
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Department of Software Engineering
Course: Applied Software Engineering

COMPASS experiment data servers API

API datových serverů experimentu COMPASS

Master Thesis

Author: Bc. Matouš Jandek
Supervisor: Ing. Martin Bodlák
Year: 2018

3

4

Statutory declaration

I hereby declare that I have elaborated this master thesis independently and used no other
aids than those cited. In each individual case, I have clearly identified the source of the pas-
sages that are taken word by word or paraphrased from other works.

In Prague
Bc. Matouš Jandek

Acknowledgment

I would like to thank my family for supporting me in my effort. I would also like to thank
my supervisor, Ing. Martin Bodlák, for guiding and assisting me during the work on this
master thesis.

Bc. Matouš Jandek

Název práce:
API datových serverů experimentu COMPASS

Autor: Bc. Matouš Jandek

Obor: Aplikace softwarového inženýrství

Druh práce: Diplomová práce

Vedoucí práce: Ing. Martin Bodlák
Matematicko-fyzikální fakulta Univerzity Karlovy

Abstrakt: Během provozu experimentu COMPASS v CERN je potřeba zpracovávat velké
množství digitálních dat. Počítačové systémy používané na tomto pracovišti, které se
tímto úkolem zabývají, potřebují přistupovat k různým druhům digitálních úložišť,
například k databázovým serverům nebo složkám sdíleným přes síť v CERN. Neex-
istuje ovšem žádné jednotné rozhraní, které by umožnilo s těmito zdroji, což ve svém
důsledku způsobuje, že procedury pro přístup k datům musejí být implementovány něko-
likrát v jednotlivých počítačových programech. Tato situace ústí nejen v delší vývo-
jový čas nového softwarového vybavení a náročnější údržbu stávajícíh programů, ale
i ve zvýšené riziko vzniku chyby v programech a tedy i riziko narušení intergrity dat.
COMPASS API je navrhovaný software, který má za cíl napravit tuto situaci imple-
mentováním rozhraní s jasně definovanou strukturou, které by bylo využitelné z jiných
aplikací, a které by umožnilo vykonávat manipulaci s dat sjednoceným způsobem, a tím
snížít riziko poškození dat.
Klíčová slova: CERN, COMPASS, software, server, databáze, síť, složka, C++, Qt,

API, RESTful

Title:
COMPASS experiment data servers API

Author: Bc. Matouš Jandek

Abstract: During operation of the COMPASS experiment at CERN, it is required to pro-
cess large amounts of digital data. Computer systems used at the site that deal with this
task need to access various types of digital storage, for example database servers or fold-
ers shared over the CERN network. However, no common interface that would allow
to interact with these resources exists, and as a result, data-access procedures often
have to be implemented multiple times in different computer programs. This situation
not only results in longer development times of new sotware equipment and more de-
manding maintenance of existing programs, but also increases the possibility of errors
and thus higher risk of compromising data integrity. COMPASS API is a proposed piece
of software, which aims to correct these issues by implementing an interface with clearly
defined structure which would be usable by other applications, and which would allow
to perform data manipulation in a centralized and unified manner, thus reducing the risk
of compromising data.
Keywords: CERN, COMPASS, software, server, database, network, folder, C++,

Qt, API, RESTful

Contents

Introduction 13

1 COMPASS experiment 15

2 COMPASS DAQ 17

3 Incentive for Development 19

3.1 Background Information . 19

3.2 Solution Outline . 21

3.3 Analysis of Requirements . 21

3.4 Preliminary Design . 25

4 Used Technologies 27

4.1 C++ . 27

4.2 Qt . 31

4.3 REST . 35

4.4 QHTTPEngine . 40

4.5 JSON . 42

5 Implementation 45

5.1 COMPASS API . 45

5.2 Plugin Interfaces . 47

5.3 REST Server . 51

5.4 Plugins . 68

5.5 Client Applications . 69

11

6 Software Testing 71

6.1 Coverage of Requirements . 71

6.2 Unit Testing . 73

6.3 Integration Testing . 74

6.4 Static and Dynamic Analysis . 75

7 COMPASS API User’s Guide 77

7.1 Plugin Developer’s Guide . 77

7.2 Client Applications Developer’s Guide . 84

Conclusion 87

Bibliography 89

Appendices 91

A Contents of the Enclosed CD 91

B Installation Instructions for COMPASS API 93

B.1 Operating System Note . 93

B.2 Installation of Required Packages . 93

B.3 Configuration of Qt Creator . 94

B.4 Compilation . 94

B.5 Running . 95

C REST Server Application Recognized Configuration File Keys 97

D Git Repository Structure 99

E Installation Instructions for Modified run_manager 101

E.1 Installation of COMPASS API . 101

E.2 Compilation . 101

E.3 Running . 101

F Used Terminology and Abbreviations 103

12

Introduction

The Common Muon and Proton Apparatus for Structure and Spectroscopy, abbreviated
as COMPASS, is a high energy physics experiment with a fixed target, which is conducted
at the CERN laboratory in Geneva. Since the COMPASS experiment uses a large number
of complex measuring devices to achieve its specified goals, numerous computer systems are
deployed to support the experimental setup.

Such systems include most prominently the Data Acquisition System (DAQ), which is used
to collect data from the experiment’s detectors and monitor the overall status of the equip-
ment and its functionality. Other computer systems include for example the electronic log-
book or various data analysis tools.

Most of these computer systems process identical data during their normal operation. To fa-
cilitate this, several methods of storage are utilized on the COMPASS experiment. However,
none of them provide any interface to access the stored data. The absence of such unified
procedure for data access has several drawbacks, which the COMPASS API intends to cor-
rect.

Chapter 1 introduces the COMPASS experiment. The goals of this high-energy physics exper-
iment are outlined, and are subsequently followed by a basic description of the experimental
setup.

Chapter 2 briefly describes the data acquisition system (DAQ) of the COMPASS experi-
ment. The DAQ is one of the principal pieces of equipment on the COMPASS experiment,
and therefore must be taken into consideration when deploying any additional program
to COMPASS computer systems.

Chapter 3 presents the current state of several specific parts of COMPASS computer equip-
ment, and summarizes the motives for development of the COMPASS API software. Fur-
thermore, the requirements for the COMPASS API software are analyzed and listed.

Chapter 4 focuses on technologies that were used to develop the COMPASS API software.
It lists the main features of utilized programming languages, libraries and frameworks, but
also describes other aspects such as data formats or design concepts. Furthermore, reasons
for the selection of listed technologies are elaborated.

Chapter 5 contains the description of the implementation of the COMPASS API. The soft-
ware is documented using standard UML diagrams. Descriptions of key parts of the code are
provided as well.

13

Chapter 6 deals with testing of the COMPASS API software. It describes the methodology
used in this process and presents the results of performed tests.

Chapter 7 serves as a guideline for developers who aim to use the COMPASS API in their
applications, or intend to expand the set of available functions implemented in COMPASS
API.

14

Chapter 1

COMPASS experiment

COMPASS, or Common Muon and Proton Apparatus for Structure and Spectroscopy, is
a high energy physics experiment which is located at the CERN laboratory in Geneva,
Switzerland.

COMPASS is a fixed-target experiment, and is located in CERN laboratory’s North Area.
The particle beam is obtained from the Super Proton Synchrotron (SPS) accelerator, from
where it is guided through an underground beamline to the COMPASS experiment’s site.
The location of the experiment within CERN’s Geneva facilities is displayed in figure 1.1.

Figure 1.1: CERN laboratory accelerators layout [1]

15

The experiment is dedicated to examination of the structure of hadron particles and hadron
spectroscopy. For this purpose, a high intensity beam composed of muons or hadrons is
utilized [2]. More recently, measurement methods which utilize various phenomena, such
as deeply-virtual Compton scattering (DVCS), hard exclusive meson production (HEMP),
semi-inclusive deep-inelastic scattering (SIDIS), polarized Drell-Yan process or Primakoff
reaction are being used.

COMPASSf was established in 1997 through receiving an approval from CERN. The instal-
lation of the equipment was conducted between years 1999 and 2000, and the initial technical
run was performed in 2001 [2].

The subsequent operation of the experiment may be divided into two periods, called COM-
PASS I and COMPASS II. The first period lasted from 2002 to 2011, while COMPASS II is
operational from 2012 to this day. COMPASS II is expected to end in the year 2018, however,
during the following LS2 period, the facilities are expected to be subjected to a lifetime ex-
tension maintenance, and the experimental apparatus will be operated under another name.

The measuring apparatus of COMPASS experiment consists of two main stages, where one
focuses on particles with wider scattering angle after collision with the experiment’s target,
while the other concentrates on particles with smaller angles. Each of these stages con-
sists of various types of detectors, such as electro-magnetic calorimeters (ECAL), hadronic
calorimeters (HCAL), ring-imaging Cherenkov detector (RICH), micro mesh gas detec-
tors (MicroMegas), gaseous electron multipliers (GEM), multi-wire proportional chambers
(MWPC), scintillating fiber detectors (SciFi) or straw trackers. An illustration of the exper-
imental setup is displayed in figure 1.2. The approximate length of the depicted apparatus
is 60 meters.

Figure 1.2: COMPASS experimental setup [2]

16

Chapter 2

COMPASS DAQ

The COMPASS DAQ is a system responsible for reading signals from individual detec-
tors included in the experimental setup and to transform these signals into a form suitable
for storage on hard disk drives or other magnetic storage devices.

The current COMPASS DAQ system has been in use since year 2014 and has replaced a DAQ
system which has been employed since the beginning of measurements on the COMPASS
experiment.

In high energy physics experiments, data taking is usually separated into measurements
of individual physics events. These events may represent a collision of a subatomic particle
with another particle, or, as is the case on COMPASS, with a fixed target. The measurements
of these events focus on the characteristic of such collisions and their resulting effects.

Such events however usually occur at very high rates, and many of them are caused by unde-
sired external influences, such as cosmic radiation. As a result it is technologically challenging
to provide hardware capable of reading, and especially storing such large amounts of digital
data. This aspect of data taking is usually circumvented by so called trigger systems. Trig-
ger system evaluates each measured event based on a set of predefined criteria, and asserts
whether the given event demonstrates interesting properties. Subsequently, only events ac-
cepted by the trigger system are stored for further processing. COMPASS experiment’s DAQ
follows this design pattern, and employs several triggers to reduce the amount of events.

The first step in processing of the signals from detectors is the conversion of these analog
data into digital form. This task is performed in the frontend cards. On COMPASS there
are approximately 300 000 output channels leading from the detectors to the DAQ.

Next, the digitalized channels are routed through three layers of multiplexers. The first layer
consists of HGeSiCa, Catch and Gandalf modules, the second consists of Slink multiplexers
and TIGER VXS data concentrators, and the third of FPGA-based multiplexers [3].

After passing through the multiplexer layers, the data reaches an FPGA based switch, which
performs the reconstruction of events by combining the data which originated from different
channels.

Finally, the data are read by readout computers from the FPGA switch and stored on hard

17

drives. The hard drives however acts only as a buffer, and every few hours, the data are
moved from the disks to CASTOR, CERN central storage solution, which is described in [4].

The whole structure of COMPASS DAQ is depicted in figure 2.1.

Figure 2.1: COMPASS DAQ structure [3]

18

Chapter 3

Incentive for Development

This chapter focuses on the underlying reasons that motivated the development of the soft-
ware described in chapter 5. The contents of this chapter are largely based on research
and experience gained during work on [5] and [6]. Systems, that have direct or indirect influ-
ence on the design of COMPASS API are examined in order to identify requirements placed
on the newly developed software. These requirements are then summarized in the final part
of this chapter.

3.1 Background Information

COMPASS experiment’s data are primarily stored using two distinct solutions—MySQL
DBMS and network-accessible directories. The COMPASS API software is intended to im-
prove and simplify the workflow when accessing the data stored in these types of data storage.
Therefore, it is necessary to outline key aspects of these computer systems before attempting
to design the COMPASS API.

3.1.1 MySQL Database

The databases which are used on COMPASS experiment run on the MySQL database man-
agement system, and are deployed on servers operated by COMPASS. The servers are or-
ganized in a layout with one master server and two slave servers that serve as a backup,
as depicted in figure 3.1. More detailed description of the structure of the database servers
is provided in [6].

The database servers store several databases. These may vary in implementation details,
including the storage engines that are used to store individual tables. Description of the ar-
chitecture of the databases is part of [7]. Recent analysis of the logbook database, as well
as proposition of changes to its structure, which are based on a study of typical use cases
of this part of COMPASS’s database storage, are detailed in [6].

The basic implementation details of the database servers, such as servers’ hardware and soft-
ware equipment, and even low-level implementation details of the databases like storage

19

Proxy
pccodb00
pccodb20

Master
pccodb22

Slave
pccodb21

Slave
pccodb23

Figure 3.1: COMPASS database servers layout [6]

engines that were used, are well hidden from applications that intend to use the database.
Nevertheless, applications still need to deal with the relational model of the implementation.
Structures of individual tables and connections between them have to be considered when
developing an application that uses the data stored in the database, and database access
routines have to be tailored to this specific structure.

3.1.2 Network-Accessible Directories

Network-accessible directories are used on the COMPASS experiment primarily to store
binary data, or data which are otherwise unsuitable to be stored in a database management
system.

Network accessible directories may be either stored on servers operated by compass, or on
servers maintained by CERN and provided to individual experiments.

Individual files are usually recorded in one of the databases described in section 3.1.1. Usually,
data necessary to locate the file, such as hostname, path in the file host’s file system and file
name are stored.

Unfortunately, it was uncovered during analysis performed in [6], that in many use cases no
synchronization between the contents of the database and the contents of described direc-
tories is performed. The records in the database therefore may not reflect the actual state
of the directories.

20

3.1.3 Summary

Based on properties indicated in sections 3.1.1 and 3.1.2, it is possible to summarize the prin-
cipal problems tied to manipulation with stored data in the COMPASS experiment’s com-
puter environment.

This summary may be divided into three main categories, which are listed below.

1. Manual construction of SQL queries is required when working with database, which
has following consequences:

(a) Increased development time of applications,

(b) More demanding maintenance of existing applications,

(c) Applications directly depend on structure of the COMPASS databases, therefore
any change must be reflected in both the source codes of relevant applications
and the database.

2. Storage of files is not performed by a centralized logic, which has similar implications
as specified in item 1.

3. In general, no synchronization is performed between file-related metadata that are
stored in the COMPASS database and the actual files, which results in the risk of ref-
erential integrity corruption.

3.2 Solution Outline

Based on characteristics described in section 3.1.3, it is possible to outline basic properties
of the proposed COMPASS API, which aims to correct these issues.

The COMPASS API shall have a form of an interface, which would be usable from any
point in the COMPASS network, and preferably would also offer a procedure to utilize it
from outside of COMPASS network.

Since the types of data-manipulating operations and their respective implementations are
likely to change during the product lifetime of the COMPASS API, the interface shall pro-
vide a method of defining request types for accessing data without the need to make changes
to the core implementation of the interface. The interface’s design shall hide as much logic
as possible from these additional modules, so that during their implementation it is not
required to deal with unnecessary details, such as network communication. Instead, the im-
plementation of plugins shall have to deal only with processing of the requests and with con-
struction of a suitable response.

3.3 Analysis of Requirements

The general design characteristics of the proposed COMPASS API that were described in sec-
tion 3.2 are transformed in this section into a more thorough set of requirements, which

21

the COMPASS API shall meet. All requirements are based either on these characteristics,
or were formulated to improve the usability and functionality of an application, which would
be implemented on the basis of these requirements.

The requirements are split into functional requirements, which are discussed in section 3.3.1,
and non-functional requirements, which are discussed in section 3.3.2.

Items in the requirement list may be either labeled as REQ-##, which denote an actual
requirement that is expected to be fulfilled by the final version of the COMPASS API, or la-
beled as INFO-##, which may contain definitions of terms used in other items, accompanying
notes or other information, which is not directly a requirement on its own.

3.3.1 Functional Requirements

These requirements specify what functions shall the COMPASS API offer.

INFO-01 Client application is such computer application that uses COMPASS API and uti-
lizes the functions it provides.

INFO-02 COMPASS network is an ethernet-based network, which connects computers used
on and maintained by the COMPASS experiment.

REQ-03 COMPASS API shall allow to be utilized by client applications, which are de-
scribed in requirement information INFO-01, and are being executed on a com-
puter that is located within the COMPASS network, which is described in require-
ment information INFO-02.

REQ-04 (optional) COMPASS API shall provide a method that allows to utilize it by client
applications, which are described in requirement information INFO-01, and are
being executed on a computer that is located outside of the COMPASS network,
which is described in requirement information INFO-02, by using a connection
over a network that is based on the TCP/IP protocol stack.

INFO-05 Accessible database is an SQL-based database management server which is accessi-
ble from the computer running the current instance of COMPASS API over a net-
work that is based on the TCP/IP protocol stack.

REQ-06 COMPASS API shall have a method to open connection to accessible databases,
which are described in requirement information INFO-05.

INFO-07 COMPASS database is a database stored inMySQL DBMS that is described in [6].

INFO-08 COMPASS database, which is described in requirement information INFO-07,
is considered as an accessible database, as described in requirement informa-
tion INFO-05, if the current instance of COMPASS API runs on a computer
located in the COMPASS network, which is described in requirement informa-
tion INFO-02.

22

REQ-09 COMPASS API shall obtain the hostname of the computer running the DBMS
containing the COMPASS database, which is described in requirement informa-
tion INFO-07, by loading it from environment variable DB_SERVER that shall be
available in the operating system in which is the current instance of COMPASS
API application running.

REQ-10 COMPASS API shall obtain the username that shall be used for authentication
during connection to the DBMS containing the COMPASS database, which is de-
scribed in requirement information INFO-07, by loading it from environment vari-
able DB_USER that shall be available in the operating system in which is the current
instance of COMPASS API application running.

REQ-11 COMPASS API shall obtain the password that shall be used for authentication
during connection to the DBMS containing the COMPASS database, which is
described in requirement information INFO-07, by loading it from environment
variable DB_PASSWD that shall be available in the operating system in which is
the current instance of COMPASS API application running.

INFO-12 COMPASS network folders consist of file system folders whose descriptions are
listed in the COMPASS database, which is described in requirement informa-
tion INFO-07. The folders are described in table ‘runlb‘.‘tb_directories‘. This
table shall list all necessary information required to identify and access these fold-
ers, including the hostname of the computer hosting a particular folder, and its
path within the computer’s file system.

REQ-13 COMPASS API shall be able to access and manipulate the COMPASS network
folders, which are described in requirement information INFO-12, and the files
stored within them, by using SSH and SCP protocols. Allowed manipulations
consist of creating, copying, moving and deleting files stored inside these folders.

INFO-14 Supported data storages are storage solutions described in requirement informa-
tion INFO-05 and requirement information INFO-12.

REQ-15 COMPASS API shall allow client applications, which are described in requirement
information INFO-01, to request creation of data in supported data storages, which
are described in requirement information INFO-14.

REQ-16 COMPASS API shall allow client applications, which are described in require-
ment information INFO-01, to request reading of data stored on supported data
storages, which are described in requirement information INFO-14.

REQ-17 COMPASS API shall allow client applications, which are described in requirement
information INFO-01, to request update of data stored on supported data storages,
which are described in requirement information INFO-14.

REQ-18 COMPASS API shall allow client applications, which are described in require-
ment information INFO-01, to request deletion of data stored on supported data
storages, which are described in requirement information INFO-14.

23

REQ-19 COMPASS API shall respond to all requests, which are described in require-
ments REQ-15 to REQ-18, with a response that contains information about the re-
sult of processing of the request.

REQ-20 COMPASS API shall respond to successfully executed read requests described
in requirement REQ-16 with a response, which contains the requested data in ad-
dition to information described in requirement REQ-19.

INFO-21 Any request made to COMPASS API, which belongs into one of the categories
described in requirements REQ-15 to REQ-18, is referred to as accepted request
under the condition that COMPASS API application has a definition of such
request at it’s disposal and will attempt to process it as a result.

REQ-22 COMPASS API shall have modular structure that allows to define types of ac-
cepted requests, which are described in requirement information INFO-21, as well
as the processing logic applied to such requests, by providing supplementary pro-
gram modules.

REQ-23 All definitions of accepted requests, which are described in requirement infor-
mation INFO-21, as well as the processing logic applied to such requests, shall
be defined exclusively in supplementary program modules described in require-
ment REQ-22.

REQ-24 COMPASS API shall load supplementary program modules described in require-
ment REQ-22 in a manner that does not require to recompile or restart the ap-
plication.

REQ-25 COMPASS API shall provide an internal interface that shall allow to execute
database queries in all databases to which COMPASS API currently has an open
connection.

REQ-26 The interface that is described in requirement REQ-25 shall be exposed to modules
that are described in requirement REQ-22.

REQ-27 COMPASS API shall provide an internal interface that shall allow to execute file
operations inside COMPASS network folders, which are described in requirement
information INFO-12, to an extent described in requirement REQ-13.

REQ-28 The interface that is described in requirement REQ-27 shall be exposed to modules
that are described in requirement REQ-22.

REQ-29 COMPASS API shall provide an interface that shall allow to control selected
functionality of COMPASS API at runtime.

REQ-30 COMPASS API’s control interface described in requirement REQ-29 shall allow
to trigger a restart of the application.

REQ-31 COMPASS API’s control interface described in requirement REQ-29 shall allow
to load additional program modules, which are described in requirement REQ-22.

REQ-32 COMPASS API’s control interface described in requirement REQ-29 shall allow
to obtain a list of available types of accepted requests described in requirement
information INFO-21.

24

3.3.2 Non-Functional Requirements

REQ-33 COMPASS API shall run on CERN CentOS 7 operating system.

REQ-34 (optional) COMPASS API shall be implemented with the use of technologies al-
ready deployed on the COMPASS experiment.

REQ-35 COMPASS API shall run as a background process.

REQ-36 COMPASS API shall use a communications protocol that is possible to implement
and use in C++ programming language.

REQ-37 COMPASS API shall use a communications protocol that is possible to implement
and use in PHP programming language.

REQ-38 COMPASS API shall use a communications protocol that is possible to implement
and use in Python programming language.

REQ-39 COMPASS API shall use a communications protocol that is possible to implement
and use in JavaScript programming language.

REQ-40 COMPASS API shall use a communications protocol that is possible to implement
and use in Bash programming language.

REQ-41 COMPASS API shall use SSH and SCP protocols, whose use cases are described
in requirement REQ-13, under the assumption that the public key of the target
machine is available to the implementation of SCP protocol on the computer
running the current instance of COMPASS API application.

3.4 Preliminary Design

With the software requirements formulated, it is necessary to devise a preliminary design
of the COMPASS API in order to select suitable technologies for implementation. Key tech-
nologies that were used during implementation will only be named in this section, compre-
hensive description is provided in chapter 4.

Given requirements REQ-03 and REQ-04, it is clear that COMPASS API must be a software
accessible by network connection. COMPASS API shall therefore be implemented in a form
of a network server. This server would accept network requests, process them, and return
response messages to the client application that sent the request.

Additionally, COMPASS API is required to be always accessible from computers located
in the COMPASS network, as is stated in requirement REQ-03. Since many computers
in the COMPASS network are not connected to the internet, the simplest procedure to ful-
fill this requirement is to operate the COMPASS API from one of the computers located
in the COMPASS network.

COMPASS API must also define the communications protocol that will be used for commu-
nication between client applications and the server. Given it’s availability and universality,

25

the TCP/IP protocol stack is the obvious choice. This protocol fulfills requirements REQ-36
to REQ-40, as it is available in all these programming languages, and many other, not ex-
plicitly listed languages are able to use this protocol as well.

The communication also requires unified format of the messages used for communications.
If we consider requirements REQ-15 to REQ-18, we may identify that the system actually
supports all of CRUD (create, read, update, delete) operations. It is therefore possible to map
them to operations in an existing protocol, that also supports all of CRUD operations. If
using an existing protocol, COMPASS API may take advantage of already developed libraries
that implement the logic necessary to work with the technology, which will reduce required
development time when compared to developing a proprietary data format. The HTTP
protocol, used according to the REST architectural style, was selected for this purpose.
REST architectural style is described in section 4.3.

When selecting the technology to implement the COMPASS API server itself, require-
ment REQ-34 shall be considered. This optional requirement was placed into the requirement
list in an effort to reduce the number of technologies used for implementation of the software
used on the COMPASS experiment. The aim of this endeavor is the simplification of software
maintenance, as it results in easier integration of individual programs. Given this constraint,
the selection is reduced primarily to C++ language with the possibility to utilize the Qt
framework, a combination that is used to implement most prominently the COMPASS DAQ
software [8], but also several other tools, described for example in [9], [10] or [11]. Other
choices consist of one of the languages used for implementation of various web applications
used on compass—PHP, Python and JavaScript. Such applications are described for ex-
ample in [12], or [13]. The C++ programming language, which is described in section 4.1,
was selected, especially due to performance reasons. Since the already mentioned Qt frame-
work, which is described in section 4.2, provides software libraries that directly cover several
of the requirements, this technology was selected to be used to implement the server as well.

Neither C++ and its standard library, nor the Qt framework provide an implementation
of an HTTP server. Qt contains a TCP server class in its Qt Network module, using it
to implement a custom HTTP server would however demand a development of the entire
HTTP layer of network communication. Several additional libraries that would supply this
functionality were therefore examined. The selected library, as well as the alternatives that
were considered, are described in section 4.4.

The resulting implementation is described in chapter 5.

26

Chapter 4

Used Technologies

This chapter describes principal technologies that were used to develop the COMPASS API.
The technologies described consist of programming languages, programming libraries, third-
party software, design paradigms and other tools used during development.

Each of the sections focuses on particular technology, and outlines its basic specification
and characteristics, as well as describes selected features of the technology. Additionally,
an analysis dealing with reasons for using the technology is included. Furthermore, the name
and version of used implementation of given technology is stated, where applicable.

4.1 C++

C++ is one of the most widespread programming languages in the world. At the time of writing
it is the third most used language according to the TIOBE programming language popu-
larity index [14]. The language is defined by an International Organization for Standard-
ization (ISO) standard ISO/IEC 14882 [15]. The last revision of the standard was released
in December 2017.

The language was originally conceived as an extension of the C programming language.
As such, it shares most of the C language’s syntax, and most C language constructs may be
used as a valid code in programs written in C++. C++ however offers many enhancements
of functionality over standard C.

C++ implementations that conform to the ISO standard use compiler to produce a machine
code from the C++ source code. However, non-standard implementations of the programming
language that use interpreter to process the source code at runtime exist.

4.1.1 Type System

C++ aims to limit the programmer in as few ways as possible, even at the expense of allowing
potentially dangerous operations. This approach is reflected in the languages type system
as well.

27

C++ may be considered to be primarily manifest-typed, where all variables are required
to have their types explicitly declared, but since the later standard versions, a support
for inferred typing is present as well.

Similarly, C++ may be considered statically typed, but a limited number of features for dy-
namic type checking is available.

Unlike the C language, C++ allows no implicit violation of its type system. However, explicit
violations requested by the programmer are possible.

As a result of these properties, C++ is usually characterized as a “strongly typed, weakly
checked language” [16].

4.1.2 Programming Paradigms Support

C++ is designed as a multi-paradigm language, and this principle remains as one of the basic
rules of the standardization committee when proposing any changes to the language stan-
dard. The intent behind this design principle is to not limit the programmer, and to allow
them to choose a programming paradigm depending on a specific task, and even combine
them. Programming techniques, that are most commonly associated with C++ are procedural
programming, object-oriented programming and generic programming [16].

Object-Oriented Programming

One of the major advantages of C++ over standard C, and also one of the underlying rea-
sons to implement an upgraded version of the C language, is the support for object-oriented
programming paradigm. The language provides all common features of object-oriented pro-
gramming, such as encapsulation, inheritance and polymorphism.

C++ object’s members always have an associated access specifier, which governs the access
rules for usage of the given member. Whenever a given member is used in the program,
the context is checked against these access rules, and if a violation of such rules is detected,
the program won’t compile. The three access levels in C++ are public, protected and private.
public access level grants access from any part of program. protected access level allows
access only from the members of the class, and from members of any derived class. private
is the most restrictive access level, and grants access only to members of the same class.

There are three basic types of objects available in C++. The first two types are the class

object and the struct object. These two differ only in the default value of the access spec-
ifier, where members of class object has default access specifier value private, and struct

on the other hand defaults to public. The main reason why struct is provided is backwards
compatibility with the C language. The third type of object that is available in C++ is
the union object. Union’s data members share the same memory, and union is therefore only
as large as its biggest data member. As a result, only the most recently set data member
of a union is to be considered valid.

Inheritance mechanism is available in C++ as well. Apart from regular inheritance, C++

also supports multiple inheritance, i.e. inheritance of multiple base classes at once. Solution

28

to the so-called diamond problem1 is also available through a facility called virtual inheri-
tance. Base classes may also be abstract, which means that some of the methods do not have
an implementation provided, and it is up to the inheriting class to supply the implementa-
tion. Abstract base classes may be utilized to create interfaces, i.e. classes where none of its
members provide an implementation.

Generic Programming

Generic programming may be characterized as programming style, where the code is written
for generalized input data types. These generalized inputs may be viewed as parameters
of the code, which are specified during distinct use case.

The support for the generic programming paradigm in C++ is implemented primarily through
the template construct. Templates are parametrized entities, which correspond to other, non-
templated C++ language constructs, for example functions or classes. However, by using
the templated version of such constructs, the programmer may define them with a signa-
ture that is dependent on the template’s arguments. Templates which have the arguments
provided to them are called template specializations. The actual code for each specialization
used in the program is then automatically generated by the compiler. This approach has
the main advantage of allowing to write effective and faster code with fewer lines, which
stems from the very fact that each specialization is generated at compile time. This however
also results in the biggest disadvantage. Since a similar machine code is generated for each
used template specialization, the resulting binary may increase in size considerably.

4.1.3 Libraries

The core functionality of C++ is extensible through additional libraries, which may be in-
cluded into any C++ project. Inclusion of libraries is handled by the C++ language’s prepro-
cessor. Any library must provide it’s header file so that it’s interface is known to the com-
piler (and the programmer), but it’s implementation itself may be distributed already com-
piled, in a form of a shared library.

The most prominent C++ library is the standard library, whose properties are defined as part
of the ISO/IEC 14882 standard. The standard describes not only the API of the library, but
also defines performance constraints that any standard-compliant implementation must up-
hold. The standard library consists of many functions and classes, that implement common
programming constructs and algorithms, or provide platform-independent abstraction of sys-
tem resources.

C++ contains implementation of the standard library of the C language in the C99 standard
in two versions—one legacy version, and another version where all parts of the library are
placed in the standard namespace [15].

Next, the standard library provides numerous utility constructs. These consist for example
of definition of string data type, regular expressions, data types like pair or tuple, smart

1Diamond problem is a situation, where a class inherits from two base classes, which both in turn inherit
from the same base class themselves, thus creating diamond-shaped class hierarchy

29

pointers and numerous utility functions.

Abstraction of system resources is as previously stated provided as well. Programmers may
utilize input and output streams, access to system clock, or concurrency library, which im-
plements substantial number of common parallel programming techniques.

A central part of the standard library is however the standard template library [17]. It pri-
marily holds definition of generic data containers for storing data collections. Several data
containers with differing internal structure and data organization are provided. Consequently,
each data container has various advantages and drawbacks, which primarily influence com-
putational performance. Additionally, the standard template library includes various other
constructs for accessing the data in the containers, and for processing the data with prede-
fined or user-defined algorithms.

Apart from the standard library, vast number of third-party libraries are available for C++.
These libraries focus on many different areas of programming, ranging from generic libraries,
through networking, numerical calculations and creation of graphical user interfaces to ma-
chine learning. An example of an established C++ library is the Boost library. This library
aims to complement the standard library and extend it in a compatible way, and many li-
braries which originally were part of boost collection were eventually standardized in C++11,
C++14 and C++17 standards.

4.1.4 Usage of the Technology in Master Thesis

The selection process of a programming language used for implementation of COMPASS
API was directed mainly by requirement REQ-34. This requirement is motivated by an effort
to minimize the number of technologies used during the implementation of software equip-
ment of the COMPASS experiment. As a result there were two options available for the pri-
mary language which would be used to develop the main part of the COMPASS API—PHP
and C++.

PHP is used on COMPASS as a primary language for implementation of server-side logic
of websites. It could be used to create a REST server, which would run on an Apache Web
server.

Since C++ in its standard-compliant form is a compiled programming language, it is available
on every COMPASS computer. C++ applications may implement network communication,
and the technology is therefore also suitable for implementation of REST server.

While PHP offers several advantages, the C++ language was selected. This was done primarily
because it offers potential performance benefits over the PHP language. These benefits stem
from the fact that PHP is an interpreted language, and C++ in its recent standards also
offers more powerful facilities for parallel programming.

Furthermore C++ language abilities may be easily enhanced by using the Qt framework,
which also meets the requirement REQ-34. Qt framework is described in section 4.2.

Finally the author of this master thesis is proficient with both C++ and Qt. While this is
a subjective reason, using familiar technologies increase the quality of the resulting code
and decreases the development time.

30

4.1.5 Used Implementation

COMPASS API is intended to run on an x86 64-bit Linux distribution. The target ABI
is therefore x86 64-bit generic Linux extensible and linkable format. During development,
the GCC compiler version 7.2.1 was used.

COMPASS experiment computers are at present usually running on Scientific Linux CERN 6,
which is equipped with GCC version 4.4.7. However, it is expected that by the time of the de-
ployment process of COMPASS API, COMPASS computers will be upgraded to CERN Cen-
tOS 7, as this upgrade is planned for CERN LS2. The CERN CentOS operating systems
comes with GCC 4.8.5, which still does not support all necessary C++ language features,
however, GCC 7.2.1 is available on CERN CentOS 7 through package devtoolset-7.

4.2 Qt

Qt is a cross-platform framework that is primarily oriented at the development of com-
puter applications. Qt is primarily aimed at development using C++ programming language,
and comes with numerous C++ libraries. However, Qt also provides additional tools to sup-
port application development. Especially tools focusing on development of graphical user in-
terfaces are noteworthy, and Qt is able to either automatically generate C++ GUIs from XML
files, or to display GUIs that are interpreted at runtime from sources written in proprietary
language called QML.

4.2.1 Build System

Code written in Qt is usually not compliant with standard C++, and sources of Qt projects re-
quire to be processed by several preprocessors. These tools are collected in a tool called qmake.
This tool deals with all non-C++ and non-standard C++ files, generates C++ code adhering
to C++ standard from these files where necessary, and generates a makefile for the make build
automation tool. Project processed in this manner may be subsequently compiled by any
supported C++ compiler. Most of the common C++ compilers in reasonably recent versions
are usable for compilation of Qt projects processed by qmake.

Recently, a new build system called Qbs (pronounced “Cubes”) was released by Qt ’s devel-
opment team. It is planned for Qbs to eventually replace qmake, whose entire concept has
several drawbacks. Unlike qmake, or qmake’s alternatives like CMake or meson, Qbs is not
merely a makefile generator, whose output is then processed by another program, but it
directly calls compilers and other necessary tools.

4.2.2 Modules

Qt framework is divided into multiple blocks called modules, each of which focuses on specific
area of programming. These modules may be loaded individually, and therefore only required
parts of the framework may be used during the build process.

31

Modules present in the basic, open-source version of Qt are divided into two categories.
The first category is called Qt Essentials, and consists of modules that are available on all
platforms supported by Qt. Second category is called Qt Add-Ons and contains more spe-
cialized modules, often intended for more distinctive use-cases or implementing platform-
specific functions. Additionally, commercial versions of Qt may provide further modules,
which for example focus on specific type of industry [18].

This section describes the modules that are used by COMPASS API. All of the described
modules belong to the Qt Essentials category.

Qt Core

Qt Core is the basic module of the framework, and all other modules depend on it to some
degree. It contains the implementation of the core mechanisms of the framework, as well
as many generic classes.

The cornerstone of Qt ’s functionality is the built-in meta-object system [18]. This apparatus
provides several language features currently not present in the C++ standard, namely more
advanced type introspection and reflection. This is achieved by using a preprocessor called
meta-object compiler (moc), which works together with several macros and classes built
into the framework.

Framework features that were made possible by the meta-object system are primarily rep-
resented by Qt ’s signals and slots facility. Signals and slots is a mechanism for event-based
communication between objects, where signals represent an event, and slots implement ac-
tion to be taken upon that event. The programmer may connect arbitrary number of slots
to any signal in the code, and whenever that particular signal is emitted, all of the registered
slots are executed. Many signals for various events are predefined in the built-in Qt classes,
and the programmers may define their own signals as well.

Owing to the meta-object system, Qt also presents the possibility to utilize the international-
ization and localization functionality, which enables to quickly adapt an application written
using Qt to different regional requirements and quickly swap language versions of the appli-
cation.

The meta-object system additionally provides advanced type introspection, which would be
otherwise unavailable by exclusively using C++ language features.

Moreover, many features not directly related to meta-object system are available in Qt Core
module. Classes for multi threading support, Container system similar to standard template
library or state machine framework using XML files to automatically generate C++ state
machines are provided. As part of this module, Qt also includes facilities for data abstraction
in a form of a model/view framework, which separates the data structure from the actual
presentation layer, thus allowing to easily represent data in different ways.

One of the features in Qt Core module, that should also be mentioned is the Qt plugins com-
ponent described in [19], which is crucial for implementation of some of the required features
of COMPASS API. Qt plugins allow to compile C++ dynamic library, that contains a class
that is then used to enhance the functionality of the main program during runtime. The

32

class must implement an interface, that is known to both the dynamic library (the plugin)
and the program loading the library. For description of how Qt plugins are used in COMPASS
API, see section 4.4.2.

Qt Network

Qt Network is module that offers provisions for network communication. Classes for low-
level communication and high-level communication are given at programmers disposal. Fur-
thermore, an API that enables control over available network interfaces is available.

Basic network communication is possible by utilizing either TCP protocol or UDP pro-
tocol. Qt Network implements classes representing TCP sockets and TCP servers for use
of the TCP protocol, and a class that represents UDP socket for utilizing UDP protocol.
Additionally, SSL sockets are provided for encrypted communication.

High-level network operations may be achieved by using provided API designed around a re-
quest/response principle. Through this API, applications may either synchronously or asyn-
chronously send network requests and process subsequent responses. Currently, HTTP, FTP
and local file URLs are supported.

Qt SQL

Qt SQL is a Qt module enabling communication and interaction with common SQL-based
database systems.

Members of this module may be divided into three abstraction layers—driver layer, low-level
API layer and high-level API layer.

The driver layer contains driver plugins for individual database systems. Drivers for com-
mon DBMS are already included with the framework. If required, the programmer may also
implement additional driver plugins. This mechanism uses the Qt plugins component im-
plemented in the Qt Core module, which is also used during implementation of COMPASS
API. It requires the programmer developing new driver for Qt SQL module to implement
certain interface at compile the resulting class as a dynamic library.

The low-level API layer provides access to the database. The programmer may open database
connections, execute SQL queries or perform other database tasks supported by the driver.

The high-level API uses the model/view facilities from the Qt Core module, and implements
data abstraction layer above the database. By using the classes from the high-level API, it
is possible to read and manipulate the data in the database without the need to execute
individual SQL queries.

Qt Test

Qt Test is a unit test framework integrated into the Qt environment. It aims to allow pro-
grammers to quickly write unit tests for their classes written using Qt framework, and also

33

to write benchmarks for their code.

Apart from common facilities aimed at unit testing of developed C++ classes, Qt Test also
provides advanced tools for testing of specific Qt features. Mechanisms for GUI testing are
available, and allow to simulate GUI events normally performed by the user, thus automating
testing of user interfaces. In addition, it is possible to use signal introspection to monitor
emitting of Qt framework’s signals.

4.2.3 Supported Integrated Development Environments

Qt framework consists not only of a C++ library, but also from a collection of various tools
aiming to support development process, which must be executed at specific time. As a result,
using this technology may become overly complicated. Development process may however be
simplified by using an integrated development environment, which handles the underlying
tools and provides additional utilities to simplify the process of creating computer programs
that use Qt.

Qt framework comes with the Qt Creator Integrated Development Environment. This IDE
was developed by the same organization which is also responsible for the development
of the framework, and therefore it seamlessly incorporates itself with other parts of the frame-
work. It is also immediately updated to use any new components of the Qt framework when
necessary.

Because it was intended for development of Qt applications, the IDE primarily offers support
for C++ and QML languages. In addition it provides editor for WYSIWYG creation of graph-
ical user interfaces, either based on QML or on Qt Widgets, and for creation of scxml-based
state machines.

Moreover, the ability to integrate with numerous external tools is provided. Examples of such
tools may be various version control systems, such as Git or SVN, static code analyzers, tools
for automatic code formatting, but also numerous other tools.

In addition to Qt Creator, Qt Project organization also offers a plugin for Microsoft Vi-
sual Studio IDE. Furthermore, several build systems offer the possibility to build Qt-based
projects without official support from the Qt Project, such as the Meson build system.

4.2.4 Usage of the Technology in Master Thesis

Since the C++ programming language was selected for implementation of COMPASS API,
as is described in section 4.1.4, it became possible to utilize some of the libraries and frame-
works available for this programming language.

To abide by requirement REQ-34, Qt framework was one of the candidates. This C++ frame-
work is already employed by COMPASS DAQ, and number of other computer programs
on COMPASS as well. Qt framework is viewed primarily as a tool for creating applications
with GUI, but it has equally evolved facilities for creating modern, event-driven command
line applications.

34

Qt also implements several mechanism that directly deal with problems outlined by require-
ments stated in section 3.3.1 and section 3.3.2.

Requirement REQ-22 may be easily fulfilled through the Qt plugins component and its
QPluginLoader class, which are described in section 4.2.2. This class allows to load shared
libraries during runtime, and is thus well suited for the task drafted by requirement REQ-22.

Qt also comes with the Qt SQL module, which provides an API to access SQL-based
database servers, including MySQL, and therefore covers the problematic implied by re-
quirement REQ-06.

4.2.5 Used Implementation

COMPASS API was developed using Qt version 5.6.2. COMPASS API requires Qt Core,
Qt Network and Qt SQL modules, and for testing purposes, the Qt Test module was also
utilized.

Similarly to the situation described in section 4.1.5, COMPASS computers usually have Qt
version 5.5.1 installed on them. However, with an OS upgrade planned for LS2, the required
version of Qt or newer is expected to be available in the targeted environment.

The project was managed using the qmake build system, and the build process is defined
in a qmake’s .pro file as a result.

The development of the source code was conducted in the Qt Creator IDE, which was
in version 4.1.0.

4.2.6 License Conditions

The Qt library is available under several different licenses, from which is the user required to
choose. Since the available license choices contain the GPL and LGPL licenses among others,
for academic use and other use cases, where the created software is not distributed to third
parties, the Qt libraries are provided free of charge or any other obligations.

4.3 REST

Representational state transfer, abbreviated as REST, is an architectural style for designing
software systems. The architectural style was conceived for designing web based applications,
or, in more generic terms, distributed hypermedia systems [20].

Application programming interfaces based on the REST principle are usually closely tied
to the HTTP protocol. However, there is no limitation that would hinder the possibility
of implementing a RESTful API using different transfer protocol. Nevertheless, the design
of HTTP protocol itself follows the principles of REST 2, and as such is an obvious candidate

2The main reason for these shared design characteristics is the fact that the author of the REST archi-
tectural principle, Roy Fielding, is also one of the principal authors of the HTTP specification.

35

for implementing a RESTful API.

4.3.1 Constraints of RESTful API

REST itself may be defined by a set of constraints, which any REST compliant API should
respect in its design. These design constraints shall be perceived as a gradually evolving
system, where later constraints usually rely on already defined constraints [20]. This way
the architectural style is gradually built from the ground up.

Client-Server Architecture

Splitting a software system into multiple layers offers several advantages. Individual domains
of the applications functionality may be effectively separated, which in general simplifies
software’s maintainability and scalability, as any modification will be isolated to a single
software layer (provided the layers were well-designed in the first place).

The client-server based architecture is separated into two basic layers, where the client sends
requests to the server side when needed, and is in turn served with responses containing
the result of the requested operation. The server on the other hand contains the backend part
of the application which handles the manipulation of any data sources, and the processing
logic. The communication is directed by the client, even though most of the programming
logic unusually resides within the server’s domain.

In a context of RESTful API-based applications, or in more general terms network-based
applications, such separation allows to improve and modify the data loading logic, which is
contained within the server part of a system, independently of the user applications that
act as the clients. On the other hand, applications may take advantage of the same backend
logic and concentrate on the presentation layer.

Statelessness

This constrain implicates the fact, that the server cannot store any information related to a
particular client (a state), especially any recordings of previous interactions. In other words,
every request from a client contains all required information to perform the given operation,
and always yields the same result, provided that conditions external to the server, such
as data available to the system, remain identical.

Caching

Caching constraint in the REST design may significantly improve the performance and lower
the amount of network traffic in systems employing REST architecture. This effect is achieved
by storing the responses for requests and then reusing them when the same request is sent
again instead of conducting its processing once more.

36

Caching may be done at the servers end, in which case all requests may use the cached
response. This method results in lowered amount of requests that need to be processed
by the actual server’s logic, and therefore less computer resources that need to be allocated
at servers disposal.

Different method is to maintain a cache at the client’s side of application. When using
this strategy, only one particular client may benefit from the cached data. On the other
hand, the request does not have to be transmitted by the selected communications protocol
to the server, which lowers the amount of used bandwidth in the network.

The trade-off is that the client may not be served with the most up-to-date data. Thus it may
not always be viable to implement caching for every request in a RESTful system. The general
rule is that every response should be either implicitly or explicitly tagged with an information,
whether it is allowed to use caching in the particular case [20].

Uniform Interface

Uniformity of interface may be considered as the most distinctive architectural constraint
of REST, when compared to other network-oriented architectural styles [20].

The constraint implies, that services’ interfaces need to follow a generalized principle when
defining their access points. Interfaces following a generalized rules of design may be ineffi-
cient to certain degree, because interface designed to suit a specific use case will be thinner,
and less obstructed by features which are unnecessary for given situation. Generalized inter-
faces however result in more user-friendly interfaces, since every service is accessed in similar
manner.

Uniform interface constraint itself follows four sub-constraints [20], which are explained bel-
low:

1. Identification of resources: A resource is a crucial element of REST architectural
principle. It represents one piece of information, that is managed by the server side
of RESTful API, and is available to clients connecting to that server.

Resource itself is however a function that relates to a set of data, not the data itself. The
function’s input variable is time, and based on the time parameter, resource returns
the most recent data [20].

Any resource must be posses a unique identifier within the system, so that other
components in the system may access it.

2. Manipulation of Resources Through Representations: The concept of resources
in REST principle also serves to decouple the representation of the data returned
by the resource from its actual representation that is used to store the set of data tied
to a resource. Resource may map to a completely different format during the processing
of a request made to it, which in turn allows to completely change the internal storage
format without affecting the clients that depend on the data.

Additionally, when any part of the system has a representation of a particular re-
source at its disposal, it must posses necessary amount of information to manipulate
the resource. In other words, it must be able to interface with the server handling

37

the resource and trigger a modifying operation on that resource (provided such modifi-
cation is allowed by access rules). This may equal for example to an id of a row in SQL
table.

3. Self-descriptive Messages: Every resource representation consists of actual data,
and accompanying meta-data. The meta-data should most prominently contain infor-
mation on how to interpret the data. The constraint of “Self-descriptive Messages”
may be reinterpreted as a statement saying that all resource representations, includ-
ing any interpretation of it, must be self-contained, and shall not require additional
information. To adhere to this principle, a system component that possesses a resource
representation must know how to process it. This information shall thus always be
included in the provided meta-data.

4. Hypermedia as the engine of application state: Hypermedia as the engine of ap-
plication state, often abbreviated as HATEOAS, is a constraint stating that client
applications that enter a RESTful system require only the knowledge of the identifier
of the resource required for entry into the system. All other resource identifiers required
to communicate with the server further will be included in one of previously obtained
resource representations.

Therefore, if a client information obtains a resource representation, and that resource
representation requires other resource representations to work correctly, the informa-
tion on how to access these additional resources must be contained in the first resource
representation.

Layered System

In REST server implementation, components which provide individual services may be sep-
arated into layers. The key property that must be however preserved is the concealment
of this fact to connected clients. To any client application communicating with the server,
the method to access arbitrary service must remain the same.

Layered server systems offer several advantages. Additional layer may implement various
security measures, such as authentication of users accessing the server, or by acting as a proxy
server that hides the actual API server from other parts of a network. Another possible
role of extra layers is to perform load balancing between several physical servers. Groups
of logically bound services, for example legacy components, may also be moved to a separate
layer, in order to prevent unnecessary influence on implementation of current components.

However, systems with several layers usually have higher processing times due to added
latencies and more logic needed to be executed in individual layers before routing the request
to the correct processing unit. Nevertheless, this effect may be mitigated by caching [20].

Code-on-Demand

RESTful API servers may also serve the clients with actual code which may then be executed
on the client’s side of a system. This may lower the implementation requirements on client

38

applications, as parts of the required code may be pre-implemented and then delivered
by the server for immediate execution.

This constraint is labeled as optional in the design of REST architectural style [20]. The main
reason for this optionality is that otherwise, all client applications would be obliged to be
able to execute the delivered logic, for example by a common interpreter, thus placing certain
technology requirements on all clients. Since the constraint is optional, only certain parts
of the entire system may employ this mechanism.

4.3.2 Usage of the Technology in Master Thesis

COMPASS API aims to provide a centralized software system that may be used by other
applications to access and modify remote resources. This shall be done in a manner agnostic
to the technology used to implement the client application that accesses the resources.

Given these requirements, REST design principle offers simple and proven, yet efficient solu-
tion to the problematics of how to design an interface usable in such way. REST is indepen-
dent of any programming language, and only requires a common communication protocol,
which enables to use applications developed using different technologies with the same API.

4.3.3 Used Implementation

As described at the beginning of section 4.3, REST is a software system design principle,
and is not tied to any specific technology. However, majority of APIs designed according
to REST principles use very similar model, where the HTTP protocol is used as the transport
protocol, and URI used for identification of specific resource

In this implementation, The resource that is being accessed is identified by an “endpoint”,
which is a synonymous term for the path specification in the URI used to access the resource.
Additionally, URI ’s query may be used to filter the data returned by the resource.

The type of resource manipulation is determined by the HTTP protocol method that was
used for the request. The mapping of HTTP methods to specific operations is detailed
in table table 4.1.

HTTP method mapped operation

POST create data
GET read data
PUT update data
DELETE delete data

Table 4.1: Mapping of HTTP methods to REST -compliant resource manipulations

The REST server developed as part of the COMPASS API follows this de facto standard,
and uses the described HTTP/URI combination for resource management.

39

4.4 QHTTPEngine

The QHTTPEngine library provides necessary provisions for running an HTTP server in C++

applications using Qt.

The library itself was developed using the Qt framework. It is not supplied by the Qt Project,
the governing body behind Qt ’s development, but rather by a third party. It is however based
on the Qt Network module, and fully integrates with official library facilities.

The library is provided as an RPM package in update repositories of the CERN CentOS 7
operating system. However, only an outdated version is provided through this distribution
channel. It is nevertheless possible to download the sources from the official GitHub repos-
itory and build the binary locally. The library sources are provided as a CMake project,
which may be opened and built in the Qt Creator IDE, which is described in section 4.2.3.

4.4.1 Library Structure

The library is mainly built by deriving from classes contained in Qt Network module, which
is described in section 4.2.2, and follows the same structure as the Qt Network components.
The central classes of the library are therefore the QHttpEngine::Server class, which is derived
from QTcpServer, and QHttpEngine::Socket class, which is derived from QIODevice and owns
an instance of QTcpSocket. However, both provide additional functions related to the HTTP
protocol when compared to standard TCP communication facilities provided by the Qt
libraries.

The QHttpEngine::Server class contains methods for SSL configuration setup, and most im-
portantly methods for linking a root handler. Handlers in QHTTPEngine are classes that are
used to implement the basic logic of HTTP request handling. Several preprogrammed han-
dler classes are provided out of the box, all of which are derived from QHttpEngine::Handler

class. Additional handlers may be provided by the user of the library by implementing a new
class that is derived from QHttpEngine::Handler.

QHttpEngine::Socket on the other hand may be viewed as an instance of specific connection
established between the server and a client. Its enhancements over standard QTcpSocket class
consist of methods for request parsing, such as parsing of header information, query string
parsing or parsing of message contents which are in the JSON format, but also provides
methods for constructing the responses sent back to the client application.

4.4.2 Usage of the Technology in Master Thesis

One of the key parts of the entire COMPASS API system is the REST server, as discussed
in section 4.3, which will be used to process the requests for data manipulation.

Several possibilities of how to implement the required functionality were considered:

• Custom implementation: Qt framework provides an implementation of TCP server
in the Qt Network module. It is therefore possible to build custom implementation
of HTTP server on top of the QTcpServer class. However, this would require additional

40

work, since detailed study of requirements placed on such server would have to be
conducted, and using existing solution has the additional benefit of using technology
that has already been proven at least to some degree.

• GNU libmicrohttpd: libmicrohttpd is a pure C library provided in the GNU collec-
tion. As such, it has a trustworthy guarantee of quality. However, since it is a pure
C library, integration into any object-oriented C++ application may be less than ideal
from coding style point of view [21].

• libhttpserver: The shortcoming of libmicrohttpd library being a pure C library could
be circumvented by using a library wrapper libhttpserver. This software acts as a C++

programming interface for the libmicrohttpd library. However, ideal solution would
also provide the possibility to integrate with the application by means that are stan-
dard in the Qt framework, namely by connecting with Qt ’s signal/slot facilities. lib-
httpserver is however a standard compliant C++ library, and such requirement would
result in the need to write additional Qt wrapper layer [22].

• libqmhd: libqmhd is an alternative wrapper for libmicrohttpd library, which provides
an interface that uses Qt framework’s facilities. However, the library has not been
developed for several years, and any bugs or lack of functionality is therefore unlikely
to be fixed by its authors [23].

• QttpServer: QttpServer is a third-party library for the Qt framework. It specifi-
cally targets the development of C++-based REST API servers. It promises very fast
request processing, which would also perfectly suit the requirements placed on COM-
PASS API. Unfortunately, it lacks support for SSL certificates integration and user
authentication [24].

• QHTTPEngine: QHTTPEngine library is described in detail in section 4.4.1.

After weighing respective advantages and disadvantages of the options listed in this sec-
tion, the QHTTPEngine library was selected. It allows for the most seamless integration
into the COMPASS API application, and offers all required features.

4.4.3 Used Implementation

COMPASS API uses the QHTTPEngine library in version 1.0.1. However, the library is
provided along with the rest of the sources of the COMPASS API, and its setup for local use
is integrated into the build process of COMPASS API. For testing purposes, it is therefore
not required to have the library installed on local computer.

4.4.4 License Conditions

QHTTPEngine library is available on GitHub on the following URL: https://github.com/
nitroshare/qhttpengine. The software is distributed under MIT license [25], which permits
to use the library free of charge or any other obligations [26].

41

https://github.com/nitroshare/qhttpengine
https://github.com/nitroshare/qhttpengine

4.5 JSON

JSON, or JavaScript Object Notation, is a text format for storing digitalized data. It was
originally developed from JavaScript programming language, but it is not directly dependent
on it, and is presently used for data exchange in applications which use different programming
languages.

One of JSON ’s main advantages is the fact that it is human-readable, but at the same time
it may be easily parsed by computer programs.

JSON format is defined in two contesting standards, which are ECMA-404 [27] and RFC
8259 [28].

4.5.1 Structure of the Language

JSON is primarily composed of two types of structures [29]. The first is the object structure,
which is an unordered container for key-value pairs. The structure of object is depicted
in figure 4.1.

{ : }valuestring

object

,

Figure 4.1: Structure of JSON object [29]

The second is the array structure, which acts as an ordered collection of values. The structure
of array is illustrated in figure 4.2.

[]value

array

,

Figure 4.2: Structure of JSON array [29]

In the context of JSON language, value may be one of several entities. It may be either
a string, a number, another object or array, or one of three possible constants, which are
true, false and null [29]. Visual description of value is included in figure 4.3.

A string in JSON is a sequence of zero or more characters which use the Unicode encoding,
and are encompassed in double quotes. Special characters are escaped with backslash [29].

42

array

object

value

number

false

null

string

true

Figure 4.3: Structure of JSON value [29]

JSON treats all numbers as equal and the standard does not differentiate between integer
numbers and floating point numbers. It supports the scientific notation, but does not allow
for octal and hexadecimal representations and non-numbers such as NaN or Inf [29].

4.5.2 Usage of the Technology in Master Thesis

In the COMPASS API, JSON is the recommended format for data interchange between
the REST server and its clients.

While the format of responses is entirely dependent on the choice made by developers
of the program modules, which are described in requirement REQ-22, it is recommended
to use the JSON format for it’s properties and to maintain a unified interface. Addition-
ally, COMPASS API REST server simplifies reading of JSON documents from the network
communication socket, as well as subsequently writing them into it. This reduces the effort
required to use this format.

43

Chapter 5

Implementation

This chapter describes the implementation of the COMPASS API. The system is composed
of a total of four components, where two of these components are the main concern of this
master thesis.

First, the entire system is focused on as a whole in section 5.1, and subsequently the indi-
vidual components are described separately in more detail in sections 5.2 to 5.5.

The two components, which are of crucial importance to this thesis, are described in sec-
tions 5.2 and 5.3. For these two components, their structure is described both verbally
and by using UML class diagrams. Additionally, tasks conducted by these component, which
are of key importance for its correct operation, or are otherwise noteworthy, are focused on,
and the individual steps of the operation are pictured in UML activity diagrams.

5.1 COMPASS API

COMPASS API is designed according to the REST architectural style that is described
in section 4.3. Therefore, the system must be composed of at least two basic components—
a server, to which multiple client applications are connected.

Additionally, other components that are specific to COMPASS API must be considered.
Requirements REQ-22 and REQ-23 state that definitions and processing logic implementa-
tion for each request must be implemented in independent program modules, which shall be
loaded at runtime. The Qt plugins mechanism, which is described in section 4.2.2, was used
to implement this feature. Qt plugins component requires an interface to be defined, which
is subsequently available to both the REST server and each of the plugins. This interface is
as a result an additional component. Moreover, plugin is in the system’s design considered
as an additional component as well.

COMPASS API therefore consists of four main components, as was previously stated. These
are the REST server, plugin interfaces, plugin components and the client applications.

The structure of the system is depicted in a component model represented by UML class
diagram in figure 5.1. The class diagram shows the four main components of the COMPASS

45

API system and the relations between these components.

plugin_interfaces

+ DatabaseAccessPlugin
+ DatabaseHandlerInterface
+ LogOptions
+ PluginInterface
+ RequestPluginInterface
+ Socket

plugin

client

REST server

+ AbstractPluginManager
+ CommandLineParser
+ Core
+ DatabaseConnectionData
+ DatabaseConnectionsManager
+ Log
+ MetaTypeManager
+ RequestParser
+ RequestPluginManager
+ RequestPluginWrapper
+ RestServer
+ Settings

1

1

1

«abstraction»

1 0..*

«use»1

1

«import»

0..*

«flow»

Figure 5.1: UML component diagram of COMPASS API

REST server imports any number of plugins. Since these plugins must implement certain,
predefined interface, which is represented by component plugin interfaces, the REST server
depends on this component. The REST server also acts as an intermediary in communication
between client applications, and individual plugin component.

Component plugin interfaces is an abstraction of each plugin, that is supposed to be loaded
by the REST server. The REST server itself, as was already stated, depends on plugin
interfaces for this exact purpose.

Every plugin component must implement one or more classes belonging to the plugin inter-
faces component that acts as plugin abstraction as a result. Plugins are primarily responsible
for processing requests made by client components and constructing the responses for such
requests. There is therefore a bidirectional information flow between these two components.
The plugins themselves are managed by REST server, which also manages the communica-
tion between them and clients.

Any client component communicates with one or more plugin components to obtain infor-
mation. This dataflow itself is directed by the REST server.

The subject of this master thesis is the implementation of the REST server and plugin
interfaces. This step will allow to implement plugin and client components in the future
for specific purposes and thus brings the COMPASS API to fully functional state. However,
implementation of client applications and any plugins that they require for correct operation
are beyond the scope of the thesis, as the possibility to easily expand functionality of other
software by using the COMPASS API should already be considered as a large benefit that

46

stems from the conducted work. Nevertheless, for demonstrative purposes a modified version
of an application which is currently in use on the COMPASS experiment is provided along
with necessary plugins, which uses the COMPASS API instead of direct database access
to work with data sources. See appendix E for installation instructions for this application.

5.2 Plugin Interfaces

plugin interfaces component serves as a common interface between individual plugins loaded
by the REST server, and REST server itself. Since these components are designed to be built
independently, common interface for correct communication is required. This mechanism is
implemented using Qt plugins component, which is described in section 4.2.2.

The structure of the component is described in section 5.2.1. Individual classes and header
files that compose this component are then described in sections 5.2.2 to 5.2.8.

5.2.1 Component’s Structure

The central class of this component is the PluginInterface class, which serves as base class
for other provided plugin interfaces, and defines functionality that is common to all plugins.
Classes that fulfill the role of interfaces for plugins consist of class DatabaseHandlerInterface
for database plugins, and class RequestPluginInterface for request plugins. Additionally,
DatabaseAccessPlugin class is intended to be inherited by request plugins that require to ac-
cess a database. However, this class does not inherit from PluginInterface.

Furthermore, this component contains LogOptions and Socket classes, which mediate transfer
of data between plugins and REST server, and header file section 5.2.6, which provides
functions for working with Qt ’s Meta-Object system.

The classes that form this component are pictured in UML class diagram in figure 5.2. They
are also described in sections 5.2.2 to 5.2.8.

5.2.2 DatabaseAccessPlugin

DatabaseAccessPlugin is an abstract class, which is supposed to be inherited by request
plugins that require an access to a MySQL database. Such plugins shall use multiple inheri-
tance and inherit two classes. The RequestPluginInterface class must be inherited to allow
the REST server to identify the dynamic library as a request plugin. In addition, the plugin
shall inherit this class to gain the database access functionality.

The database that is meant to be accessed is identified by QString identifier, which shall
in the case of intended manner of usage have the same value as the QString returned
by the PluginInterface::identifier, method of the DatabaseHandlerInterface-derived plugin
that holds the connection information for requested database.

SQL queries are executed by using DatabaseAccessPlugin::databaseQuery method, which
accepts the above mentioned identifier as an argument, and returns an object of type

47

DatabaseAccessPlugin

- m_databaseQueryCallable: std::function<QSharedPointer<QSqlQuery>(const QString& databaseIdentifier)>

+ ~DatabaseAccessPlugin()
databaseQuery(QString&): QSharedPointer<QSqlQuery>
+ setDatabaseQueryCallable(std::function<QSharedPointer<QSqlQuery>(const QString& databaseIdentifier)>&): void
+ setDatabaseQueryCallable(std::function<QSharedPointer<QSqlQuery>(const QString& databaseIdentifier)>&&): void

DatabaseHandlerInterface

+ ~DatabaseHandlerInterface()
+ getDatabaseName(): QString {query}
+ getDriverName(): QString {query}
+ getHostName(): QString {query}
+ getPassword(): QString {query}
+ getUserName(): QString {query}

LogOptions

«friend»
+ operator<<(QTextStream&, LogOptions::Level): QTextStream&

«Enumeration»
LogOptions::Level

UNDEFINED
CRITICAL
ERROR
WARNING
INFO
DEBUG
TRACE

QObject
PluginInterface

+ identifier(): QString {query}
+ logRequest(LogOptions::Level, QString, QString): void
+ ~PluginInterface()

RequestPluginInterface

+ endpoint(): QString {query}
+ processDelete(QSharedPointer<Socket>): void
+ processGet(QSharedPointer<Socket>): void
+ processPost(QSharedPointer<Socket>): void
+ processPut(QSharedPointer<Socket>): void
+ ~RequestPluginInterface()

Socket

- m_responded: bool
- m_socket: QHttpEngine::Socket*

+ getJsonDocument(): QPair<bool, QJsonDocument>
+ getQueryString(): QHttpEngine::Socket::QueryStringMap
+ getRawData(): QPair<bool, QByteArray>
- hasResponded(): bool
+ sendJson(int, QJsonDocument&): void
+ sendRawResponse(int, QHttpEngine::Socket::HeaderMap&, QByteArray&): void
+ sendSimpleResponse(int, QByteArray&): void
- setResponded(bool): void
+ Socket(QHttpEngine::Socket*)
+ ~Socket()
+ writeHeaders(QHttpEngine::Socket::HeaderMap&): void

«use»

«use»

Figure 5.2: UML class diagram of plugin interfaces

QSharedPoiter<QSqlQuery>. The method does so by calling a stored callable object, which
must be first registered by the application that loads the plugin which implements this
interface, otherwise an exception is thrown when the derived class calls this method.

5.2.3 DatabaseHandlerInterface

DatabaseHandlerInterface abstract class is derived from PluginInterface class, and is itself
intended to be derived by plugin classes which contain database connection details.

The plugin thus contains methods that return the name of the required database driver,
hostname of the computer which contains the database server and port number which is sup-
posed to be used, username and password for logging into the database server, and the name
of the database to be used.

DatabaseHandlerInterface however does not contain the logic to open and keep the actual

48

connection to a database. The database opening logic instead resides in REST server in class
DatabaseConnectionsManager, which is described in section 5.3.6.

5.2.4 LogOptions

LogOptions is a helper class for communication between the PluginInterface abstract class
and a logging system which is implemented in the application that loads the plugin that is
derived from PluginInterface. This communication is described in section 5.2.5.

The class encapsulates nested enum class type called Level, whose enumerators represent
the severity of a logging message. This parameter is sent by the PluginInterface::logRequest
signal in order to indicate the importance of the message. For description of how log message
severity is processed, see section 5.3.7.

Additionally, the class also includes an overload of the stream operator for class QTextStream,
which prints the name of an enumerator as text. This stream operator overload makes use
of header file qtmetasystemfunctions, which in turn uses compile time type introspection
of enumeration types, and allows to obtain the name of the enumerator.

However, technical limitations of this feature in the used Qt version are the reason why
the Level enum class had to be placed in the LogOptions class. This class was artificially
introduced only for this purposes, and would not otherwise be required.

5.2.5 PluginInterface

Class PluginInterface is an abstract class that is designed to act as a base class for inter-
face classes for plugins of single type. Such types of plugins are described in sections 5.2.3
and 5.2.7.

This class defines pure virtual method PluginInterface::identifier, which shall return
a unique identifier of the plugin that is indirectly derived from this class.

Additionally, this class defines Qt signal PluginInterface::logRequest. This signal may be
used to request an output to the logging system of the application, which loads the plugin
that implements this interface. Since the plugin is in its essence a dynamic library and has no
direct access to other components of the parent application, this is the most straightforward
method of using the applications logging system. The application may connect this signal
to a slot, which mediates the corresponding procedure that performs the log message output,
and thus allow the plugin to call this slot.

5.2.6 qtmetasystemfunctions

qtmetasystemfunctions is not a class, but a header file that contains several helper functions
which simplify work with Qt ’s Meta-Object system, specifically with it’s features for enumer-
ation types type introspection. It is thus not depicted in the UML class diagram in figure 5.2,
but is listed here for completeness.

49

The header file contains two functions. Function qEnum2CString is a template function that re-
turns a string literal representation of an enumerator passed to it as an argument. The second
function, qString2QEnum, works in the opposite direction, and transforms a QString represen-
tation of an enumerator to the actual enumerator.

Note that for both functions, the enumeration type must be registered in the Qt ’s Meta-
Object system by using the macro Q_ENUM, otherwise both these functions will fail at compile
time.

5.2.7 RequestPluginInterface

RequestPluginInterface is an abstract class derived from the PluginInterface. This class
serves as the base class for all plugins that define additional request types for the REST
server. This design aspect of the system is described in section 5.1.

It adds additional pure virtual methods in addition to those declared in PluginInterface.
The implementations of these methods in derived classes provide the processing of individ-
ual types of requests. There are four types of these requests, in accordance with the CRUD
principle, and therefore four methods must be implemented in derived classes. These meth-
ods consist of RequestPluginInterface::processPost for processing of requests for creat-
ing data, RequestPluginInterface::processGet for processing of requests for reading data,
RequestPluginInterface::processPut for processing of requests for updating data, and fi-
nally RequestPluginInterface::processDelete for processing of requests for deleting data.

Additionally, the plugins which are derived from this class must implement pure virtual
method RequestPluginInterface::endpoint which shall return the path part of the URI that
must be used when accessing the service.

5.2.8 Socket

The purpose of the Socket class is to serve as a wrapper around the QHttpEngine::Socket

class from the QHTTPEngine library, which is described in section 4.4. Since this class rep-
resents an active connection to a client, it is crucial for correct operation of COMPASS API.
The Socket class from plugin interfaces component is passed to request processing methods
which are implemented in plugins that implement the RequestPluginInterface interface.

The wrapper was developed with two goals in mind. The first is to restrict access to some
of the methods from QHttpEngine::Socket, so as to protect the REST server from incorrectly
implemented plugins. Additionally the wrapper is tasked with catching any exceptions that
may be thrown by the plugin’s methods, thus further securing the REST server from mis-
behaving plugins.

The main reason for implementation of a wrapper class is however to provide additional
methods, which allow to read and write data in certain format to the socket.

Methods that facilitate data reading from the socket consist of methods for obtaining the URI
query string of the request, and for reading any available message body content stored either
as raw data, or in the JSON format, which is described in section 4.5. This is usually relevant

50

to POST and PUT requests processing, since these request types must contain the data that
is supposed to be written or updated. These methods are the following:

• Socket::queryString parses the request’s query string, which is then provided as an in-
stance of QHttpEngine::QueryStringMap, which contains key-value pairs that contain
the data from the query string parameters.

• Socket::readRawData serves to read the message body as raw data. If any are available,
they will returned as an instance of QByteArray.

• Socket::readJson serves to read a JSON document sent by the client, if one is available.
The document is returned in the form of a QJsonDocument class.

The interfaces for construction of responses consists of multiple methods as well. Firstly, it
allows to send simple responses which contain only the response code. Secondly, it allows
to send a message containing data in the JSON format, which is described in section 4.5.
The corresponding method accepts an instance of QJsonDocument class, serializes it and writes
it to the TCP socket used for communication between the REST server and client. Finally,
it provides a generalized interface for writing entirely user-defined response with custom
headers and body content.

• Socket::sendSimpleResponse sends a response that consists of an HTTP status code
and optionally a short string describing the reason for the status.

• Socket::sendJson allows to send a JSON document to the client, which is passed
to the function in the form of a QJsonDocument class. Optionally, the user may also
select the status code of the HTTP response.

• Socket::sendRawResponse serves to send a custom response, with predefined headers
and message body.

5.3 REST Server

REST server is central component of COMPASS API, and its development is the main focus
of this thesis. It’s functionality may be divided into two tasks.

Firstly, REST server is responsible for management of all plugins, which are described in sec-
tion 5.4. The management consists of loading the plugins at runtime from shared libraries,
and from providing the plugins with access to necessary resources, which are then used
to conduct the specified tasks.

Secondly, this component acts as the middle man in communication between client compo-
nents and plugin components by relaying requests made by clients to plugins that imple-
ment the requested service. REST server therefore contains all programming logic that deals
with network communication, and thus separates the plugins from this concern and simplifies
their development.

The structure of the component is described in section 5.3.1. Individual classes that compose
this component are then described in sections 5.3.2 to 5.3.13.

51

5.3.1 Component’s Structure

The program follows common model of Qt applications, where the main function serves
to setup the QCoreApplication class, instantiates the central class that holds application-
specific logic and starts an event loop. The application is from that point driven entirely
by events, which trigger a predefined process. Such event in the case of this application is
accepting a new TCP connection from a client application, for which a response is then
composed.

The central class of the program, and the entry point into the structure of REST server
is the Core class. It holds instances of other classes that are required to provide necessary
functionality of the REST server, and performs other necessary setup tasks. Classes held
by Core class consist of CommandLineParser, RestServer, and RequestPluginManager.

CommandLineParser class uses Qt ’s QCommandLineParser class to process program’s command
line arguments. Class RestServer handles the TCP network communication with clients,
and acts as the abstraction layer for dealing with HTTP protocol. It’s main purpose is
to parse requests and relay them to other classes for processing, and subsequently to send
responses defined by these classes back to the client. As stated in requirements REQ-22
and REQ-23, processing of the requests is performed by plugins loaded by the REST server.
Responsibilities of RequestPluginManager consist of management of request plugins. This
class both loads the plugins from shared library files and holds the resulting instances. It
also contains an instance of DatabaseConnectionsManager class that manages REST server ’s
database connections.

The structure of COMPASS API REST server is depicted in UML class diagram presented
in figures 5.3 to 5.8. For presentation purposes, the class diagram in question was split
into several parts. Each of these parts deals with certain subtask performed by the REST
server, and contains a necessary subset of classes that are needed to describe it. As a re-
sult, classes may be present in more than one of the figures. However, every class is present
on at least one of the diagrams. Furthermore, if a class is only minorly significant in the con-
text of particular figure, it may be displayed without a description of its members. Full
specification of each class is nevertheless depicted on at least one of the figures. It should
also be noted that classes which have a blue background belong to the plugin interfaces
component, and their description is present in section 5.2.

In addition, the classes depicted in diagrams in figures 5.3 to 5.8 are further described
in sections 5.3.2 to 5.3.13.

5.3.2 AbstractPluginManager

AbstractPluginManager is an abstract template class, that is meant to be inherited by classes
that manage Qt plugins loaded from dynamic libraries. To simplify tasks associated with this
function, AbstractPluginManager provides generalized facilities that allow the derived classes
to load plugins without having to implement additional procedures.

The class has two template parameters. The first determines the type of the plugin that
will be managed by the subclass. AbstractPluginManager automatically checks during com-

52

CommandLineParser

- CLASS_NAME: char ([])
- m_parser: QCommandLineParser

+ CommandLineParser()

QObject
Core

- CLASS_NAME: char ([])
- m_commandLineParser: CommandLineParser
- m_pluginManager: RequestPluginManager
- m_restServer: RestServer

+ Core(QObject*)

Log
Class

QObject
RestServer

- CLASS_NAME: char ([])
- m_httpServer: QHttpEngine::Server
- m_registeredEndpoints: QHash<QString, QSharedPointer<RequestParser>>
- m_rootHandler: QHttpEngine::QObjectHandler

- onAcceptError(QAbstractSocket::SocketError): void {query}
+ registerPlugin(QSharedPointer<RequestPluginWrapper>): void
+ RestServer(QObject*)
+ startListening(): void

Settings
Class

MetaTypeManager

+ registerCustomMetaTypes(): void

Socket
Class

AbstractPluginManager
QObject

RequestPluginManager

- CLASS_NAME: char ([])
- m_databaseConnectionsManager: DatabaseConnectionsManager

getClassName(): QString {query}
+ getDirectorySettings(): QDir {query}
getPluginTypeName(): QString {query}
+ newPlugin(QSharedPointer<RequestPluginWrapper>): void
+ RequestPluginManager(QObject*)
+ ~RequestPluginManager()
- setupPlugin(QSharedPointer<RequestPluginWrapper>&): void

«use»

1

1

«use»

1

1 «use»

«use»

«use»

1 1

«use»

Figure 5.3: UML class diagram of REST server : core structure

53

PluginInterfaceType : class
PluginInterfaceWrapper : class = PluginInterfaceType

AbstractPluginManager

- m_pluginLoader: QPluginLoader
m_pluginTable: QHash<QString, QSharedPointer<PluginInterfaceWrapper>>

+ ~AbstractPluginManager()
getClassName(): QString {query}
- getDirectorySettings(): QDir {query}
getPluginTypeName(): QString {query}
+ loadPlugins(): void
+ loadPlugins(QDir&): void
- processPlugin(QObject*): void
- processPluginInterfaceTypePlugin(PluginInterfaceType*): void
- processQObjectPlugin(QObject*): void
- processUniquePlugin(PluginInterfaceType*): void
- processVersionedPlugin(PluginInterfaceType*): void
- setupPlugin(QSharedPointer<PluginInterfaceWrapper>&): void

QObject
RequestPluginManager

- CLASS_NAME: char ([])
- m_databaseConnectionsManager: DatabaseConnectionsManager

getClassName(): QString {query}
- getDirectorySettings(): QDir {query}
getPluginTypeName(): QString {query}
+ newPlugin(QSharedPointer<RequestPluginWrapper>): void
+ RequestPluginManager(QObject*)
+ ~RequestPluginManager()
- setupPlugin(QSharedPointer<RequestPluginWrapper>&): void

QObject
RequestPluginWrapper

- CLASS_NAME: char ([])
- m_plugin: QSharedPointer<RequestPluginInterface>

- callPluginMethod(std::function<void()>&, QString&): void {query}
+ data(): RequestPluginInterface* {query}
+ endpoint(): QString {query}
+ identifier(): QString {query}
+ processDelete(QSharedPointer<Socket>): void
+ processGet(QSharedPointer<Socket>): void
+ processPost(QSharedPointer<Socket>): void
+ processPut(QSharedPointer<Socket>): void
+ RequestPluginWrapper(RequestPluginInterface*, QObject*)
+ RequestPluginWrapper(QSharedPointer<RequestPluginInterface>&, QObject*)
+ setupDatabasePlugin(std::function<QSharedPointer<QSqlQuery>(const QString&)>&): void

RequestPluginInterface
Class

PluginInterface
Class

DatabaseHandlerInterface
Class

Socket
Class

DatabaseConnectionsManager
Class

0..*1

«use»

«use»

< PluginInterfaceType->RequestPluginInterface,
PluginInterfaceWrapper->RequestPluginWrapper >

1

1

«use»

< PluginInterfaceType->DatabaseHandlerInterface,
PluginInterfaceWrapper->DatabaseConnectionData >

0..*

1

«use»

«use»

1

1

«use»

Figure 5.4: UML class diagram of REST server : request plugins handling

54

PluginInterfaceType : class
PluginInterfaceWrapper : class = PluginInterfaceType

AbstractPluginManager

- m_pluginLoader: QPluginLoader
m_pluginTable: QHash<QString, QSharedPointer<PluginInterfaceWrapper>>

+ ~AbstractPluginManager()
getClassName(): QString {query}
- getDirectorySettings(): QDir {query}
getPluginTypeName(): QString {query}
+ loadPlugins(): void
+ loadPlugins(QDir&): void
- processPlugin(QObject*): void
- processPluginInterfaceTypePlugin(PluginInterfaceType*): void
- processQObjectPlugin(QObject*): void
- processUniquePlugin(PluginInterfaceType*): void
- processVersionedPlugin(PluginInterfaceType*): void
- setupPlugin(QSharedPointer<PluginInterfaceWrapper>&): void

DatabaseConnectionData

- m_connectInProgress: bool
- m_numberOfFailedConnectAttempts: quint64
- m_plugin: QSharedPointer<DatabaseHandlerInterface>

+ addTry(): void
+ attemptingConnection(bool): void
+ connectInProgress(): bool
+ DatabaseConnectionData(DatabaseHandlerInterface*)
+ getDatabaseName(): QString {query}
+ getDriverName(): QString {query}
+ getHostName(): QString {query}
+ getPassword(): QString {query}
+ getUserName(): QString {query}
+ identifier(): QString {query}
+ operator++(): DatabaseConnectionData&
+ operator++(int): DatabaseConnectionData
+ shouldTryAgain(): bool

QObject
DatabaseConnectionsManager

- CLASS_NAME: char ([])

- attemptToOpen(QString&): void
+ DatabaseConnectionsManager()
+ ~DatabaseConnectionsManager()
getClassName(): QString {query}
+ getDatabaseQueryObject(QString&): QSharedPointer<QSqlQuery>
- getDirectorySettings(): QDir {query}
getPluginTypeName(): QString {query}
- open(QString&): void
- setupPlugin(QSharedPointer<DatabaseConnectionData>&): void

Log
Class

RequestPluginManager
Class

Settings
Class

DatabaseHandlerInterface
Class

DatabaseAccessPlugin
Class

«use»< PluginInterfaceType->DatabaseHandlerInterface,
PluginInterfaceWrapper->DatabaseConnectionData >

«use»

1

1

< PluginInterfaceType->RequestPluginInterface,
PluginInterfaceWrapper->RequestPluginWrapper >

«use»

«use»

«flow»

«use»

«use»

«use»

«use»

1

1

0..*

1

«use»

Figure 5.5: UML class diagram of REST server : database plugins handling

55

Log
Class

QObject
RequestParser

- CLASS_NAME: char ([])

- connectSignals(RequestPluginWrapper* const): void
+ deleteRequest(QSharedPointer<Socket>): void
+ getRequest(QSharedPointer<Socket>): void
+ parseRequest(QHttpEngine::Socket*): void
+ postRequest(QSharedPointer<Socket>): void
+ putRequest(QSharedPointer<Socket>): void
+ RequestParser(RequestPluginWrapper* const, QObject*)
+ RequestParser(QSharedPointer<RequestPluginWrapper>&, QObject*)

RequestPluginManager
Class

QObject
RequestPluginWrapper

- CLASS_NAME: char ([])
- m_plugin: QSharedPointer<RequestPluginInterface>

- callPluginMethod(std::function<void()>&, QString&): void {query}
+ data(): RequestPluginInterface* {query}
+ endpoint(): QString {query}
+ identifier(): QString {query}
+ processDelete(QSharedPointer<Socket>): void
+ processGet(QSharedPointer<Socket>): void
+ processPost(QSharedPointer<Socket>): void
+ processPut(QSharedPointer<Socket>): void
+ RequestPluginWrapper(RequestPluginInterface*, QObject*)
+ RequestPluginWrapper(QSharedPointer<RequestPluginInterface>&, QObject*)
+ setupDatabasePlugin(std::function<QSharedPointer<QSqlQuery>(const QString&)>&): void

QObject
RestServer

- CLASS_NAME: char ([])
- m_httpServer: QHttpEngine::Server
- m_registeredEndpoints: QHash<QString, QSharedPointer<RequestParser>>
- m_rootHandler: QHttpEngine::QObjectHandler

- onAcceptError(QAbstractSocket::SocketError): void {query}
+ registerPlugin(QSharedPointer<RequestPluginWrapper>): void
+ RestServer(QObject*)
+ startListening(): void

Settings
Class

«use»

«use»

«use»

«use»

«use»

0..*

1

«use»

0..*

1

«flow»

«use»

«flow»

«use»

Figure 5.6: UML class diagram of REST server : REST server

56

Log
Class

«struct»
Log::Output

+ openMode: Log::OpenMode
+ outputType: Log::OutputType
+ path: QFileInfo

+ Output()
+ Output(Log::OutputType)

«Enumeration»
Log::OpenMode

UNDEFINED
APPEND
TRUNCATE

«Enumeration»
Log::OutputType

UNDEFINED
STDOUT
STDERR
FILE

Settings

- CLASS_NAME: char ([])

+ getDatabaseConnectionAttemptDelay(): quint64
+ getDatabaseConnectionMaxAttempts(): quint64
+ getDatabasePluginsDir(): QDir
+ getLogOutput(): Log::Output
+ getMaxLogLevel(): LogOptions::Level
+ getRestPluginsDir(): QDir
+ getRestServerListenAttemptDelay(): quint64
+ getRestServerPort(): quint16
- getSetting(QHash<QString, MetaData>&, std::function<SettingValueType(const QHash<QString, QVariant>&)>&): SettingValueType
+ init(): void
- processLogFileOutput(QString&, Log::OpenMode): Log::Output

Settings::MetaData

- m_defaultSetting: QVariant
- m_groupName: QString
- m_metaTypeId: int

+ construct(QString&, QVariant&): MetaData
+ getDefaultSetting(): QVariant {query}
+ getGroupName(): QString {query}
+ getMetaTypeId(): int {query}
+ MetaData()
+ MetaData(QString&, QVariant&, int)

«struct»
Settings::Default

+ databaseConnectionAttemptDelay: QVariant {readOnly}
+ databaseConnectionMaxAttempts: QVariant {readOnly}
+ databasePluginsDir: QVariant {readOnly}
+ logFileOpenMode: QVariant {readOnly}
+ logOutput: QVariant {readOnly}
+ maxLogLevel: QVariant {readOnly}
+ restPluginsDir: QVariant {readOnly}
+ restServerListenAttemptDelay: QVariant {readOnly}
+ restServerPort: QVariant {readOnly}

«struct»
Settings::GroupName

+ databaseConnectionAttemptDelay: char ([])
+ databaseConnectionMaxAttempts: char ([])
+ databasePluginsDir: char ([])
+ logFileOpenMode: char ([])
+ logOutput: char ([])
+ maxLogLevel: char ([])
+ restPluginsDir: char ([])
+ restServerListenAttemptDelay: char ([])
+ restServerPort: char ([])

«struct»
Settings::Name

+ databaseConnectionAttemptDelay: char ([])
+ databaseConnectionMaxAttempts: char ([])
+ databasePluginsDir: char ([])
+ logFileOpenMode: char ([])
+ logOutput: char ([])
+ maxLogLevel: char ([])
+ restPluginsDir: char ([])
+ restServerListenAttemptDelay: char ([])
+ restServerPort: char ([])

LogOptions::Level
Enumeration «Enumeration»

«use»«use»

«use»

«use»

«use»

«use»«use»

«use»

«use»

Figure 5.7: UML class diagram of REST server : settings handling

57

Log

- CLASS_NAME: char ([])
- m_buffer: QBuffer
- m_bufferStream: QTextStream
- m_initialized: bool
- m_maxLogLevel: LogOptions::Level
- m_messageData: Log::LogMessageMetaData
- m_outputFile: QFile
- m_outputStream: QTextStream
- m_preInitMessageBuffer: QQueue<Log::LogMessage>
- m_used: bool
- m_voidStream: QTextStream

- clear(): void
+ critical(QString&): QTextStream&
+ debug(QString&): QTextStream&
+ error(QString&): QTextStream&
- flushPreInitMessageBuffer(): void
+ info(QString&): QTextStream&
+ init(): bool
- isInitialized(): bool
- isMessageLogged(LogOptions::Level): bool
- isMessageLogged(): bool
+ Log()
+ ~Log()
+ log(QString&, LogOptions::Level): QTextStream&
- outputMessage(Log::LogMessage&): void
- setInitialized(bool): void
- setupMaxLogLevel(): void
- setupOutputStream(): void
- setupOutputStream(Log::Output&): bool
- setUsed(bool): void
+ trace(QString&): QTextStream&
+ warning(QString&): QTextStream&
- wasUsed(): bool {query}

«friend»
+ operator<<(QTextStream&, Log::OutputType): QTextStream&
+ operator<<(QTextStream&, Log::OpenMode): QTextStream&
+ operator<<(QTextStream&, Log::Output&): QTextStream&

«struct»
Log::LogMessage

+ messageText: QString
+ metaData: Log::LogMessageMetaData

«struct»
Log::LogMessageMetaData

+ className: QString
+ level: LogOptions::Level
+ time: QTime

«struct»
Log::Output

+ openMode: Log::OpenMode
+ outputType: Log::OutputType
+ path: QFileInfo

+ Output()
+ Output(Log::OutputType)

«Enumeration»
Log::OpenMode

UNDEFINED
APPEND
TRUNCATE

«Enumeration»
Log::OutputType

UNDEFINED
STDOUT
STDERR
FILE

Settings
Class

LogOptions::Level
Enumeration «Enumeration»

«use»

«use»

«use» «use»

«use»

1

1

Figure 5.8: UML class diagram of REST server : log output

58

pilation that this argument is a class derived from PluginInterace class that is described
in section 5.2.5.

The second parameter is by default equal to the first parameter and decides what type
will be internally used to store the plugin. In all cases, the type used to store the plugin is
actually a QSharedPointer smart pointer class, which manages a pointer to the type defined
by the second template argument. Because all COMPASS API plugins are indirectly derived
from QObject class to support Qt ’s signals and slots mechanism, it is impossible to copy-
construct them, and therefore it is impossible to store them inside container classes, since
these usually require copy constructor. One possible solution to overcome this limitation is
to store a pointer to the plugins. Smart pointers have the additional ability of almost entirely
removing the difficulties associated with management of lifetime of raw pointers.

Classes which intend to inherit from AbstractPluginManager must implement a total of four
pure virtual methods. All of these methods are called internally from other, already imple-
mented methods of AbstractPluginManager. Their implementation serves to define behavior
specific to plugin type that is defined by the first template argument of this class. The most
remarkable of these methods is AbstractPluginManager::setupPlugin, which defines the ac-
tions that need to be taken to successfully register plugin, once it has been verified to be valid.
AbstractPluginManager::getDirectorySettings should return the default directory for plugin
search. The remaining two methods that are called AbstractPluginManager::getClassName

and AbstractPluginManager::getPluginTypeName and should return a QString that contains
the name of the class and the name of the plugin type respectively. Both these methods are
used by AbstractPluginManager for logging purposes.

The entire public functionality of AbstractPluginManager class is available through method
AbstractPluginManager::loadPlugins, which is present in two overload variants. The first
accepts a directory as an argument of type QDir and attempts to load all files inside the di-
rectory as plugins. The second overload accepts no arguments, and calls the first overload
using the value returned by AbstractPluginManager::getDirectorySettings method.

Plugin loading process mainly consists of various checks that assert whether the plugin
meets certain criteria. The performed checks consist of following operations, which are
done in the same order as listed:

1. Assessment of whether the file is a Qt plugin.

2. Evaluation of what interface does the Qt plugin implement.

3. Comparison of the plugin’s plugin interfaces version and the plugin interfaces version
used by the REST server. The versions must match.

4. Iteration over existing plugins to avoid any potential conflict of plugin identifiers, which
must be unique.

The criteria that any plugin must meet are detailed in section 7.1.

In case that one of the checks fails, the file is ignored. However, if these conditions are satis-
fied, plugin’s PluginInterace::logRequest signal is connected to application’s logging system,
and the plugin is passed to the AbstractPluginManager::setupPlugin method for plugin type
specific processing. This method may also perform additional integrity checks that may result

59

in the plugin being rejected by the class derived from AbstractPluginManager. The process is
depicted in UML activity diagram in figure 5.9.

file path: String

failure

success

load plugin

file path: String

failure

success

load file

register logRequest signal

end

start

setup plugin

plugin setup failed

matching plugin interfaces versions

Qt plugin

plugin with given identifier not yet registered

PluginInterfaceType plugin

not a PluginInteraceType plugin

plugin indentifier concflict

All files processed

plugin setup successful

wrong plugin interfaces version

files remaining

not a Qt plugin

Figure 5.9: UML activity diagram of plugin loading process

5.3.3 CommandLineParser

The class CommandLineParser is responsible for parsing command line arguments passed
to the application. It is built around Qt ’s QCommandLineParser class to achieve this goal.

The application currently supports two command line options, which are listed in table 5.1
along with their descriptions.

The current capabilities of this class are somewhat limited, however, due to easy extensibil-
ity of the QCommandLineParser class, and in turn also CommandLineParser, this class provides
the option of easily extending the application with further command line arguments, should
the need arise.

60

option description

-h, --help Displays description of the application and lists all available command
line arguments with description.

-v, --version Displays version information.

Table 5.1: List of command line arguments available in REST server

5.3.4 Core

Class Core is the primary class of the REST server component. It directly or indirectly
holds instances of every other class that is required to exist throughout the entire lifetime
of the program. It is also responsible for all setup tasks and for connecting Qt signals and slots
of the member classes.

This class holds instances of CommandLineParser, RestServer, and RequestPluginManager that
are described in sections 5.3.3, 5.3.10 and 5.3.12 respectively.

Additionally, the class is also responsible for calling the initialization methods of classes Log
and Settings, which are described in sections 5.3.7 and 5.3.13. These methods need to called
in order to ensure correct functioning of these classes.

It also initiates the plugin loading process for class RequestPluginManager, and connects its
signal RequestPluginManager::newPlugin to appropriate slot in class RestServer, so that this
components gets notified of new plugins, and may update its request routing logic to reflect
this circumstance.

5.3.5 DatabaseConnectionData

DatabaseConnectionData class serves as a wrapper class around plugins that are derived
from DatabaseHandlerInterface abstract class, which is described in section 5.2.3.

The class stores a single plugin pointer inside a QSharedPointer smart pointer, and provides
access to all methods implemented in the DatabaseHandlerInterface-derived plugin through
methods with the same name as those present in the plugins.

Additionally, it contains mechanisms required to control the database connection process. It
allows to check, if the DatabaseConnectionsManager class, which is described in section 5.3.6,
is currently in the process of attempting to establish a connection with the database that
is described by the stored plugin. Moreover, DatabaseConnectionsManager may be configured
to execute only a limited amount of connection attempts before giving up. The counter which
represents the number of attempts is stored inside this class as well. Finally, several methods
which enable to read and manipulate these variables are provided.

This class is used in class DatabaseConnectionsManager as the second template argument dur-
ing inheritance of AbstractPluginManager, which is described in section 5.3.2. It is therefore
used to store database plugins in the REST server.

61

5.3.6 DatabaseConnectionsManager

This class manages all network connections that are opened by the REST server to external
database servers. These connections are then available to all request plugins, which implement
the DatabaseAccessPlugin that is described in section 5.2.2, and any other components that
require database access.

DatabaseConnectionsManager employs the Qt SQL module to manage the connections. Con-
nections to the database are opened by using the QSqlDatabase class. Individual SQL queries
are executed using the QSqlQuery class.

To gain the information required to open the actual connections, the class uses plugins de-
rived from DatabaseHandlerInterface class, which is described in section 5.2.3. These plugins
contain information necessary to open the database connection, including the name of the Qt
SQL driver plugin that shall be used. As a result from this desire to use a plugin system,
this class inherits from AsbtractPluginManager class, which is described in section 5.3.2. Dur-
ing the inheritance, classes DatabaseHandlerInterface and DatabaseConnectionData, which
are described in sections 5.2.3 and 5.3.5 respectively, were used as AsbtractPluginManager’s
template arguments.

When attempting to connect to a database, DatabaseConnectionsManager periodically at-
tempts to open the connection, until it is successfully established. It is also possible to limit
the number of connection attempts through application’s settings, which are described
in section 5.3.13. If the maximum number of unsuccessful connection tries was reached,
DatabaseConnectionsManager leave the connection unopened, but if another component makes
a request to use the connection, new attempts will be made. The process is depicted in UML
activity diagram in figure 5.10.

attempt
connection

database
plugin setup

database connection
requested

success

failure

connection not open

database connection not
being opened now

attempts left maximum attempts reached

connection open

database opening already in progress

Figure 5.10: UML activity diagram of connection opening process

The database connections are available to DatabaseAccessPlugin-derived plugins through
method DatabaseConnectionsManager::getDatabaseQueryObject. It accepts a QString, whose
purpose is to identify the database plugin that contains the connection specification, and re-
turns a QSharedPointer<QSqlQuery> class, which may be used to execute SQL queries. If
there is no connection available under the given identifier, or the database connection is not
available, the QSharedPointer will be empty. The process that is used by the actual plug-
ins to access this method requires a correct setup of such plugin. This process is described
in section 5.3.11.

62

5.3.7 Log

The Log class aims to facilitate a logging system for use by other classes composing the REST
server.

Depending on application’s configuration, which is read using the Settings class, Log class
may output the log to either standard output, standard error output, or a file.

The logging system employs a message importance system, where each message is assigned
a severity level by the user. Based on application’s settings, which are described in sec-
tion 5.3.13, the Log class decides whether the message will be written to the actual output.
This way, the user may limit the amount and detail of log messages using only the config-
uration file, without requiring to change the corresponding parts of the source code. There
are six severity levels available, which are listed in table table 5.2. The order in the table
lists the levels from most important to least important.

message severity intended use

CRITICAL Critical errors that result in termination of the application
ERROR Errors that result in significant loss of functionality, but other func-

tions and services of the application remain unaffected
WARNING Errors that affect the applications functionality only to a lesser

degree, or can be corrected by the applications logic without inter-
vention

INFO Messages informing about significant events, which are part of stan-
dard execution of the application

DEBUG Debugging messages, which inform about the application’s standard
execution in more detail

TRACE Messages containing the most details about the application’s stan-
dard operation, usually used to provide information to the developer
about specific call order of functions and methods

Table 5.2: COMPASS API log message severity levels

The relevant settings in application’s configuration file determines the lowest allowed message
severity level. For example, when the configuration is set to INFO, only messages with severity
levels CRITICAL, ERROR, WARNING and INFO will be written to log output.

It should be noted that the definition of message severity levels is actually contained in-
side the plugin interfaces component inside the LogOptions class, which is described in sec-
tion 5.2.4. This layout was chosen to allow logging from plugins, since every possible imple-
mentation of such feature requires to have the knowledge of the logging levels at its disposal.
The implemented plugin logging feature is described in section 5.2.5.

The setup of all of the settings described in this Section is automatically performed upon
calling static method Log::init.

Each logging message is represented by a single instance of Log, which may be used to specify
the contents of the message, which is then processed by the logging system upon the instance’s
destruction. The message contents are defined by writing to a stream, which is provided

63

by methods Log::critical, Log::error, Log::warning, Log::info, Log::debug, Log::trace

or Log::log. These methods allow to define messages that are logged using correspond-
ing severity level, with the exception of log, which accepts additional argument that defines
the desired logging level. All of these methods however require the name of the component
using it. This name is used for logging purposes and is displayed as part of the logging
message.

Example of using the Log class, which is also the recommended approach, is provided
in listing 5.1. A possible output resulting from the displayed code may be the message
“12:34:56 INFO [MyClass] never odd or even” (without the quotation marks).

1 Log().info("MyClass") << "never odd or even";

Listing 5.1: Example usage of Log class

Internally, Log contains a QBuffer instance, which is written to by the stream writing opera-
tion. Upon the destruction of the instance, a decision is made based on the allowed message
severity levels, whether the QBuffer will be written to log output or discarded. It should be
noted that given instance of log class will overwrite it’s internal buffer if one of the methods,
which provide the access to the stream, is called again on the same instance. As a result only
the last message will be processed upon the destruction of the current instance. The whole
message output process is depicted in UML activity diagram in figure 5.11.

flush buffer
stream

instance
destroyed

message
output

instance destruction
initialized

push message to pre-initialization
buffer

Log class not initialized

log message defined log severity accepted

no log message defined

log severity not accepted

Log class initialized

Figure 5.11: UML activity diagram of log message output

Finally, Log class also provides a pre-initialization buffer. This buffer is used to store all
messages before the class is initialized using the Log::init method. Upon successful initial-
ization, the buffer is flushed to output, and logging will be from that point onward performed
in a standard manner.

5.3.8 MetaTypeManager

MetaTypeManager is responsible for registering custom types to Qt ’s Meta-Object system.
In it’s current version, Socket class from plugin interfaces component, which is described
in section 5.2.8, is the only class that requires to undertake this procedure, as it is passed
as an argument in a signal/slot communication.

64

MetaTypeManager is the only class, that is not either directly or indirectly used from the Core

class. All of the functionality that is required from this class is implemented inside a static
method MetaTypeManager::registerCustomMetaTypes, which is called from main function.

5.3.9 RequestParser

RequestParser serves as an intermediary between the RestServer class, and individual request
plugins, which are described in section 5.4. RestServer is responsible for routing the requests
made at a given endpoint to corresponding RequestParser, and the RequestParser instance
is in turn responsible for calling the appropriate plugin method, depending on used HTTP
method.

As a result, there are as many instances of RequestParser present in REST server, as there
are loaded plugins. These are stored inside the RestServer class. Each RequestParser holds
a reference to corresponding RequestPluginWrapper. This reference is held as a smart pointer
of type QSharedPointer, which shares its reference counter with a QSharedPointer of the same
type that is stored in RequestPluginManager class.

RequestParser instance is tasked with calling the appropriate plugin method through its
RequestParser::parseRequest slot, which accepts a pointer to QHttpEngine::Socket class
from the QHTTPEngine library, which is described in section 4.4. RequestParser employs
the QHttpEngine::Socket to determine the method that was used to place the request. If it
is one of the supported HTTP methods (POST, GET, PUT, DELETE), RequestParser uses
the QHttpEngine::Socket instance to create an instance of QSharedPointer<Socket>, where
the Socket in this case is an instance of Socket class from the plugin interfaces component
that is described in section 5.2.8. The plugin interfaces Socket is then used as an argument
during a call to appropriate plugin method.

5.3.10 RequestPluginManager

Class RequestPluginManager is the primary class that implements the REST server ’s ability
to use external definitions of allowed request types and their processing, which are in the form
of Qt plugins.

The request plugins shall implement the RequestPluginInterface, which is described in sec-
tion 5.2.7. This interfaces thus serves as the communication interfaces between the plugins
and the REST server.

RequestPluginManager is tasked with loading the plugins and storing their instances. As a re-
sult, it is derived from the class AsbtractPluginManager, which supplies most of the necessary
logic to achieve this. During the inheritance of this abstract base class, RequestPluginManager
uses the RequestPluginInterface interface as the first template argument. To store the plu-
gins, the class RequestPluginWrapper is used, and is therefore used as the second argument.

During the setup of the plugin, after all of the plugin loading steps that are described
in section 5.3.2 were taken, the setup of DatabaseAccessPlugin-derived plugins is performed.
The setup routines for these plugins are however implemented in RequestPluginWrapper,

65

and RequestPluginManager only calls the corresponding method. This setup method requires
a callable that returns a QSqlQuery object for given database as an argument. This signature
is matched by method DatabaseConnectionsManager::getDatabaseQueryObject

Finally, and the end of the setup process, RequestPluginWrapper class emits its Qt signal
RequestPluginWrapper::newPlugin to notify any listening components that new plugin was
loaded.

5.3.11 RequestPluginWrapper

Class RequestPluginWrapper acts as a wrapping class for request plugins, which are derived
from RequestPluginInterface class described in section 5.2.7. In the REST server application,
it is used for storage of loaded plugin instances.

The instance of the plugin is stored inside a QSharedPointer, and this wrapper provides access
to all of the plugin’s methods through methods with the same name. The most important
of these members are the slots that call the plugin methods which process REST requests.
Not only are these slots frequently used during standard operation of the COMPASS API,
they are also significant since they are tasked with catching all exceptions that may be thrown
by the plugins, and thus protect the server from crashing due to uncaught exceptions.

RequestPluginWrapper additionally contains the implementation of additional setup steps, if
the plugin is also derived from DatabaseAccessPlugin class, which is described in section 5.2.2.
This class is inherited by plugins that require to access the database. The setup is done
by calling the method RequestPluginWrapper::setupDatabasePlugin. This method checks,
if the plugin implements the DatabaseAccessPlugin using dynamic_cast. If the plugin passes
the check, plugin’s function DatabaseAccessPlugin::setDatabaseQueryCallable with a callable
that may be used to access the database.

Due to this requirement, RequestPluginManager holds an instance of database management
class DatabaseConnectionsManager, which manages database connections for the entire appli-
cation. Within the context of the REST server application, the callable that is used for this
purpose is the method DatabaseConnectionsManager::getDatabaseQueryObject, which is de-
scribed in section 5.3.6.

5.3.12 RestServer

RestServer is a class responsible for network communication between the server application,
and client applications that want to use the COMPASS API.

This class is mostly based on the QHttpEngine::Server class from the QHTTPEngine li-
brary, which is described in section 4.4. Therefore, the implementation of TCP layer of net-
work communication is supplied by the Qt framework, and the HTTP layer is implemented
in the QHttpEngine::Server class.

Besides the network communication, RestServer class implements the logic to route the re-
quests to the plugin which implements the service. First, any new plugin must be regis-
tered. This functionality is achieved by the slot RestServer::registerPlugin, which accepts

66

an instance of QSharedPointer<RequestPluginWrapper>. This class is used to obtain the name
of the service through the RequestPluginWrapper::endpoint method, which is subsequently
registered in the instance of QHttpEngine::Server.

Registration of request processing procedures is done in the QHTTPEngine library through
classes derived from QHttpEngine::Handler. RestServer class uses an already implemented
QHttpEngine::QObjectHandler, which calls a user defined method upon each new request.
In this particular case, requests trigger a call of RequestParser::parseRequest method.

5.3.13 Settings

Class Settings implements the ability to read and parse configuration files for the purpose
of modifying the application’s functionality. It’s public interface primarily consists of static
methods, which may be used from other classes to access various application settings.

Settings uses the QSettings class to parse configuration files in the ini format. Settings how-
ever provides additional functionality when parsing such settings by providing the key names
under which are individual settings stored, and also handles default values if the settings are
unavailable or unreadable.

Some of the public methods may also read multiple ini keys and compose the setting returned
to caller from them. The process of reading a setting is depicted in UML activity diagram
in figure 5.12.

key value

key name

ini key reading

key value

key name
read ini

set return value to
default setting

set return value to
read ini value

setting
request

compose setting
from keys

return
setting

key present

key value unreadable

key not present

all required keys readkey value readable

another key required

Figure 5.12: UML activity diagram of settings reading

Public methods provided by this class are listed in table 5.3 along with their respective
return types.

The purpose of these methods is:

• Settings::getRestPluginsDir returns the directory that contains the request plugin
shared libraries.

67

method return value type

Settings::getRestPluginsDir QDir

Settings::getDatabasePluginsDir QDir

Settings::getLogOutput Log::Output

Settings::getMaxLogLevel LogOptions::Level

Settings::getRestServerPort quint16

Settings::getRestServerListenAttemptDelay quint64

Settings::getDatabaseConnectionAttemptDelay quint64

Settings::getDatabaseConnectionMaxAttempts quint64

Table 5.3: Software packages required for compilation of COMPASS API

• Settings::getDatabasePluginsDir returns the directory that contains the database
plugin shared libraries.

• Settings::getLogOutput returns information about logging system. This information
consists of the target of the logging system, which may be wither standard output,
standard error output or file. Secondly, it contains a setting whether log files should be
overwritten when new instance of REST server is started, or the log shall be appended
to the previous log.

• Settings::getMaxLogLevel returns the setting containing information about allowed
log message severity levels.

• Settings::getRestServerPort returns the number of the port which the REST server
shall use to listen for incoming connections.

• Settings::getRestServerListenAttemptDelay returns the delay between applica-
tion’s attempts to start listening on given port if the previous attempt was unsuccessful.

• Settings::getDatabaseConnectionAttemptDelay returns the delay between ap-
plication’s attempts to connect to a database if the previous connection attempt was
unsuccessful.

• Settings::getDatabaseConnectionMaxAttempts returns the maximum allowed
number of database connection attempts before the REST server stops trying to open
the connection.

The configuration file that will be used is determined by the QSettings class, and is described
in [30]. Recognized configuration file keys are described in appendix C.

5.4 Plugins

Plugins are responsible for one of the principal properties of the REST server, as they
enable it to load new definitions of how to process requests at runtime. Plugins make use
of the Qt plugins component of the Qt framework, which is described in section 4.2.2. This
library component provides an easy to use framework that allows an application to load

68

C++ dynamic libraries at any point during the program’s execution. These dynamic libraries
always contain one main class that implements an interface (or in strict C++ terms abstract
class), whose implementation is also known to the program which loads the libraries. Request
definition plugins may therefore be developed and recompiled without the need to modify
the REST server in any way.

The interface that all request plugins must implement is defined in the plugin interfaces
component in the RequestPluginInterface class, and is described in section 5.2.7. In addition
to this required interface, request plugins which are intended to work with data stored
in a database may also optionally implement the DatabaseAccessPlugin that is described
in section 5.2.2. This interface allows the plugin to use the database connections maintained
by the REST server.

Moreover, another type of plugins is used by the COMPASS API. These plugins imple-
ment the DatabaseHandlerInterface class as its interface, and contain data necessary to con-
nect to a database server. These plugins are loaded by the REST server ’s instance of class
DatabaseConnectionsManager, which is responsible for managing database connections used
by the REST server and loaded request plugins. The class DatabaseConnectionsManager is
described in section 5.3.6.

Development of plugins is outside the scope of this master thesis. Section 7.1 however provides
guidelines on how to develop dynamic libraries that aim to be used as plugins in the REST
server.

Sample plugins for testing purposes are supplied on the enclosed CD. They are described
in appendix E.

5.5 Client Applications

Client application is any computer application that connects to the COMPASS API, and uses
it to obtain or manipulate data through operations defined by individual plugins, and thus
acts as a client component within the COMPASS API system.

Development of client applications is outside of the scope of this master thesis. Section 7.2
however provides guidelines on how to develop or modify applications with the intent to uti-
lize COMPASS API during their operation.

Sample client application for testing purposes is supplied on the enclosed CD. It is described
in appendix E.

69

Chapter 6

Software Testing

This chapter deals with testing of the COMPASS API REST server component. The testing
is separated into several areas. First, the coverage of requirements that were formulated
in section 3.3 is discussed. Second, unit tests that were performed to verify the functionality
of individual classes are described. Next, the testing of integration of developed components
is described. Finally, used static and dynamic analysis tools are outlined.

6.1 Coverage of Requirements

This section discusses every individual requirement that was stated in section 3.3, and based
on functionality of COMPASS API REST server, it is asserted whether this requirement was
met.

List of requirements is present in the table below. For each requirement, this table lists
the class, and if available the method as well, which is responsible for satisfying the require-
ment, or marks that the requirement was not satisfied. Several of the requirements are also
discussed individually further in this section.

requirement coverage

REQ-03 RestServer

REQ-04 RestServer

REQ-06 DatabaseConnectionsManager::open

REQ-09 DatabasePlugin_CompassLogbook

REQ-10 DatabasePlugin_CompassLogbook

REQ-11 DatabasePlugin_CompassLogbook

REQ-13 QProcess::startDetached

REQ-15 RequestPluginWrapper::processPost

REQ-16 RequestPluginWrapper::processGet

REQ-17 RequestPluginWrapper::processPut

REQ-18 RequestPluginWrapper::processDelete

REQ-19 Socket::~Socket

71

requirement coverage

REQ-20 Responsibility of individual plugins
REQ-22 RequestPluginManager::loadPlugins

REQ-23 RestServer

REQ-24 QPluginLoader

REQ-25 DatabaseConnectionsManager::getDatabaseQueryObject

REQ-26 DatabaseAccessInterface

REQ-27 not satisified
REQ-28 not satisified
REQ-29 not satisified
REQ-30 not satisified
REQ-31 not satisified
REQ-32 not satisified
REQ-33 satisified
REQ-34 satisified
REQ-35 satisified
REQ-36 satisified
REQ-37 satisified
REQ-38 satisified
REQ-39 satisified
REQ-40 satisified
REQ-41 N/A

• REQ-04: RestServer class is capable of accepting requests from clients that are lo-
cated outside of the COMPASS network. This requirement is satisfied, provided that
the network configuration allows outside computers to access the COMPASS network.

• REQ-13: Plugins may use Qt framework’s class QProcess and it’s static method
QProcess::startDetached to use the scp command.

• REQ-15 to REQ-18: RequestPluginWrapper class allows to process each type of HTTP
method by calling an appropriate method from given request plugin.

• REQ-19: The destructor of the Socket class checks whether the plugin responsible
for processing the request sent a response. If that is not the case, the destructor itself
sends a generic response.

• REQ-23: RestServer class checks upon arrival of new request if it has a plugin for given
endpoint at its disposal. If not, it automatically responds with an HTTP 404 error.

• REQ-27 and REQ-28: In its current version, the REST server does not provide
a mediating class for access to files. Individual plugins are however free to execute file
operations in local or remote file systems on their own. This functionality is planned
to be added later.

• REQ-29 to REQ-32: The control interface and related functions were deliberately
omitted for the provided release of COMPASS API REST server. The reason for this
decision is that it was assessed that the best course of action is to utilize one of the ex-
isting control interfaces already used on COMPASS. The control of COMPASS API

72

may thus be integrated for example with COMPASS CLI, which is described in [10].
The development of such feature however necessitates an involvement of other members
of COMPASS personnel.

6.2 Unit Testing

COMPASS API REST server was subjected to several unit tests. These tests were designed
to verify the functionality of individual classes.

The description of unit tests that were conducted is provided in the list below.

• tested method: RestServer::registerPlugin

input result passed

RequestPluginWrapper containing
RequestPlugin_Runs

m_registeredEntpoints container
size increase by 1

yes

RequestPluginWrapper containing
RequestPlugin_RunTypes

m_registeredEntpoints container
size increase by 1

yes

RequestPluginWrapper containing
RequestPlugin_RunProblems

m_registeredEntpoints container
size increase by 1

yes

notes: The plugins used during this unit test are the plugins developed for demon-
stration of modified run_manager, which is described in appendix E.

• tested method: RequestPluginManager::loadPlugins

input result passed

placing 0 files in plugin directory m_pluginTable container size in-
crease by 0

yes

placing 1 valid plugin in plugin di-
rectory

m_pluginTable container size in-
crease by 1

yes

placing 1 invalid plugin in plugin
directory

m_pluginTable container size in-
crease by 0

yes

placing 1 valid plugin and 1 in-
valid plugin in plugin directory

m_pluginTable container size in-
crease by 1

yes

placing 2 valid plugins in plugin
directory

m_pluginTable container size in-
crease by 2

yes

notes: The plugins used during this unit test are the plugins developed for demon-
stration of modified run_manager, which is described in appendix E.

Invalid plugin in this context may mean both plugins which implement a wrong inter-
face, or a completely random file.

73

• tested method: DatabaseConnectionsManager::loadPlugins

input result passed

placing 0 files in plugin directory m_pluginTable container size not
changed

yes

placing 1 valid plugin in plugin di-
rectory and database accessible

m_pluginTable container size in-
crease by 1 and database connec-
tion opened

yes

placing 1 valid plugin in plugin di-
rectory and database not accessi-
ble

m_pluginTable container size in-
crease by 1 and database connec-
tion not opened

yes

placing 1 invalid plugin in plugin
directory

m_pluginTable container size not
changed

yes

notes: The plugins used during this unit test are the plugins developed for demon-
stration of modified run_manager, which is described in appendix E.

Invalid plugin in this context may mean both plugins which implement a wrong inter-
face, or a completely random file.

• tested method: Socket::~Socket

input result passed

setting no response socket sent response with code
500 automatically

yes

setting a simple response custom response sent yes

setting a JSON response response containing a JSON file
sent

yes

setting a response with custom
body

response containing the custom
data sent

yes

notes: The purpose of this test was to determine, if the Socket class automatically
sends a response back to the client, if one was not set by the plugin.

6.3 Integration Testing

Integration testing of the COMPASS API REST server must necessarily include at least
several additional request and database plugins. Therefore it depends at least to some degree
on these external components.

Integration tests of correct interoperability of individual components were performed us-
ing the modified version of run_manager application, which is described in appendix E.
Various scenarios, such as attempts to load different runs from the database, and updates
to the structure of loaded runs were attempted.

74

During this process, no errors were found in the REST server application. It correctly routed
accepted requests to appropriate plugin methods, and handled any potential errors.

6.4 Static and Dynamic Analysis

For the purpose of testing the application, several third-party tools that perform an analysis
of the code used.

Static analysis of COMPASS API consists of using the Clang Static Analyzer. This tool
reads the source code of the application directly, and based on it, it tries to finds potential
mistakes. It generally attempts to detect more complex errors than traditional compilers,
or errors that do not directly violate the C++ language standard, and are thus ignored
by compilers. COMPASS API REST server source code passed this test without any errors
or warnings.

During dynamic analysis of the code, the valgrind memory usage analyzer was used to de-
termine, if any memory leaks occur during the operation of the REST server. The program
was analyzed while loading several plugins, and subsequently processing a number of HTTP
requests. Such operational conditions did not result in detection of any memory management
problems.

75

Chapter 7

COMPASS API User’s Guide

This section serves as a guide for developers who intend to develop plugins which will be
used to extend the functionality of COMPASS API server, or develop applications that use
the COMPASS API to work with data sources available at the COMPASS experiment.

Guidelines for developing COMPASS API plugins are presented in section 7.1, and guidelines
for developing client applications are presented in section 7.2.

7.1 Plugin Developer’s Guide

COMPASS API uses two types of plugins. The first type implements the logic required
for processing of certain kind of requests sent to COMPASS API server, and the second type
defines necessary parameters of database connections. The basic principles of implementing
either of these types of plugins are the same, and are described in section 7.1.1. Aspects
specific to implementation of request plugins and database plugins are then described in sec-
tion 7.1.2 and section 7.1.3 respectively.

7.1.1 General Implementation Procedure of COMPASS API Plugins

Plugins for the COMPASS API server are developed as Qt plugins, which are described
in section 4.2.2. Plugins for COMPASS API must therefore be implemented as C++ dynamic
libraries. Additionally, since the libraries will not be loaded by the application at linktime,
but at runtime, they must be configured in a specific way.

Since the configuration of the library is handled by the Qt framework, standard way of creat-
ing Qt plugins is by setting up a new qmake-based project for Qt with appropriate settings.
It is possible to write the project file manually, or to use the project creation wizard in the Qt
Creator IDE, which is described in section 4.2.3. This wizard will create a project with all
required settings already in place. Both methods are described in this section

Additionally, this section contains general plugin implementation guidelines that are appli-
cable to all COMPASS API plugins.

77

Using Qt Creator to Setup Plugin Project

If the developer chooses to use the project creation wizard in Qt Creator IDE, the following
steps should be taken:

1. Open a new project in the File menu of Qt Creator IDE.

2. Select the project template Library → C++ Library.

78

3. In the next step of the wizard, select “Qt Plugin” as the type of the library, and select
a name and location of the project.

4. Select one of your predefined build kits (the selection available in this window will vary
depending on user’s configuration of build kits).

79

5. Select the name of the primary class in your plugin. In addition to that, a base class
for the plugin must be selected. However, since COMPASS API plugins use custom base
class that is not available for selection, arbitrary base class must be selected and then
deleted from the project.

6. Optionally configure a VCS to use with the project.

80

7. Remove the abstract base class that was selected in step 5 by removing it as the base
class of your plugin, and removing the #include directive for the base class. Optionally,
it is also possible to remove all preprocessor conditionals that check what version of Qt
is used for compilation. COMPASS API is designed to compile with Qt versions stated
in section 4.2.5, therefore these conditionals are not necessary, and plugins may safely
assume that Qt version greater than 5.0 will be used.

8. Plugin is now ready to be implemented. Description of the implementation process
for specific COMPASS API plugins is contained in sections 7.1.2 and 7.1.3.

This process applies to the version of Qt Creator that is described in section 4.2.5.

Using the Qt Creator IDE for creating the plugin project should be considered as the pre-
ferred method, since creating the project manually offers no benefits but is more time con-
suming.

Setting Up Plugin Project Manually

To setup the project file for building a Qt plugin manually, a new qmake project file must
be created. Two configuration options in the project file must be properly set:

1. The project must use the lib template. Therefore, the line TEMPLATE = lib must be
present in the project file, and the value of the project’s TEMPLATE must not be changed
afterwards.

2. The CONFIG variable of the project must contain the value plugin. This may be achieved
using the line CONFIG += plugin inside the project file.

Other parts of the project must be properly configured to handle its specific structure.
Detailed description of writing qmake project files is present in [31].

General Plugin Implementation Steps

After correctly setting up the project for building Qt plugins, it is possible to implement
the plugin’s logic. Developing the source code of the plugin consists of four main steps [19]:

1. Implementing a class which inherits from the one of the plugin interfaces from compo-
nent plugin interfaces, which are described in section 5.2.

2. Using the Q_INTERFACES macro to notify the Qt meta-object system about what inter-
faces are used by the plugin.

3. Exporting the meta data of the plugin to Qt meta-object system by using the macro
Q_PLUGIN_METADATA. Note that in COMPASS API, the metadata must contain a key
interfaces_version, whose value must be set to a string containing the Git version
of the plugin_interfaces Git repository that is described in appendix D. The version
of the Git repository may be obtained using the command git describe --always.
Plugins, which don’t have this key in their metadata, or use a different version of plugin
interfaces will be rejected. This restriction was imposed as a security measure, since

81

using a different version of plugin interfaces might result in a crash of the COMPASS
API server.

4. Building the plugin using appropriate project file.

In ideal case, all plugins will be built using the same Qt framework version as the one that
was used to build the REST server. If that is not possible however, it should be noted that
Qt framework itself places limitations on used Qt version when building plugins, which are
outlined in [19]. Therefore, the used Qt version must meet the following conditions:

1. plugin must not be built using Qt with higher version number than the one used
for building the REST server.

2. plugin must not be built using Qt with lower major version number than the one used
for building the REST server.

Information about Qt framework version that was used to build the REST server is included
in section 4.2.5.

Furthermore, in order to avoid conflicts stemming from ABI incompatibility, the plugins are
required to be built using the same compiler in the same version as the one that was used
for building the REST server. Information about the C++ compiler that was used to build
the REST server is included in section 4.1.5.

7.1.2 Request Plugins Implementation

In addition to the general guidelines for plugin implementation, which were outlined in sec-
tion 7.1.1, request plugins need to implement the RequestPluginInterface that is described
in section 5.2.7.

The main class in every request plugin shall therefore inherit from RequestPluginInterface

class, and implement all of the interface’s pure virtual methods. These methods are as follows.

• PluginInterface::identifier shall return the plugin’s identifier in a form of a QString.
This identifier is used to identify the plugin in several classes of the REST server
component, and must therefore be unique.

• RequestPluginInterface::endpoint is used by the REST server component to deter-
mine what endpoint should be used to access the service provided by the plugin. This
method shall return the name of the endpoint as a QString.

• RequestPluginInterface::processPost is called by the REST server whenever a valid
HTTP POST request is received by that class at the endpoint specified by method
RequestPluginInterface::endpoint. This method shall therefore implement the func-
tionality for processing these types of requests.

• RequestPluginInterface::processGet is called by the REST server whenever a valid
HTTP GET request is received by that class at the endpoint specified by method
RequestPluginInterface::endpoint. This method shall therefore implement the func-
tionality for processing these types of requests.

82

• RequestPluginInterface::processPut is called by the REST server whenever a valid
HTTP PUT request is received by that class at the endpoint specified by method
RequestPluginInterface::endpoint. This method shall therefore implement the func-
tionality for processing these types of requests.

• RequestPluginInterface::processDelete is called by the REST server whenever a valid
HTTP DELETE request is received by that class at the endpoint specified by method
RequestPluginInterface::endpoint. This method shall therefore implement the func-
tionality for processing these types of requests.

The core part of the logic that a RequestPluginInterface-derived plugin implements con-
sists of the functionality in methods processPost, processGet, processPut and processDelete.
These four methods correspond to the REST server architectural style that is described
in section 4.3. While there is no strict requirement that would enforce any conditions on im-
plementation of these methods, it is strongly advised that they follow the REST principles
outlined in that section, and especially the HTTP method mapping displayed in table 4.1.

If the request plugin intends to access a MySQL database, which most prominently includes
the COMPASS database that is described in requirement information INFO-07, additional
steps must be taken during implementation. In addition to RequestPluginInterface, the de-
veloped plugin needs to inherit from the DatabaseAccessPlugin class, which is described in sec-
tion 5.2.2. This class provides a protected method DatabaseAccessPlugin::databaseQuery,
which accepts a QString identifier of a database plugin, and returns an object of type
QSharedPointer<QSqlQuery> for the database defined by the given database plugin. The im-
plemented request plugin may use this method to execute SQL queries in the database
server. Description of how is the QSharedPointer<QSqlQuery> object obtained may be found
in section 5.3.10. Note that this method may throw exception of type std::domain_error,
if a database plugin with given identifier was not found. Additionally, exception of type
std::bad_function_call may be thrown if the plugin was not set up correctly. This would
however imply a logic error in the REST server, and is thus highly unlikely if the application
was well tested.

7.1.3 Database Plugins Implementation

Database plugins shall follow all guidelines described in section 7.1.1. Additionally they need
to implement the DatabaseHandlerInterface that is described in section 5.2.3.

Every plugin’s primary class shall therefore inherit from DatabaseHandlerInterface class,
and implement all of its pure virtual methods. These methods are as follows.

• PluginInterface::identifier shall return the plugin’s identifier in a form of a QString.
This identifier is used to identify the plugin in several classes of the REST server
component, and must therefore be unique.

• DatabaseHandlerInterface::getDatabaseName shall return the name of the database
stored inside the database server targeted by the plugin. The database name shall
be returned in a form of a QString.

• DatabaseHandlerInterface::getDriverName shall return a QString containing the name

83

of the Qt SQL database driver plugin that will be used to connect to the database
server targeted by the plugin. Qt SQL component is described in section 4.2.2.

• DatabaseHandlerInterface::getHostName shall return the hostname of the computer
that hosts the database server targeted by the plugin as a QString.

• DatabaseHandlerInterface::getPassword shall return a QString that represents the pass-
word that will be used to authenticate on the database server targeted by the plugin.

• DatabaseHandlerInterface::getUserName shall return the username that will be used
to authenticate on the database server targeted by the plugin. The username is returned
as a QString class.

The implementation of all pure virtual methods in a DatabaseHandlerInterface-derived plu-
gin is under normal conditions trivial. Apart from PluginInterface::identifier, all of the
methods return a QString that contains a part of the information necessary to connect
to a database. These data are subsequently used by DatabaseConnectionsManager class, which
is described in section 5.3.6, to open the actual database connection.

7.2 Client Applications Developer’s Guide

Client applications are required to communicate with the COMPASS API by using the TCP
protocol. Generally, it is necessary to open a TCP connection to the computer hosting
the COMPASS API using an URI, that should contain at least:

• used protocol, which in case of COMPASS API will always be HTTP or HTTPS

• hostname or IP address of the computer hosting COMPASS API server

• port on which the COMPASS API server listens (this parameter is decided by COM-
PASS API’s configuration)

• path, which shall be equal to the requested service’s endpoint

and optionally also

• optional query list of key-value pairs, if any are required

Example of a possible URI may be the URI http://localhost:12345/test. Using this
URI, the client application would access a COMPASS server running on the local operating
system on port 12345, and access the plugin that provides a service called test.

After the TCP connection is established, the application must send an HTTP request
to the server, to which the server will always send a response. The response will be an HTTP
response, that primarily contains the HTTP status code, and if required, service specific data
in the response’s body. The developer’s of the plugins are encouraged to use the JSON for-
mat for transmitting the data, however, the specific format of the response’s body is plugin-
dependent.

Since there is no requirement placed on the programming languages that shall be used to im-
plement the client applications, it is not possible to define a universal procedure which would

84

interface with the services provided by the server that was developed as part of this thesis.
However, since it is the predominant programming language currently used on the COMPASS
experiment, an example is provided in listing 7.1 that shows the construction of a simple
request in a C++ application that uses the Qt framework.

1 QNetworkAccessManager manager;
2
3 QNetworkRequest request;
4 request.setUrl(QUrl("http://pccompassapi:12345/comment?id=42"));
5
6 QNetworkReply* reply = manager->get(request);
7 connect(reply, &QNetworkReply::readyRead, this, &MyClass::slotReadyRead);
8 connect(reply, &QNetworkReply::error, this, &MyClass::slotError);

Listing 7.1: sending GET request using Qt

The piece of code in listing 7.1 will send a GET request to URI http://pccompassapi:

12345/comment?id=42. The stream associated with the underlying TCP socket will be pro-
cessed in the (not shown) Qt slot slotReadyRead. Error handling will be done in the (also
not shown) Qt slot slotError.

When analyzing the code line-by-line, we shall first focus on the QNetworkAccessManager

class. This class, which is part of Qt Network module that is described in section 4.2.2, serves
to send network requests and process the replies to these requests. The request in the code is
represented by QNetworkRequest class. To send a simple request, it is necessary to set at least
the URI, which is represented by the QUrl class. The QNetworkAccessManager may then be
instructed to use the instance of the QNetworkRequest class to send a GET request by calling
the method QNetworkAccessManager::get. This method returns an instance of QNetworkReply
class, which may then be used to access the data through Qt ’s signals/slots mechanism.

Depending on the implementation of endpoint “comment” in corresponding COMPASS API,
the code in listing 7.1 may for example obtain comment with id equal to 42 (see [5] for de-
scription of comments system that is used on the COMPASS experiment). Such code is sig-
nificantly shorter than source code with similar function that uses direct access to database,
for instance the database access routines used in applications described in [5].

85

Conclusion

This master thesis was focused on designing an application programming interfaces which
would provide unified access to data storage systems that are used on the COMPASS exper-
iment at the CERN laboratory.

The first part of the task consisted of conducting an analysis of the problematics. It focused
mainly on structure and characteristics of the storage solutions, specifically the database
and file folders shared over a network. Based on the findings, a set of requirements, which were
placed on the proposed COMPASS API was outlined. These were subsequently transformed
into a preliminary design of an application that would fulfill these requirements.

The design process continued with a selection of suitable technologies. Since the COMPASS
API needs to be intuitive and easy to use, this step played principal role in the development
process, because technologies which allow to introduce an appropriate form of abstraction
will add to the usability of the API considerably.

The development process was subsequently conducted, and resulted in an introduction
of a COMPASS API software, which comes in a form of a REST server, and accomplish
the tasks set forth by the requirements.

The developed COMPASS API possesses all of the major properties, which are primarily
extensibility and indifference to the programming languages used to implement its client
applications. Nevertheless, not all of the requirements first outlined were satisfied. Neverthe-
less, these requirements describe functionality, which can be provided without much effort
at a later time given the applications structure, and core functionality of the program is al-
ready prepared.

The next step for the COMPASS API in its lifecycle is the deployment into production
environment on the COMPASS experiment. However, due to the impact that the COMPASS
API may potentially have on the whole computer system, this task is best deferred until
there is no active data taking performed for significant period on COMPASS. This would
allow to properly test and verify that no key computer system on COMPASS is affected
in a negative manner. A suitable opportunity to complete this procedure may be offered
by the planned CERN LS2 phase.

Subsequently, the functionality of the COMPASS API may be extended with the plugins
that were described several times throughout this thesis.

87

Bibliography

[1] CERN. url: https://home.cern/ (visited on July 24, 2016).

[2] COMPASS. url: https://wwwcompass.cern.ch/ (visited on July 24, 2016).

[3] J. Nový. “Processing of large quantity of data from the COMPASS experiment”. written
dissertation preparation. Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, 2016.

[4] CERN. CASTOR. url: http://castor.web.cern.ch/ (visited on May 6, 2018).

[5] M. Jandek. “User interface for control of logbook of COMPASS experiment at CERN”.
Bachelor’s Degree Project. Czech Technical University in Prague, Faculty of Nuclear
Sciences and Physical Engineering, 2016.

[6] M. Jandek. “COMPASS electronic logbook data flow and storage optimization”. Re-
search Project. Czech Technical University in Prague, Faculty of Nuclear Sciences
and Physical Engineering, 2017.

[7] V. Jarý. “Analysis and proposal of the new architecture of the selected parts of the soft-
ware support of the COMPASS experiment”. Doctoral dissertation. Czech Technical
University in Prague, Faculty of Nuclear Sciences and Physical Engineering, 2012.

[8] M. Bodlak et al. “Development of new data acquisition system for COMPASS experi-
ment”. In: Nucl. Part. Phys. Proc. 273-275 (2016), pp. 976–981.

[9] J. Hrušovský. “Deployment application for the data acquisition system of the COM-
PASS experiment at CERN”. Bachelor’s Degree Project. Czech Technical University
in Prague, Faculty of Nuclear Sciences and Physical Engineering, 2017.

[10] A. Květoň. “Remote user interface for the control system of the COMPASS experiment
at CERN”. Master Thesis. Czech Technical University in Prague, Faculty of Electrical
Engineering, 2017.

[11] M. Zemko. “Data flow analysis for the data acquisition system of the COMPASS ex-
periment at CERN”. Bachelor’s Degree Project. Czech Technical University in Prague,
Faculty of Nuclear Sciences and Physical Engineering, 2017.

[12] L. Bátrla. “COMPASS experiment shift reservation system”. Bachelor’s Degree Project.
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engi-
neering, 2017.

[13] T. Brabec. “Electronic checklist for COMPASS experiment at CERN”. Bachelor’s
Degree Project. Czech Technical University in Prague, Faculty of Nuclear Sciences
and Physical Engineering, 2017.

89

https://home.cern/
https://wwwcompass.cern.ch/
http://castor.web.cern.ch/

[14] TIOBE. url: https://www.tiobe.com/ (visited on February 16, 2018).

[15] Standard C++. url: https://isocpp.org/ (visited on February 16, 2018).

[16] B. Stroustrup. The C++ Programming Language. 4th edition. Boston, MA, USA: Ad-
dison-Wesley, 2013. isbn: 978-0-321-56384-2.

[17] N. M. Josuttis. The C++ Standard Library. A Tutorial and Reference. 2nd edition.
Boston, MA, USA: Addison-Wesley, 2012. isbn: 978-0-321-62321-8.

[18] Qt Documentation. url: http://doc.qt.io/ (visited on February 24, 2018).

[19] Qt Documentation. How to Create Qt Plugins. url: http://doc.qt.io/qt- 5/
plugins-howto.html (visited on April 14, 2018).

[20] R. T. Fielding. “REST: Architectural Styles and the Design of Network-based Software
Architectures”. Doctoral dissertation. University of California, Irvine, 2000.

[21] GNU Operating System. GNU Libmicrohttpd. url: https://www.gnu.org/software/
libmicrohttpd/ (visited on March 30, 2018).

[22] GitHub. libhttpserver. url: https://github.com/etr/libhttpserve/r (visited on
March 30, 2018).

[23] GitHub. Libqmhd. url: https://github.com/francoiscolas/libqmhd/ (visited on
March 30, 2018).

[24] GitHub. QttpServer. url: https://github.com/supamii/QttpServer/ (visited on
March 30, 2018).

[25] GitHub. QHTTPEngine. url: https://github.com/nitroshare/qhttpengine/ (vis-
ited on March 29, 2018).

[26] Open Source Initiative. The MIT License. url: https://opensource.org/licenses/
MIT/ (visited on March 29, 2018).

[27] Ecma International. The JSON Data Interchange Syntax. url: http://www.ecma-
international.org/publications/files/ECMA-ST/ECMA-404.pdf (visited on May 5,
2018).

[28] Internet Engineering Task Force. The JavaScript Object Notation (JSON) Data Inter-
change Format. url: https://tools.ietf.org/html/rfc8259/ (visited on May 5,
2018).

[29] JSON. Introducing JSON. url: https://www.json.org/ (visited on May 4, 2018).

[30] Qt Documentation. QSettings Class. url: http://doc.qt.io/qt-5/qsettings.html
(visited on May 3, 2018).

[31] Qt Documentation. qmake Manual. url: http://doc.qt.io/qt-5/qmake-manual.
html (visited on April 25, 2018).

[32] CERN. Linux@CERN. April 4, 2017. url: https://linux.web.cern.ch/linux/
centos7/ (visited on April 9, 2018).

90

https://www.tiobe.com/
https://isocpp.org/
http://doc.qt.io/
http://doc.qt.io/qt-5/plugins-howto.html
http://doc.qt.io/qt-5/plugins-howto.html
https://www.gnu.org/software/libmicrohttpd/
https://www.gnu.org/software/libmicrohttpd/
https://github.com/etr/libhttpserve/r
https://github.com/francoiscolas/libqmhd/
https://github.com/supamii/QttpServer/
https://github.com/nitroshare/qhttpengine/
https://opensource.org/licenses/MIT/
https://opensource.org/licenses/MIT/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://tools.ietf.org/html/rfc8259/
https://www.json.org/
http://doc.qt.io/qt-5/qsettings.html
http://doc.qt.io/qt-5/qmake-manual.html
http://doc.qt.io/qt-5/qmake-manual.html
https://linux.web.cern.ch/linux/centos7/
https://linux.web.cern.ch/linux/centos7/

Appendix A

Contents of the Enclosed CD

This appendix lists all documents that are stored on the CD included with this master thesis.

• The electronic version of this document.

• Source codes for the COMPASS API REST server and plugin interfaces components.

• Source code of a modified version of the run_manager applications, which was de-
veloped as part of [5]. The included version was adapted to use the COMPASS API
to obtain all required data from the database.

• Subset of logbook database in SQL format. This testing database may be used for test-
ing of COMPASS API and the included run_manager application in local environment.

91

Appendix B

Installation Instructions
for COMPASS API

This appendix contains the instructions for compiling and installing the COMPASS API
server.

B.1 Operating System Note

COMPASS API was designed, in accordance with requirement REQ-33 that was stated
in section 3.3.2, to run on the CERN CentOS 7 operating system. Only the most recent
version of the operating system shall be used, with all available updates for installed packages
applied as well.

Installation files for CERN CentOS 7 operating system may be obtained from [32]. The linked
webpage also contains instructions on how to install the operating system. Note that the in-
stallation process requires an internet connection, as the most of the components of the OS
are downloaded from remote repository during the installation.

Other operating systems, including different Linux distributions, may be able to compile
and run COMPASS API, however, no guarantee that such attempt will succeed is provided.

All further instructions will be written under the assumption that CERN CentOS 7 system,
which was installed in the “Software development workstation” configuration and with the op-
tion “’additional development headers”, is being used to compile COMPASS API and run
the resulting binary.

B.2 Installation of Required Packages

Several packages are required to be installed in the operating system for successful com-
pilation of COMPASS API. Table B.1 lists all packages that are required to be installed
to compile COMPASS API, and provides a brief description of why are they needed.

93

package name requried for

cmake3 compilation of QHTTPEngine library
devtoolset-7 compilation of the entire COMPASS API project
qt-creator opening and compilation of COMPASS API Qt project
qt5-qtbase-devel compilation of COMPASS API and QHTTPEngine library
qt5-qtbase-mysql compilation of COMPASS API

Table B.1: Software packages required for compilation of COMPASS API

CERN CentOS 7 operating system uses the yum package manager, which may be used to in-
stall all packages mentioned in table B.1. It will also install all packages, which the listed pack-
ages require for correct functioning. Installation of the packages may be triggered by the fol-
lowing command:

yum install centos-release-scl
yum install cmake3
yum install devtoolset-7* --skip-broken
yum install qt-creator
yum install qt5-qtbase-devel
yum install qt5-qtbase-mysql

B.3 Configuration of Qt Creator

In order to compile the provided sources of COMPASS API, it is necessary to configure
a new build kit in the Qt Creator.

The new kit shall posses the settings as the default kit, however, it is necessary to set
the compiler to the gcc compiler which is provided by the devtoolset-7 package. This compiler
is under normal conditions located in path /opt/rh/devtoolset-7/root/usr/bin/g++.

Additionally, it is necessary to set the sysroot path in the newly configured kit to the path
/opt/rh/devtoolset-7/root.

B.4 Compilation

It is now possible to open the project that manages the build of the application. The project’s
path relative to the COMPASS API’s sources is project/codiac.oro.

Before building the project, it is also necessary to configure a local variable in the build
environment in Qt Creator. The variable shall be named CMAKE and its value equal to the path
of cmake3 binary.

After this configuration step, it is possible to build the application.

94

B.5 Running

COMPASS API REST server may be run directly from the IDE. If the user wants to start
the binary from standard environment, it is necessary to make the libraries libqhttpengine.so.1
and libcodiacplugins.so.MT_VERSION available to it, for example through environment
variable LD_LIBRARY_PATH.

Additionally, it is necessary to place the configuration file, which may be found relative
to the sources root in rest_server/build_codiac_debug/codiac.conf, into user’s config-
uration file path in ~/.config/compass. Subsequently, options in the config file may be
changed. Configuration file options are described in appendix C.

Moreover, if it is required to use the test database, which is included on the enclosed CD,
for example to test the run_manager application, one must set the database according
to parameters defined in database plugin database_plugin_test. These parameters are
outlined in the plugins .cpp file. Next, the database must be filled using the SQL script
provided on the CD.

95

Appendix C

REST Server Application Recognized
Configuration File Keys

The functionality of COMPASS API REST server ’s binary is modifiable to certain extent
through a configuration file in an INI format.

This appendix describes the options available through this configuration file. The options
are listed in table C.1, and then described in detail.

group name option name allowed values

plugins rest_plugin_dir directory path
plugins database_plugin_dir directory path
logging file file, STDOUT, STDERR
logging file_open_mode APPEND, TRUNCATE
logging max_log_level see table 5.2
rest_server port port number
rest_server listen_attempt_delay number of milliseconds
database_connections connection_attempt_delay number of milliseconds
database_connections max_connection_attempts number

Table C.1: Recognized configuration keys

• plugins.rest_plugin_dir: Contains path to the directory that holds compiled re-
quest plugins, which are described in section 7.1.2.

• plugins.database_plugin_dir: Contains path to the directory that holds com-
piled database plugins, which are described in section 7.1.3.

• logging.file: Determines the target of the application’s logging system. This value may
either contain the string STDOUT for output to application’s standard output, STDERR
for output to application’s standard error output, otherwise the string will be evaluated
as a path to a log file. This path may be either relative or absolute.

• logging.file_open_mode: This options holds a string, which may equal to either
TRUNCATE or APPEND. If the option logging.file is evaluated as a file path, this option

97

decides, if the file contents shall be truncated, or appended with the log for current
application session.

• logging.max_log_level: Determines the lowest allowed severity level of log messages
that will be written to log target. Messages with severity level lower than this setting
will be ignored.

• rest_server.port: Contains a number of the port that will be used by the REST
server to listen for incoming TCP connections. Value of 0 results in the port being
chosen automatically.

• rest_server.listen_attempt_delay: Decides the delay between REST server ’s un-
successful attempt to start listening, and the next attempt that will be made. This value
is evaluated as milliseconds.

• database_connections.connection_attempt_delay: Decides the delay between
REST server ’s unsuccessful attempt to open a database connection, and the next
attempt that will be made. This value is evaluated as milliseconds.

• database_connections.max_connection_attempts: Controls the maximum al-
lowed number of attempts to open a database connection, before the REST server
gives up. Value of 0 means that there is no limit.

The application utilizes the Qt framework’s QSettings class, and the location where is
the configuration file loaded from is therefore guided by the rules of this class, which are
described in [30]. The standard file path of the configuration file on the CERN CentOS 7
operating system is nevertheless /.config/compass/codiac.conf.

Note that if the application fails to load a configuration file, it holds default values for every
setting. These default values are listed in table C.2.

option default value

plugins.rest_plugin_dir current directory
plugins.database_plugin_dir current directory
logging.file STDOUT
logging.file_open_mode APPEND
logging.max_log_level INFO
rest_server.port 0
rest_server.listen_attempt_delay 1000
database_connections.connection_attempt_delay 5000
database_connections.max_connection_attempts 0

Table C.2: Configuration keys default values

98

Appendix D

Git Repository Structure

This appendix contains a description of the Git repository that was used during the de-
velopment of REST server and plugin interfaces COMPASS API components, which are
described in sections 5.2 and 5.3 respectively.

The Git repository makes use of the submodule feature, which allows Git repositories to store
a reference to a specific commit that is present in another Git repository. This results in an ef-
fective dependency management system, since it is possible to reuse the contents of a single
repository in multiple projects, and even to allow these projects to use different versions
of the contents of the shared Git repository. This in effect results in a tree-like structure
of the repositories.

The repository is located on CERN’s GitLab server, and is thus publicly unavailable. How-
ever, a snapshot of the repository is provided on the enclosed CD.

The structure of the Git repositories is illustrated using a UML component diagram on fig-
ure D.1.

All of COMPASS API Git repositories are encapsulated within the repository codiac1. This
main repository holds the rest_server repository, and the database_plugins and rest_plugins
repositories.

The rest_server repository holds the source code for the REST server component of the sys-
tem. Since the REST server depends on the plugin interfaces component, this repository
contains the plugin_interfaces repository as a submodule. REST server additionally depends
on the QHTTPEngine library. The GitHub repository for this library is however referenced
by the plugin_interfaces repository, and the sources are reused.

The rest_plugins and database_plugins repositories are intended to hold all repositories
that contain plugin implementations as submodules. Currently, only the database plugin
that provides access to COMPASS logbook database is officially provided.

plugin_interfaces repository provides the interface classes that are described in section 5.2,
which have to be implement by all plugins. As such it serves as a submodule in the rest_server

1codiac is the working name of the COMPASS API. It is an acronym which stands for COmpass Data
Interaction and Access Control

99

codiac

rest_pluginsdatabase_pluginsrest_server

plugin_interfaces

qhttpengine plugin_interfaces

qhttpengine

database_plugin_compasslogbook

Figure D.1: UML component diagram representing Git repository structure

repository, and should be included as a submodule in all repositories which accommodate
sources codes for plugins as well, because plugins depend on the plugin interfaces component.

This structure was introduced to maintain an invariant that for every repository, all of its
dependencies are either included directly in the repository, or are contained as a submodule.
For the future, it is planned that while the described structure will be maintained, however,
during a complete build of the entire COMPASS API system one of the plugin_interfaces
repositories will be selected as primary by the build script and will be the only one to be
compiled. This will prevent compilation of the same source code multiple times, which is
currently the case.

100

Appendix E

Installation Instructions for Modified
run_manager

This appendix contains the instructions for compiling, installing and testing the modified
run_manager application that is described in appendix A.

E.1 Installation of COMPASS API

Install the COMPASS API according to instructions described in appendix B.

E.2 Compilation

The compilation is expected to be conducted in the same environment as was described
in appendix B.

To compile run_manager, open its project file in Qt Creator IDE. The project file that is re-
quired to be opened is the file run_manager.pro which is located relative to run_manager ’s
sources root directory in path compass-rccars-logbookgui-run-manager. It is possible
to compiler it using the default build kit provided by the system, or the build kit that
was configured in appendix B.3.

E.3 Running

The application may be ran either directly from the IDE or from normal environment. It
is however required that an instance of COMPASS API REST server is already running,
and that it is listening on port 41596.

101

Appendix F

Used Terminology and Abbreviations

This appendix contains a list of technical terms and abbreviations that were used throughout
this master thesis.

abbreviation meaning

ABI application binary interface
API application programming interface

Bash Bourne again shell (linux command interpreter
and programming language)

COMPASS Common Muon and Proton Apparatus for Structure
and Spectroscopy

CERN European Organization for Nuclear Research

CRUD create, read, update, delete (basic operations of persistent
storage)

DAQ data acquisition
DBMS database management system
ECAL electro-magnetic calorimeter

endpoint Synonym for path specification in a URI, when used
as a resource identifier in a RESTful API

GCC GNU Compiler Collection
GEM gaseous electron multiplier

GNU GNU’s Not Unix! (operating system and software tool
collection)

HCAL hadronic calorimeter
HTTP hypertext transfer protocol
IDE integrated development environment
IP internet protocol
ISO International Organization for Standardization
JSON JavaScript Object Notation (data interchange format)

LS2 long shutdown 2 (CERN laboratory machine development
period scheduled for years 2019-2020)

MicroMegas micro mesh gas detector
moc meta-object compiler (preprocessor from the Qt framework)

103

abbreviation meaning

MWPC multi-wire proportional chamber
OS operating system
PHP PHP: Hypertext Preprocessor (programming language)
Qbs Qt Build Suite (Qt framework’s build tool)
QML Qt Modeling Language
Qt Qt framework (C++ framework)
REST representational state transfer (system architecture style)
RESTful API API adhering to REST design principles
RICH ring-imaging Cherenkov detector
SciFi scintillating fiber detector
SCP secure copy protocol(network file transfer protocol)
SPS Super Proton Synchrotron (CERN laboratory accelerator)
SSL secure sockets layer
TCP transmission control protocol

TCP/IP combination of TCP and IP protocols, usually referred
to as internet protocol suite

UDP user datagram protocol
UML unified modeling language
URI uniform resource identifier
URL uniform resource locator
VCS version control system
XML extensible markup language

104

	Introduction
	COMPASS experiment
	COMPASS DAQ
	Incentive for Development
	Background Information
	Solution Outline
	Analysis of Requirements
	Preliminary Design

	Used Technologies
	C++
	Qt
	REST
	QHTTPEngine
	JSON

	Implementation
	COMPASS API
	Plugin Interfaces
	REST Server
	Plugins
	Client Applications

	Software Testing
	Coverage of Requirements
	Unit Testing
	Integration Testing
	Static and Dynamic Analysis

	COMPASS API User's Guide
	Plugin Developer's Guide
	Client Applications Developer's Guide

	Conclusion
	Bibliography
	Appendices
	Contents of the Enclosed CD
	Installation Instructions for COMPASS API
	Operating System Note
	Installation of Required Packages
	Configuration of Qt Creator
	Compilation
	Running

	REST Server Application Recognized Configuration File Keys
	Git Repository Structure
	Installation Instructions for Modified run_manager
	Installation of COMPASS API
	Compilation
	Running

	Used Terminology and Abbreviations

