shown that the network can easily detect two photons in one picture and
determine its position with high precision compared to Lednev. We need to highlight that detecting
mono-energetic photons is a very simple task. Still, this shows that a network is generally able to
learn quantities of two-photon events, even if the photon clusters overlap, with a similar precision
as the single-photon network.

We have not yet answered the question of why the basic network shows no optimal and even
bad performance in the general two-photon case explained in section 4.2.4. The studies on non-
overlapping clusters in section 4.2.6, the separate prediction of positions and energies in section
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4.2.8 and the mono-energetic study in this section have three things in common: All these tasks
are easier, the architecture of the network is the same and the network’s performance improved
compared to the basic model. This is a hint that the basic network might not be complex enough
to be able to learn the full extent of the two-photon detection problem, and we did not find the
optimal network architecture matching our problem’s complexity.

4.3 Counting photons

The amount of photons hitting the ECAL at the same time is a desired variable as the networks
we have presented until now only work for a fixed number of photons. Therefore, it is interesting
to see if a neural network can determine the number of photons on the ECAL and whether it can
do this better than Lednev.

4.3.1 The simulated MC data

32
.6

40
.2

47
.9

55
.5

63
.2

70
.9

78
.5

86
.2

93
.8

10
1.

5
10

9.
2

11
6.

8
12

4.
5

13
2.

1
13

9.
8

14
7.

5
15

5.
1

16
2.

8
17

0.
4

17
8.

1
18

5.
8

19
3.

4
20

1.
1

20
8.

7

x [cm]

47.9

55.5

63.2

70.9

78.5

86.2

93.8

101.5

109.2

116.8

124.5

132.1

y 
[c

m
]

MC coordinates

Figure 38: Example of the network input. Three showers that build two clusters on the shashlik
part of the ECAL.

As this is a feasibility study we will restrict the number of photons to be one, two or three. We
use dataset 3 for one photon and dataset 4 with no minimum photon distance for two photons.
Therefore, the smallest distance between photons is 2.5 mm. The distribution of the dataset used
for three photons which we will call dataset 7 is shown in figure 39. It contains 329 523 events.
The way photon 2 with respect to photon 1 is created is the same as for photon 3 with respect
to photon 2 so the two distance distributions match. No constraint on a minimum distance is
applied and the smallest distance between them is 2.5 mm. The sum of all three photon energies
is a maximum of 202 GeV. Therefore, the third photon normally has a very small energy.
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Figure 39: Distributions of the three-photon dataset 7

To make sure every case gets the same attention in the training, we use an equal amount of
events (329 000) for each category 1, 2 and 3 photons. The whole mixed dataset contains 987 000
events. Instead of cutting out the hit area, we give the whole shashlik part of the ECAL as an
input. It has the size 25x49 cells. An example of an input can be seen in figure 38.

As previously we use 80% of the data for training the network and 20% is saved as the test
sample. 10% of the training set is used as validation data.

4.3.2 Architecture of the neural network

As counting how many photons appear on the ECAL is basically image recognition, we apply a
convolutional network. The main difference to the determination of the position and energy of
a photon is that this is a classification problem, not a regression problem. This means that the
output has 3 bins of which each represents one class, in this case the classes ”one photon”, ”two
photons” and ”three photons”. The value of each bin represents the probability of an event being
classified as this bin. So the values of all bins sum up to 1. This is implemented via the softmax
activation function. Dropout layers are used to prevent early overfitting. The network used for
this problem is illustrated in figure 40.
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Figure 40: Graphical illustration of used convolutional neural network for counting photons on the
ECAL. It has 196 059 parameters.
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We used the common loss function of classification problems, the categorical cross-entropy loss
and the Adam optimizer with a learning rate of α = 0.003 and a batch size of 64 for the training.

4.3.3 Results and comparison with Lednev
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Figure 41: Loss over the epochs. The lowest validation loss is at epoch 73.

The loss over the epochs can be seen in figure 41. If one wanted to fine tune the network, increasing
the drop out would probably delay the overfitting a bit more. The lowest validation loss already
occurs at epoch 73. To evaluate the performance of the network, the confusion matrix is a useful
tool. It can be seen in figure 42a. The network has no difficulties to detect one photon as it
determines all one photon cases correctly and also does not falsely predict one photon as a two or
three-photon event. It has some struggles to differentiate between two and three photons. 9% of
the two photon events were predicted to be three photons and 19% of the three photon events as
two photons. Three overlapping cluster with nearly no distance between them look similar to two
photons being very close. This gets clear when looking at the energy distribution of dataset 7 in
figure 39b. It is very likely that one of the three photons has a very low energy value and will get
swallowed by the bigger ones if the showers overlap and build one cluster.

Figure 42b shows the performance of Lednev on the same data. It can determine all one photon
cases correctly. Lednev already struggles with the separation of one and two photons as it predicts
27% of the two-photon cases as one photon. It has even more difficulties to distinguish two and
three photons as is predicts 37% of the three-photon events to be two photons. It even predicts
one photon in 8.5% of the cases. Lednev is tuned so that it will rarely overestimate the amount
of photons but decide for the lower amount of photons if unclear to avoid artificial splitting. The
network outperforms Lednev in counting up to three photons on dataset 7.
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Figure 42: Performance on counting up to three photons on the ECAL

4.3.4 Analysis of the network’s performance

The success of separating showers is strongly connected to their distance. Therefore, we investigate
the performances of the described network and Lednev on data with different minimum distances.
For this study we define the minimum distance of three photons by the smallest distance between
all.
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Figure 43: Confusion matrices of the network (first row) and Lednev (second row) for different
minimum distances between the photons: 2 cm, 5 cm, 10 cm from left to right.

The confusion matrices for different distances can be seen in figure 43. At a minimum distance
of 2 cm the network can nearly identify all cases by 90%. Lednev succeeds above 90% after 5
cm. When looking at 10 cm, the prediction of Lednev is a lot more accurate on two photons. It
can detect 99 % correctly while the network still only predicts 91% correctly. The network still
classifies 9% of the two-photon events as three photons. Where does this bias come from? When
looking at the data distribution of the energies in figure 39b, it gets clear that one of the three
photons has a very low energy, e.g. 35% of them have energies below 10 GeV. Approximately 2
cells per event get hit if photons have energies below 10 GeV. This is not much compared to a
80 GeV nine-cell cluster event. The network learned that even if it detects two photons, there
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might be a third photon hidden within a bigger cluster. Even if we increase the distance between
the photons even more, the network will still falsely predict three photons in two-photon cases.
This can only be fixed by training on a different dataset.
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Figure 44: Probability for one (green), two (orange) and three (blue) photons given by the neural
network for one, two and three photons (Nγ = 1, 2, 3) from left to right

We can further evaluate how certain the network is with its decision. Therefore, the his-
togrammed values for the returned probability of one (green), two (orange) and three (blue) pho-
tons for one two and three photons (Nγ = 1, 2, 3) are shown in figure 44. The first plot shows
the returned probabilities for one photon events (Nγ = 1). We can see that the network is mostly
very certain about detecting one photon. It is also very certain not to see three photons. In very
few cases it detects two instead of one photon. This might be the case if photons have very small
distances between each other so that the showers overlap strongly and can not be distinguished
form a single-photon cluster. The second plot shows two photon events Nγ = 2. We see that
the network normally does not predict one photon but is sometimes very sure (100%) to see one
photon. As one can see a linear decrease of three-photon counts over the probability, we can say
that the probability for three photons drops exponentially over the probability. The third plot
shows events with three photons Nγ = 3. One can see that two and three photons are nearly
predicted the same amount of times between x = 0.1 and x = 0.9. But the network is very often
close to 100 % certain to detect three photons. This is probably the case if they are disjoint. Most
of the time the network is very certain not to see one photon. If it detects one photon instead
of three then it does so with large confidence. This probably happens if all three photons hit the
ECAL very close to each other.

To summarize the chapter about counting photons on the ECAL: The network is able to give
reasonable predictions for one, two and three photons hitting the ECAL and even performs better
than Ledenv on this task. The presented network works well for small distances but as trained
on low-energetic photons in the three-photon case, it may confuse two and three photons. For
large distances Lednev is therefore better to identify the right amount of photons. Changing the
data used for training and fine-tuning the network will very likely improve the performance. The
problem may be extended for more than three photons hitting the ECAL.

5 Discussion and outlook

This proof of principle study has shown that neural networks can reconstruct simulated photons
in an electromagnetic calorimeter. The method has potential for determining the correct number
of photons at smaller distances than the traditional Lednev fit. While the network can determine
up to three photons in at least 81% of the cases correctly, Lednev detects at least 53% of them
correctly if there is no minimum distance between the photons. Although the network seems to
show better results, its performance is low for photons separated by at least 10 cm, as only 91% or
more of the events are determined correctly. This bias might be the result of the training-dataset
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distributions. It is highly likely that one photon of a three-photon event has low energy and can
not be distinguished from two photons if the low-energy photon is covered by a high-energy shower.
To achieve better results than the traditional Lednev fit in all cases, the training dataset needs to
be chosen differently.

The network can predict the position of simulated single photons more precisely. The spatial
resolution of the ECAL could be reduced by a factor of 2.7 using the neural network. It shows
similar performance on the determination of photon energies compared to Lednev. The most
important adjustments explained in this thesis for the good results on the position determination
(x, y) are: Setting the z-position to the average penetration depth of a shower in the ECAL to avoid
angle effects; placing the clusters centered into the cut-out grid to have a uniform distribution of
photon positions in the network’s training data and choosing a large-enough network architecture
to reflect the complexity of the single-photon detection problem.

We tested if training the network on simulated data and evaluating it on real data will give
reasonable results. This is done via evaluation of the invariant mass of two photons. The distribu-
tion shows two peaks: One for the pion mass and one for the eta mass. To compare Lednev to the
network, the variances and signal strengths of the peaks were investigated. Both methods show the
same performance within ±5%. While the Lednev fit has the advantage of being calibrated on real
data, the network can only reflect the precision of the simulation. To improve the network’s per-
formance, one might think of using electron beam data to train the network on. Electrons produce
similar shower shapes as photons but can be tracked due to their charge with other detectors too.
With the help of tracking detectors the electron position can be extrapolated to the ECAL, and we
know the electron energy as they come from an electron beam that we can control. This approach
has some difficulties. Electrons might scatter or interact via bremsstrahlung before reaching the
ECAL. A careful event selection is mandatory for this approach to work. Still, the possibility
remains that the data is nevertheless less accurate than the simulated data. One could also try
making the simulation more precise. We still used the GEANT3 based COMGEANT[4] simulation
framework as it is fine-tuned for the 2009 COMPASS setup. There is already a GEANT4 based
simulation framework called TGEANT[18] which is currently being worked on to simulate shower
shapes even more precisely.

Detecting two photons brought up challenges and the presented network could not outperform
the Lednev fit in all quantities. The positions are determined better, as the spatial resolution, which
is the average deviation of the reconstructed position to the nominal position, is smaller by a factor
of 1.7, however the prediction of the photon-energy resolution is worse by a factor of 1.4. When
analyzing the performance, we see that especially the sum of the energies is not learned correctly.
This effect could be reduced by implementing the sum of the photons into the loss function. The
problem also got more difficult compared to the single-photon detection as two-photon showers can
overlap and only build one cluster. By training and evaluating a network on a dataset with disjoint
clusters only, we were able to show that evaluating two disjoint clusters with the single-photon
network provided better results than evaluating it with the two-photon network. Therefore, we
can conclude that the two-photon network’s architecture is not chosen sensibly enough to match
the problem’s complexity. We also saw this by separating the two tasks of position and energy
determination. Learning the quantities separately showed an increase of performance especially on
the energy determination. This is a hint that the chosen network is not complex enough to learn
all quantities simultaneously. If the complexity of the two-photon detection problem is reduced
by using mono-energetic photons only, the network shows comparable results to the single-photon
detection. This shows that a network can generally detect two (overlapping) photons, but we
probably need to change to a more complex approach to reflect the complexity of the general
two-photon detection problem. Another question one might ask is how to combine the presented
networks to apply them generally on photon-detection tasks with a varying number of photons.
This question and the poor performance of the two-photon network lead to another approach:
Neural networks with Slot Attention modules.

Even though convolutional neural networks are a strong tool in image-recognition problems,
there are more efficient network architectures for object-centric learning. The two-photon problem
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might be solved with more accuracy when considering Slot Attention modules as a possible network
architecture. As the output vectors of Slot Attention modules hold permutation symmetry, one
of the major prerequisites for the photon-detection problem as discussed in section 4.2 is met.
Furthermore, Slot Attention holds the potential to detect a varying number of objects. This is an
interesting feature for the photon-detection problem. The overall approach for photon detection
presented in this thesis first needs a network which predicts the number of photons in an image
to then apply the suitable single-photon network or two-photon network etc. to the image. Slot
Attention does not need a fixed number of photons. It also separates the showers into the individual
slots. The output of the slots are basically single-photon events whose properties can be easily
extracted as discussed in section 4.1. Slot Attention might therefore not only provide more accurate
results for two overlapping photons due to a problem-customized architecture but also seems to be
an elegant overall solution for photon detection.
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