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Introduction

Precision measurements of light-meson spectra help us to learn more about the strong
interaction on energy scales where QCD perturbation theory is not applicable. Most
hadrons are resonances, i.e. short-lived particles that decay via the strong interac-
tion, often into multiple other particles which in turn decay as well. One method to
analyse such multi-body decays is with the use of partial-wave analysis (PWA). By
analysing the kinematic distribution of the daughter particles it is possible to repro-
duce mass, width and quantum numbers of the parent particles. Such Experiments
produce huge amounts of data that, even with the help of computers, analysing these
data in a manageable amount of time can be a very challenging task. ROOTPWA1

is a software framework for partial-wave analysis and it was used to analyse data
gathered by the COMPASS experiment at CERN. While ROOTPWA itself is highly
optimized and can be used on single graphic cards, it is not able to run on a com-
puter cluster, which becomes a necessity for certain analysis tasks. There are libraries
which natively support the deployment of computations on computer clusters. One
such libraries is the open-source framework TensorFlow2, which was originally de-
veloped by Google. In this thesis, the possibility of incorporating TensorFlow into
ROOTPWA is investigated. The main focus lies on the implementation of a key
feature of ROOTPWA, namely the computation of the so-called decay amplitudes,
using TensorFlow. These amplitudes describe the decay of states with well-defined
quantum numbers into multi-body final states. We will verify computed results for
a specific partial wave amplitude and investigate how the computation scales with
the number of CPU cores on a single workstation.

1 https://github.com/ROOTPWA-Maintainers/ROOTPWA
2 https://www.TensorFlow.org

v
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Chapter 1

Partial-Wave Formalism

The partial-wave formalism (also known as partial-wave decomposition or partial-
wave analysis) is a mathematical method to analyse multi-body decays of hadrons
that were produced, for example, in scattering experiments. In this approach the
measured kinematic distribution of the final state particles is decomposed into amp-
litudes with well-defined angular-momentum quantum number. The theoretical ap-
proach used by ROOTPWA is explained in the following to the point where decay
amplitudes are introduced. After that we will focus on these amplitudes in order
to derive a formula to compute them for a chosen partial wave. The deriviation
presented here follows ref. [1].

1.1 Ansatz

In this work, we consider inelastic scattering processes of the form

a+ b→ (1 + 2 + · · ·+ n) + c, (1.1)

where a is a high-energetic beam hadron, b is the target hadron which strongly
interacts with a thereby producing n hadrons (1, 2, . . . , n) in the final state and a
target recoil c. Such reactions are studied at the COMPASS experiment at CERN,
where a high energy π− beam is shot at a proton target producing mostly π,K, η
and η′ in the final state. These reactions are well suited to study the excitation
spectrum of light-quark mesons. In this work, we will only be concerned with one
reaction where three charged pions are produced in the final state. But let us first
look at most the general case.

The cross section for processes like eq. (1.1) is given by

dσa+b→(1+2+···+n)+c =
1

4
√

(pa · pb)2 −m2
am

2
b

|Mfi|2 dΦn+1 (pa + pb; p1, . . . , pn, pc) ,

(1.2)
where the pi are the four-momenta and the mi are the masses of all involved
particles [2]. The Lorentz-invariant transition matrix element from the initial to
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Chapter 1 Partial-Wave Formalism

the final state is represented by Mfi. We assume that the term |Mfi|2 contains
the incoherent averaging and summation over the spin states of the initial and fi-
nal state. The Lorentz-invariant (n+ 1)-body phase-space element of the final-state
particles is represented by dΦn+1. One way to model reactions like in eq. (1.1) is to
assume that the n-body final state is produced via a t-channel exchange process and
that intermediate n-body states are dominated by resonances. This means we can
rewrite eq. (1.1) into a two-stage process, with the first process being the production
of a resonance X in a two-body inelastic scattering reaction

a+ b→ X + c (1.3)

and the second process being the subsequent decay of X into an n-body hadronic
final state

X → 1 + 2 + · · ·+ n. (1.4)

The whole reaction is shown in fig. 1.1.

a
X 1...

n

b c
Figure 1.1: Scattering reaction as described by eq. (1.1)

The inelastic two-body scattering process in eq. (1.3) is described by the n-
body invariant mass mX and the two Mandelstam variables s and t, where s is the
squared center-of-mass energy of the (a, b) system and t is the transferred squared
four-momentum. Using these variables we can rewrite eq. (1.2) into

dσa+b→(1+2+···+n)+c

=
1

16π

1[
s− (ma +mb)

2
] [
s− (ma −mb)

2
] |Mfi|2 dt′

2mx

2π
dmX dΦn (pX ; p1, . . . , pn) .

(1.5)
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1.1 Ansatz

Here, we have split the phase-space element dΦn+1 into a two-body phase-space
element of X and c and a n-body phase-space element dΦn for the decay of X. Since
a decay conserves the total momentum we can write dΦn as

dΦn (pX ; p1, . . . , pn) = δ(4)

(
pX −

n∑
i=1

pi

)
n∏
i=1

d3pi
(2π)32Ei

. (1.6)

Also note that instead of t we use in eq. (1.5) the reduced squared four-momentum
transfer t′ which is defined as

t′ = |t| − |t|min ≥ 0. (1.7)

Here |t|min is the minimum absolute value of t required to produce the (X, c) system.
From here on, the s dependency will be dropped from the equations because the beam
energy of the studied reaction was fixed. Hence, the kinematics of the reaction is
completely defined bymX , t′ and an additional set of (3n−4) phase-space variables1.
The phase-space variables fully describe the n-body system and are represented by
τn.

Instead of the cross section σ the experiment measures intensity distribution I.
A detector with unity acceptance over the full kinematic range would measure a
intensity distribution

I
(
mX , t

′, τn
)

=
dN

dΦn+1
=

dN

dmX dt′ dΦn (mX , τn)
∝

dσa+b→(1+2+···+n)+c

dmX dt′ dΦn (mX , τn)

∝ mX

∣∣Mfi

(
mX , t

′, τn
)∣∣2 , (1.8)

where N is the number of detected events and dΦn (mX , τn) is the differential n-body
phase-space element from eq. (1.6) with the Dirac delta function integrated out. It is
worth pointing out that we dropped all constants from eq. (1.5) in eq. (1.8) and since
I is differential in the Lorentz-invariant phase-space element dΦ, it is independent of
the choice of the phase-space variables τn. Basically, I is a measure for the deviation
of the measured kinematic distribution from a pure phase-space distribution and is
therefore a direct measure for |Mfi (mX , t

′, τn)|2. From here on, matrix elements
will be referred to as amplitudes.

Assuming that the intermediate states X are dominated by resonances, we can
factorize the amplitude for X into two parts: (i) the so-called transition amplitude
Ti(mX , t

′) that describes the production and propagation of the state X and (ii) the
decay amplitude Ψi(mX , τn) that describes the decay of X into a particular n-body

1The 4n components of the four-momenta of the n final-state particles, which are constrained by
their n known masses and another 4 equations, which account for energy conservation and the
known four-momentum of X, leave 4n− n− 4 = 3n− 4 unknown variables.
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Chapter 1 Partial-Wave Formalism

finals state. The index i summarizes the set of quantum numbers that uniquely
define the process in eq. (1.3) and eq. (1.4). It will be discussed further in 1.2.4. In
the scattering reactions considered here, the possible quantum numbers for X are
limited only by the conservation laws of the strong interaction. In addition, the X
may decay via various decay chains. Hence usually many amplitudes with various
i contribute to the intensity. Since the initial and final state particles for all these
amplitudes are the same, the amplitudes may interfere with each other and hence
have to be added coherently. Therefore, the model for the intensity distribution can
be written as

I(mX , t
′, τn) =

∣∣∣∣∣
waves∑
i

Ti
(
mX , t

′)Ψi (mX , τn)

∣∣∣∣∣
2

. (1.9)

Using model assumptions, the decay amplitudes can be calculated. However, the
transition amplitudes are unknown. It is actually the goal of the PWA to extract
them from the data. To this end, the data are subdivided into narrow bins in mX

and t′. In each (mX , t
′) cell, the PWA model in eq. (1.9) is fit to the measured five-

dimensional intensity distribution using an extended maximum likelihood approach.
The free parameters in this fit are the set of transition amplitudes {Ti} in the given
(mX , t

′) bins. In a second stage of the analysis, one can then search for resonance
signals in the selected transition amplitude.

1.2 Decay Amplitude

To calculate the decay amplitudes Ψi (mX , τn), we utilize the so-called isobar
model [3, 4]. In this model, the decay of X is described as a chain of successive
two-body decays with the appearance of additional intermediate resonances. An-
other fundamental assumption is that the outgoing particles of the successive decays
do not interact with each other, i.e. we do not consider final-state interactions.

To construct a formula for Ψi (mX , τn), we have to first construct a formula for
the two-body decay amplitude AJrMr

r . This amplitude describes the propagation of
a resonance r with spin Jr and spin projection Mr onto a chosen quantization axis
and the decay of r into particle 1 and 2. The two body-body decay amplitude can be
calculated in the r rest frame using the helictiy formalism [5]. The daughter particle
have spins J1,2 and are described in helicity bases where the quantization axes are
along the directions of the momenta of the respective particles. Due to conservation
of momentum the momenta of the particles will be back to back in the r rest frame
and have a magnitude given by the mass of r and the daughter masses. This allows to
completely define the kinematics of the decay by the polar angle θ and the azimuthal
angle φ of one daughter.

4



1.2 Decay Amplitude

The daughter particles will be described as a two-particle plane-wave center-of-
mass helicity state |p1,p2;λ1, λ2〉 where λ1,2 is the helicity of the respective daughter
particle and p1 = −p2 = q its momentum, where q is the breakup momentum of r.
The magnitude of the breakup momentum q is given by

|q|2 = q2 (mr,m1,m2)

=

[
m2
r −

(
m2

1 +m2
2

)] [
m2
r

(
m2

1 −m2
2

)]
4m2

r

(1.10)

The breakup momentum only depends on the particle masses and is hence a constant.
This allows us to write the previous quantum states as |θr, φr;λ1, λ2〉. We can finally
write the two-body decay amplitude of a resonance r with mass mr and spin state
|Jr,Mr〉 as

AJrMr
r (mr, θr, φr) = Dr (mr)

∑
λ1,λ2

〈θr, φr;λ1, λ2|T̂ (mr)|Jr,Mr〉 (1.11)

where Dr(mr) represents the propagation of r and T̂ (mr) the transition operator
of the decay. The coherent sum over all allowed daughter helicities will only be
executed if both daughter particles are intermediate states in the decay chain. If at
least on of the daughters is a (quasi-stable) final state particle and their helicity was
not measured, then the summation over the respective helicities has to be performed
incoherently on the cross-section level.

We now expand the two-body decay amplitude into partial waves by inserting
a complete set of angular-momentum helicity states |J,M, λ1, λ2〉, which describe a
two-particle state with definite spin. The amplitude now reads

AJrMr
r (mr, θr, φr) = Dr (mr)

∑
λ1,λ2

〈θ, φ;λ1, λ2|Jr,Mr, λ1, λ2〉

× 〈Jr,Mr, λ1, λ2|T̂ (mr)|Jr,Mr〉 . (1.12)

The amplitude can be further expanded into two-particle states |Jr,Mr, Lr, Sr〉,
which describe states that have definite relative orbital angular momentum Lr
between the two daughters and where the spins of both daughters couple to the
total intrinsic spin Sr:

AJrMr
r (mr, θr, φr) = Dr (mr)

∑
λ1,λ2

angular part︷ ︸︸ ︷
〈θr, φr;λ1, λ2|Jr,Mr, λ1, λ2〉 〈Jr,Mr, λ1, λ2|Jr,Mr, Lr, Sr〉

×Dr (mr) 〈Jr,Mr, Lr, Sr|T̂ (mr)|Jr,Mr〉︸ ︷︷ ︸
dynamical part

. (1.13)
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Chapter 1 Partial-Wave Formalism

We see that the amplitude factorizes into an angular part which is given by first
principles and completely defined by the angular-momentum quantum numbers and
the decay angles and a dynamical part, which only depends on the invariant mass
mr of the (1, 2) system and which we need to model.

1.2.1 Angular Part

The first scalar product in the angular part in eq. (1.13) describes the angular dis-
tribution of the daughter particles in the r rest frame frame. It can be written as [5,
6]

〈Jr,Mr, λ1, λ2|θr, φr;λ1, λ2〉 =

√
2Jr + 1

4π
DJr
Mrλ

(φr, θr, 0) , (1.14)

where D represents the Wigner D-function [7]. Note that λ will be defined further
below. This function describes the transformation property of a spin state |J,M〉
under an active rotation R̂ defined by the three Euler angles α, β and γ. Since the
|J,M〉 basis is complete, any rotated state can be expressed as a linear combination
of these basis states like

R̂ (α, β, γ) |J,M〉 =

+J∑
M ′=−J

∣∣J,M ′〉
DJ

M′M (α,β,γ)︷ ︸︸ ︷〈
J,M ′

∣∣ R̂ (α, β, γ) |J,M〉

=
+J∑

M ′=−J
DJ
M ′M (α, β, γ)

∣∣J,M ′〉 (1.15)

Using the same convention as in ref. [8], where

R̂ (α, β, γ) = e−iαĴze−iβĴye−iγĴz (1.16)

and Ĵi is the ith component of the angular momentum operator, yields

DJ
M ′M (α, β, γ) =

〈
J,M ′

∣∣ e−iαĴze−iβĴye−iγĴz |J,M〉
= e−iM

′α
〈
J,M ′

∣∣ e−iβĴy |J,M〉 e−iMγ

= e−iM
′α dJM ′M (β) e−iMγ (1.17)

with the small Wigner d-function

dJM ′M (β) =
[
(J +M)! (J −M)!

(
J +M ′

)
!
(
J −M ′

)
!
] 1
2

×
∑
k

(−1)k

k! (J +M − k)! (J −M ′ − k)! (M ′ −M + k)!

×
(

cos
β

2

)2J+M−M ′−2k (
sin

β

2

)M ′−M+2k

. (1.18)
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1.2 Decay Amplitude

The sum has to performed for those values of k for which the factorials are non-
negative.

Now we are able to actually compute the Wigner D-function and we can de-
rive eq. (1.14). To this end, we consider the special case where θr = φr = 0, i.e.
the daughter particles move in opposite directions along the quantization axis. In
this case, the two-particle plane-wave center-of-mass helicity state |0, 0;λ1, λ2〉 is an
eigenstate of Ĵz. The total spin projection onto the z is λ = λ2−λ1. We can assume,
without loss of generality, that particle 1 moves in the +z direction. The two-particle
state can be expressed in terms of angular-momentum helicity states with

|0, 0;λ1, λ2〉 =

∞∑
Jr=0

|Jr, λ;λ1, λ2〉 〈Jr, λ;λ1, λ2|0, 0;λ1, λ2〉︸ ︷︷ ︸
CJr

. (1.19)

Based on this state we can construct an arbitrary two-particle plane-wave center-
of-mass helicity state by applying an active rotation R̂(φr, θr, 0), where φr and θr
describe the direction of particle 1:

|φr, θr;λ1, λ2〉 = R̂(φr, θr, 0) |0, 0;λ1, λ2〉 =
∞∑

Jr=0

CJrR̂(φr, θr, 0) |Jr, λ;λ1, λ2〉 .

(1.20)
The coefficients CJr are fixed by the two-particle states and the normalization of the
Wigner D-functions. With eq. (1.15) we can now write

|θr, φr;λ1, λ2〉 =

∞∑
Jr=0

+Jr∑
Mr=−Jr

√
2Jr + 1

4π
DJr
Mr, λ

(φr, θr, 0) |Jr,Mr;λ1, λ2〉 . (1.21)

Using this equation one can compute the scalar product in eq. (1.14) and verify the
identity.

The second scalar product in the angular part of eq. (1.13) is called the re-
coupling coefficient. It connects the two-particle angular-momentum states in the
LS-coupling and helicity representation and is given by [5]

〈Jr,Mr;Lr, Sr|Jr,Mr;λ1, λ2〉 =

√
2Lr + 1

2Jr + 1
(J1, λ1; J2,−λ2|Sr, λ)︸ ︷︷ ︸

spin-spin coupling

(Lr, 0;Sr, λ|Jr, λr)︸ ︷︷ ︸
spin-orbit coupling

(1.22)
The two appearing factors are Clebsch-Gordan coefficients. The first one for the
coupling of the spins of the daughter particles to the total intrinsic spin Sr and
the second one for the coupling of Lr and Sr to Jr. It should be noted that by
construction the orbital angular momentum Lr is perpendicular to the momenta of
both daughters and has therefore no projection onto the helicity quantization axis.

7



Chapter 1 Partial-Wave Formalism

1.2.2 Dynamical Part

First, we look at the propagator term Dr(mr) of the resonance r. For many reson-
ances, as well as for the one we will discuss later on, the propagator can be paramet-
rized using a relativistic Breit-Wigner amplitude of the form

Dr (mr;m0,Γ0) =
m0Γ0

m2
0 −m2

r − im0Γ(mr)
, (1.23)

where m0 and Γ0 are the nominal mass and width of the resonance. In the simplest
case, i.e. for a narrow resonance, we can assume the total width to be constant, i.e.

Γ(mr) = Γ0 (1.24)

For a wide resonance we need a better approximation:

Γ(mr) =

decay modes∑
i

Γi
qi
mr

m0

qi,0

F 2
Li

(qi)

F 2
Li

(qi,0)
(1.25)

which sums over all decay modes i of resonance r. The total width depends on the
partial width Γi of each decay channel i, the magnitude of the breakup momentum
qi = q(mr;mi,1,mi,2) as given by eq. (1.10), the breakup momentum of the reson-
ance mass qi,0 = q(m0;mi,1,mi,2) and the centrifugal-barrier factor FLi(qi), which
parametrizes the orbital angular-momentum barrier.

The centrifugal-barrier factor FL(q) takes into account the barrier effect that is
caused by the orbital angular momentum between the daughters in a two-body decay.
The maximal value of L is limited by the magnitude of the breakup momentum q
and the impact parameter d between the daughter particles. The latter is generally
assumed to be given by the range of the strong interaction, which is about 1 fm.
This corresponds to a range parameter of qr = 197 MeV/c. A phenomenological
parametrization of the barrier factors was derived by Blatt and Weiskopf in ref. [9]
by solving the non-relativistic Schrödinger equation for a square-well potential with a
radius given by the range of the strong interaction, which corresponds to the impact
parameter. The solutions are the spherical Hankel functions of the first kind. The
barrier factors are usually written as functions of a dimensionless variable

z(mr) =

[
q(mr)

qr

]2
. (1.26)

Using the parametrization from ref. [10] yields

F 2
L(z) =

1

z
∣∣∣h(1)L (

√
z)
∣∣∣2 , (1.27)

8



1.2 Decay Amplitude

with the spherical Hankel function of the first kind given by

h
(1)
L = (−i)L+1 e

ix

x

L∑
k=0

(L+ k)!

(L− k)!k!

(
i

2x

)k
. (1.28)

It is customary to normalize the barrier factors such that FL(1) = 1. The barrier
factors for the lowest values of L up to 3 are2

F 2
0 (z) = 1, (1.29)

F 2
1 (z) =

2z

z + 1
, (1.30)

F 2
2 (z) =

13z2

z2 + 3z + 1
, (1.31)

F 2
3 (z) =

277z3

z3 + 6z2 + 45z + 225
. (1.32)

Decays with large values of L are usually suppressed so that higher orders of
FL(z) are rarely needed.

Lastly, we need to parametrize the second factor of the dynamical part
in eq. (1.13), i.e. the expectation value of the transition operator. It is given by

〈θr, φr;λ1, λ2|T̂ (mr)|Jr,Mr〉 = αr→1+2FLr(mr), (1.33)

where αr→1+2 is a complex-valued coupling constant which describes strength and
relative phase of the decay mode. This parametrization is a further assumption
needed to make the decay amplitudes computable. This coupling constant will be
treated as an additional fit parameter and it will be, like all fit parameters, absorbed
by Ta+b→X+c (mX , t

′) from eq. (1.9). Therefore, αr→1+2 will no longer be part of the
following equations.

1.2.3 Formula for n-body decay

Now we have all ingredients for the two-decay amplitude in eq. (1.13). This means
we can write down a recursive formula to calculate the decay amplitude for an n-

2It is sensible to write these functions out, because implementing the Hankel functions is not only
tedious, they are computationally expensive.

9



Chapter 1 Partial-Wave Formalism

-body decay. Inserting eqs. (1.14), (1.22) and (1.33) into eq. (1.13) yields

AJrMrLrSr
r (mr, θr, φr) =

√
2Lr + 1

4π︸ ︷︷ ︸
normalization

dynamical part︷ ︸︸ ︷
Dr(mr)︸ ︷︷ ︸
propagator

FLr(mr)︸ ︷︷ ︸
barrier factor

×
∑
λ1,λ2

(J1, λ1; J2,−λ2|Sr, λ) (Lr, 0;Sr, λ|Jr, λr)DJr ∗
Mrλr

(φr, θr)︸ ︷︷ ︸
angular part

×AJ1M1L1S1
1 (m1, θ1, φ1)︸ ︷︷ ︸

decay of 1

AJ2M2L2S2
2 (m2, θ2, φ2)︸ ︷︷ ︸

decay of 2

, (1.34)

where we, compared to eq. (1.13), added the amplitudes AJ1M1L1S1
1 and AJ2M2L2S2

2 .
These terms account for the further decays of the daughter particles. If the respect-
ive daughter particle is stable, decay amplitude becomes unity. In this case, the
amplitude of the daughter particle has the same form as eq. (1.34). In essence, to
compute the n--decay amplitude eq. (1.34) has to be applied recursively for each
two--body vertex in the decay chain.

1.2.4 Concrete Example

Using eq. (1.34) we can derive an explicit formula for the decay amplitude for a
specific partial-wave which occurs in the reaction

p+ + π− → p+ + π+ + π− + π−. (1.35)

Figure 1.2 shows the process by using a specific partial wave as an example.

P

π´

beam

ptarget precoil

X´

[4++1+]

f2(1270)

π´

beam

ptarget precoil

π´

beam

ptarget precoil

π´

beam

ptarget precoil

[L = 3]

Bachelor
π´

π+

π´

π´

beam

ptarget precoil

[L = 3]

Bachelor
π´

π+

π´

Figure 1.2: Scattering reaction in case of the 4++1+ f2 (1270) π F partial wave.
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1.2 Decay Amplitude

Applying eq. (1.34) recursively and using that pions are spinless yields3

Ψi(mX ,

τ3︷ ︸︸ ︷
θGJ, φGJ,mr, θHF, φHF) =

√
2LX + 1

4π
FLX

(mX)

×
∑
λr

(Jr, λr; 0, 0|SX , λX)(LX , 0;SX , λX |J, λX)DJ ∗
Mλr(θGJ, φGJ, 0)

×
√

2Jr + 1

4π
FJr(mr)Dr(mr)D

Jr ∗
λr0

(θHF, φHF, 0). (1.36)

The angles carry indices GJ and HF, which denote the reference frame in which they
are defined. Both reference frames are right-handed coordinate systems and they are
the rest frames of the respective parent particle whose decay we want to describe. GJ
stands for the Gottfried-Jackson frame and is the rest frame of X. In this reference
frame the particle beam defines the zGJ axis and the yGJ axis is given by the normal
of the production plane: ŷGJ ∝ p̂lab

a × p̂lab
X ∝ p̂GJ

a × p̂GJ
a . HF stands for the helicity

reference frame where the π+π− isobar resonance is at rest. The coordinate system
is defined by taking the zHF along the original direction of the motion of the isobar
and ŷHF ∝ ẑGJ × ẑHF. Normally, the angles would have to extracted form the raw
data by performing several Lorentz-transformations. Since we are only concerned
about the computation of the decay amplitude, the angles will be provided in the
data set.

If we compare eq. (1.36) with fig. 1.2 we see that even though there are two
decay vertices, there is only one sum over the helicity states of the isobar r and
only two Clebsch-Gordan coefficients. Fortunately, pions are spinless particles which
causes one sum and two Clebsch-Gordan coefficients to be reduced to unity. We also
see that there is no propagator DX . Looking back to eq. (1.9), this propagator was
defined to be part of transition amplitudes Ti is therefore omitted from this equation.
Equation (1.36) can be further simplified to

Ψi(mX , θGJ, φGJ,mr, θHF, φHF) =√
(2LX + 1)(2Jr + 1)

4π
FLX

(mX)FJr(mr)Dr(mr)︸ ︷︷ ︸
dynamical part

×
∑
λr

(LX , 0; Jr, λr|J, λr)DJ ∗
Mλr(θGJ, φGJ, 0)DJr ∗

λr0
(θHF, φHF, 0)︸ ︷︷ ︸

angular part

. (1.37)

3The index i holds by definition all relevant quantum numbers of a particular partial-wave. The
short-hand notation of the given example is i = 4++1+ f2 (1270) π F . Note that F is the
spectroscopic notation for 3.
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Chapter 1 Partial-Wave Formalism

Since pions are bosonic particles and there are two negatively charged indistinguish-
able pions in the final state we would normally have to symmetrize the decay amp-
litude under exchange of the two π−. Since here we are only concerned with proof-
of-principal computation of the decay amplitude, we will leave eq. (1.37) as is and
will implement using TensorFlow.

The partial-wave we will use to evaluate the performance of the Tensorflow
implementation is the partial-wave shown in fig. 1.2. The involved particles as well
as their quantum numbers are:

X : JPXCX
X M εX

X = 4++1+

f2(1270) : JPrCr
r = 2++

LX = 3,

X is the resonance produced in the scattering reaction, f2 (1270) is an intermediate
isobar π+π− resonance in the decay chain and LX is the orbital angular-momentum
between the bachelor pion and f2 (1270). Note that the spin projection of X is given
with two quantum numbers. MX is the absolute value of the projection and εX , the
so-called reflectivity, is the sign of the projection.
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Chapter 2

TensorFlow

TensorFlow is an open-source software library for high-performance numerical com-
putations. It was especially designed for machine-learning applications and the im-
plementation of artificial neural networks (ANN). This design choice heavily impacts
the way, in which algorithms can be implemented with TensorFlow. Therefore, we
will briefly discuss the fundamentals of ANNs [11] to understand how to implement
numerical computations with TensorFlow. Then we look at the explicit implement-
ation of eq. (1.37).

2.1 Artificial Neural Network

The building blocks of ANNs are so-called perceptrons as shown in fig. 2.1. A

Figure 2.1: Schematic diagram of a perceptron [11].

perceptron is a symbolic representation of a mathematical operation that can taken
an arbitrary amount of input variables xi and produces one mathematical value as
an output. The most common mathematical operation represented by a perceptron
in ANNs is

output =

{
0 if

∑
iwi · xi − b ≤ 0,

1 otherwise,
, (2.1)

13



Chapter 2 TensorFlow

where xi are the input values, wi are the so-called weights and b is the so-called
bias. Each perceptron carries their own weights and biases. ANNs are created by
interconnecting perceptrons with one another. Such networks can consist of just a
few or up to several thousands perceptrons. This means that the mathematical logic
of an algorithm is projected onto a graph of interconnected nodes where each one
represents a mathematical operation. This philosophy is fully embraced by Tensor-
Flow. Algorithms are implemented as computational TensorFlow graphs. This is
the reason why eq. (1.37) was explicitly derived instead of simply implementing and
using eq. (1.34). A recursive algorithm can not be implemented with TensorFlow,
since the computational graph has to be explicitly defined before the start the com-
putation. At first glance this may seem like a disadvantage, but since the graph
is explicitly defined it can be modified, i.e optimized, before the actual computa-
tion. ROOTPWA lacks such a feature. One way to optimize a graph is by removing
redundant operations. A redundant operation could be a node whose input never
changes. So instead of computing the node every time the graphs is called, the node
can be computed once and than be replaced by a node which just carries a constant
value equal to the just computed one. Looking back at eq. (1.37), all terms which
only depend on the quantum numbers and the nominal masses, like the Clebsch-
Gordan coefficients, are in terms the computation, redundant. It should be noted
that graph modification is still an experimental feature in TensorFlow, and though
I have successfully tested preprocessing of computation graphs, this feature will not
be used in the performance studies in section 3.2.

Lastly, to actually use an ANN, it needs to be trained. To train a network
training data, consisting of input and corresponding output values, has to given.
Based on the training data, the weights and biases are changed in order to minimize
the difference between given and computed output values. This is an iterative process
which is actually very similar to fitting data. The main focus of this thesis is the
the computation of decay amplitudes, but the main purpose of ROOTPWA is to
extract information by fitting a theoretical model onto the data set. Since training
a neural network, i.e. data fitting, is the most essential part of machine-learning,
TensorFlow offers many features for this process. These features can be used to
possibly improved the performance of ROOTPWA even further. This is one of the
reasons why TensorFlow was chosen to be incorporated with ROOTPWA.

2.2 Implementation of the decay amplitude with
TensorFlow

The nodes of a TensorFlow graph can be bundled together into so called subgraphs.
Subgraphs themselves can also be divided into further subgraphs. Using this concept

14



2.2 Implementation of the decay amplitude with TensorFlow

allows to construct layered TensorFlow graphs. The structure of the graph can then
be easily visualized by a TensorFlow feature called TensorBoard. It does not only
visualize the graph itself but even how the data figuratively flows through the graph.
We will now briefly examine how eq. (1.37) is implemented as a computation graph.
The top-most layer of the graph is shown in fig. 2.2. The graph has been structured

Figure 2.2: Top-most layer of the TensorFlow graph representation of formula
eq. (1.37)

in such a way that the dynamical and angular part are computed by a their own
subgraphs. The expanded subgraphs of both parts are shown in figs. A.1 and A.2
The input nodes have also been separated. The subgraph Parameters contains all
nodes that hold constant values, i.e. quantum numbers, nominal masses and widths
and the subgraph Variables holds all the nodes that can be fed data to, i.e. the
kinematic variables τ3 = {mX , θGJ, φGJ,mr, θHF, φHF}. The arrows between the
subgraphs indicate how many tensors, i.e. how much data, flows from one subgraph
to another. For example, the arrow connecting the subgraph Variables with subgraph
Angular_Part shows that 20 tensors flow from Variables to Angular_Part. Looking
back at eq. (1.37), we see Angular_Part represents the sum over two Wiger D-
functions which depend on two angles, i.e. two nodes in the subgraph Variables,
each. The sum goes from λr = −2 to λr = +2, so we need 2 · 2 · 5 = 20 tensors from
Variables to compute Angular_Part, hence the flow of 20 tensors.

Tensors in this context are multi-dimensional arrays which can have an arbit-
rary shape. Since TensorFlow allows vectorization, i.e. we can group our data into
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Chapter 2 TensorFlow

arrays and give the whole array to the TensorFlow graph and it will project the
mathematical operation onto all data points in the array accordingly, it is not neces-
sary to manually loop over every single data point and feed it to the graph directly.
Because there a six kinematic variables, i.e. {mX , θGJ, φGJ,mr, θHF, φHF}, the graph
will always be fed with six one-dimensional tensors with arbitrary length. So if we
want to compute 1000 decay amplitudes we have to populate those six tensors with
1000 values each and feed them to the graph.
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Chapter 3

Results

Now that we have implemented a TensorFlow graph which can compute decay amp-
litudes according to eq. (1.37) we can examine the algorithm in depth.

TensorFlow has APIs available in several programming languages both for con-
structing and executing a TensorFlow graph. The decay amplitude algorithm was
implemented using the Python 2.7 and C++ APIs. The Python API was chosen
because it is at present the most mature. Also Python is one of the most used
programming languages by scientists today. The C++ API was chosen because
ROOTPWA is almost entirely written in C++ and we aim to integrate Tensor-
Flow into ROOTPWA. TensorFlow is being developed rather rapidly. The API
version used for all following computations was 1.9. It should also be noted that all
TensorFlow APIs other than the Python API are considered to be experimental by
the developers and are not yet covered by the TensorFlow stability promises. All
computations have been performed on a workstation of the CIP-Pool of the TUM
Physikdepartment1. The source code is available at [13].

According to eq. (1.37), the computation of the decay amplitude needs six input
values2, i.e. two masses and four angles. Once the computation is completed, we
obtain for each event two values, the real and imaginary part of the decay amplitude.
The input data set consisted of 10 000 unique events, i.e. 10 000 times eight numerical
values formatted in a CSV file3. There were eight values per event because the data
set also provided the values of the real and imaginary part of the decay amplitude
computed with ROOTPWA. Furthermore, in some tests we used up to 106 events.
This larger data set was generated by copying the initial data set 100 times and
merging all copies into a single file.

1To be precise, they were performed on workstation cont1sandy3, which possess a Intel i7 -2600K
3.40GHz (SandyBridge) CPU. More information about this machine can be found at ref. [12]

2All other values like quantum numbers, nominal masses and widths of the particles are constants
of the computation and are hard coded into the TensorFlow graph itself.

3A comma-separated values (CSV) file is a delimited text file that uses a comma to separate values.
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Chapter 3 Results

3.1 Accuracy

In this section, we want to analyse how accurate our implemented algorithm can
reproduce the results given by ROOTPWA4. Our algorithm and ROOTPWA are
working with 64 bit double-precision floating-point numbers. The computation of
the decay amplitude involves a large number of arithmetic operations. Since the
order of execution of those operations will be different in the two implementations,
we expect numerical differences of the calculated amplitude values due to different
rounding effects.

The histograms of the differences of the real and imaginary part of the decay
amplitudes as computed by the TensorFlow C++ implementation and ROOTPWA
are shown in figs. 3.1a and 3.1b for all 10 000 events.
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Figure 3.1: Difference between decay amplitudes as computed TensorFlow C++ im-
plementation and ROOTPWA.

The histograms clearly show that most of the amplitude values are nearly
identical. We also see that larger deviations are approximately exponentially sup-
pressed. A good measure for the accuracy is the Root-Mean-Square-Deviation

4We will only use the output of the TensorFlow C++ implementation for this comparison. The
results for the TensorFlow Python are nearly identical so there is no point in showing both.
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3.2 Computation Time

(RMSD), which is defined by

RMSD =

√
1

n

∑
i

x2i (3.1)

where xi are absolute differences between the real and imaginary parts respectively
of two computed amplitudes. If we apply eq. (3.1) to the computed differences,
we get for both the real and imaginary part an RMSD value of the order 10−10.
Compared with the uncertainty of the measured data, these deviations can be safely
neglected. Therefore, we have shown that our algorithm reliably computes the same
decay amplitudes as ROOTPWA.

3.2 Computation Time

Analysing the computation time of algorithms is a very broad field in computer
science and it can be done in many different ways and with the use of advanced
software tools. For the of sake of simplicity, we will not be using any profiling
software. The easiest solution to measuring the execution time of any algorithm is
by placing time stamps in the source code in such a way that the difference between
two time stamps gives us the execution time of the operations between those two
points.

We will split the computation of the decay amplitudes into three parts. The first
part of the computation is the reading of the input data into the TensorFlow graph
and the writing of the computed amplitudes values into an output file. The second
part is the construction5 of the TensorFlow graph. Lastly, the most interesting part
is the graph execution, i.e. the computation of the decay amplitudes. For every
part, we compare the computation times of the Python and the C++ TensorFlow
implementation.

3.2.1 Input and Output of Data

We will now analyse, how fast our algorithm can read in and write out data. The
result for reading in data can be seen in fig. 3.2 and for writing data out in fig. 3.3.

The obvious difference between the two graphs in fig. 3.2 is that the time re-
quired by the Python implementation to read the data is virtually independent of
the number of computed data points whereas the C++ implementation exhibits the
expected linear dependence. This is due to how the algorithm was implemented

5The term "construction" refers to the compilation and the loading of the coded graph into the
memory.
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Figure 3.2: Time required to read data into the TensorFlow graph plotted against
the number of computed amplitudes.

and how Python and C++ handle input files. Since C++ operates with so-called
input/output streams, one can read small amounts of data from a large file at a
sufficient speed. This explains the linear dependence of the time on the amount of
data points in fig. 3.2b. In the Python implementation, we use a function from the
NumPy package in order to read CSV files into arrays, which are then fed to the
TensorFlow graph. However, this function always reads the whole file, i.e. all 106

events, even though not all of them were used during the computation. But when
we look at the last data point for 106 computed amplitude values, we see that both
implementations roughly require the same amount of time to read in the data. This
is not surprising considering that NumPy is largely written in C. Hence, the different
behaviour of the Python implementation is merely a consequence of how the test was
implemented and does not indicate a performance issue of Python itself.

This discrepancy could possibly be avoided if we had used a TensorFlow mech-
anic to construct a so-called input pipeline. It was not realized in our case because
the construction of such a pipeline is rather sophisticated and very specific to Tensor-
Flow and this thesis mainly focuses on the actual computation. This is something
which would be improved upon in further development.

The time required to write the computed amplitudes into a file, as shown in-
fig. 3.3, scales in both cases with the expected linear dependency. We also see that
both require roughly the same amount of time. Since the same amount of data was
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Figure 3.3: Time required to write data out of the TensorFlow graph plotted against
the number of computed amplitudes.

fed to the TensorFlow graph in both implementations the same amount of data was
computed and written to the output file. Hence, as explained above, we hardly see
a difference, with regards to writing speed, between the two implementations.

3.2.2 Construction of the TensorFlow Graph

We will now examine the graph construction time. As noted above, graph construc-
tion refers to the process of compiling the coded TensorFlow graph and loading it
into memory, so that it is ready for execution. The results are shown in fig. 3.4.

We can see that the construction time of the graph is independent of the amount
of amplitudes we want to compute. This is because the graph is a representation
of the mathematical of the decay amplitude, which is independent on the size of
the input. The graph construction in the C++ implementation is about five times
faster than in the Python implementation. In practice, however, the difference would
probably be barely noticeable because the graph is only constructed once at the
beginning of the computation and it does not make a big difference if the construction
lasts 20 ms or 100 ms.
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Figure 3.4: Time required to construct the TensorFlow graph plotted against the
number of computed amplitudes

3.2.3 Graph Execution

We will now examine the time spent for the graph execution. Unlike for the parts
of the computation we looked at before, we can now make use of the parallelization
features provided by TensorFlow. As was already mentioned, using TensorFlow
requires the implementation of the mathematical logic of the algorithm in form of a
TensorFlow graph. To execute such a graph, a so-called TensorFlow session has to
be created which is used to compute any node of the graph as long as we provide
input. Such a TensorFlow session can be configured easily.

Since we are limiting ourselves to the computation on a single workstation, we
will configure the number of CPU cores available to the TensorFlow session and look
at how this impacts the computation time. The used workstation possesses eight
CPU cores6, so we analyse the performance of one, two, four and all eight cores.
In addition to studying the computation time we will now also look at the average
time required to compute a single decay amplitude in dependence on the number of
computed amplitudes. This means we are normalizing the computation time to the
number of computations. The results are shown in fig. 3.5 and fig. 3.6.

In fig. 3.5 we can see that, as expected, the total computation scales linearly with

6The CPU actually only has four physical CPU cores, but hyper-threading allows us to use eight
virtual CPU cores.
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Figure 3.5: Computation time plotted against the number of computed amplitudes.
Different colors represent different number of used CPU cores.

the number of computations and that if we supply more cores to the computation
it takes less time. However, the speed-up does not scale linearly with the number
of CPU cores and it becomes smaller the more CPUs are provided. In particular
the improvement from four to eight is very small, but this is due to hyper-threading
since the CPU only has four physical cores. Therefore, we will set the performance
of four cores at 106 computed decay amplitudes as a benchmark and will compare it
with the performance of one core.

The performance gain is large for the Python implementation as compared to
the C++ implementation. If we compare the performance of one core to four cores
for 106 computed amplitudes: in the Python implementation we gain roughly 274
ms, which is a relative improvement by a factor of 2.5. In the same instance, the
C++ implementation improves by 9, 4 ms, which is a relative improvement by a
factor of 1.1. We also see that the C++ implementation is faster than the Python
implementation by 118 ms, or by a factor of 2.8.

In fig. 3.6 we can see that the average time needed to compute a single amp-
litude converges to a constant value in the limit of large data sets. The asymptotic
value depends on the number of used CPUs. While this dependency is pronounced
in case of the Python implementation, we gain 2, 74µs between one and four core
performance at 106 amplitudes, the C++ implementation gains just 0.10µs. The
relative factors are the same as above.
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Figure 3.6: Time required for the computation of one decay amplitude plotted against
the number of computed amplitudes. Different colors represent different number of
used CPU cores.

By and large, we have found out that the C++ implementation is 2.8 times faster
than the Python implementation at our set benchmark. The speed up is even larger
for just one core. This is significant and very rather unexpected that the Python and
C++ APIs differ so much in their computation prowess. Another unexpected result
is the scaling behaviour of the TensorFlow C++ implementation with the number of
used CPU cores. Usually one would expect two cut the computation by a factor close
to two when doubling the number of CPU cores. While the Python implementation
approximately displays this behaviour, the C++ implementation the computation
time hardly changes. Furthermore, if we extrapolate the computation time of the
C++ implementation in fig. 3.5b to zero computed amplitudes we see that there is
a rather significant off-set. This is an lower limit to the achievable performance for
small data sets. Without the use of profiling software it is very difficult to explain
why these effects occur.
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Chapter 4

Conclusions and Outlook

The main goal of this thesis was to proof that the computation of partial-wave decay
amplitudes is feasible with the TensorFlow framework and that TensorFlow allows
the computation to be parallelized on a single machine. As was shown in chapter 3,
both goals were achieved. Another observation is that the C++ implementation
seems to be more than 2.8 times faster than the Python implementation with regard
to graph execution time. However, the C++ implementation does not scale well with
the number of CPU cores used in parallel.

A next step would be to optimize the computations further based an profiling.
Another step would be to implement graph optimization algorithms as discussed
in section 2.11.

Looking at the big picture, now that we know how to deploy TensorFlow at a
single workstation (CPU), in the future it should be investigated how to transfer the
computation onto GPUs2 and computer cluster.

1The chosen decay amplitude does not have much improvement potential in this regard so it was
not included in this report. However, for other n-body final states, this may become important.

2The use of TensorFlow in conjunction with GPUs has been successfully tested already.
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Appendix A

Expanded TensorFlow graphs

The following figures are the expanded TensorFlow subgraphs for the dynamical and
angular displayed in fig. 2.2.

Figure A.1: TensorFlow graph representation of eq. (1.37) with expanded subgraph
Dynamical_Part
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Appendix A Expanded TensorFlow graphs

Figure A.2: TensorFlow graph representation of eq. (1.37) with expanded subgraph
Angular_Part
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