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Introduction

Hadrons are composite particles held together by the strong interaction. The
most prominent hadrons are the proton and neutron. However, most hadrons are
extremely short-lived resonances that can be produced e.g. in inelastic scattering
experiments. Their spectrum is in parts only poorly known. Precision measurements
in experiments with, e.g., light mesons, intend to increase the knowledge about the
hadron spectrum and the behaviour of the strong interaction at low energies.
The COMPASS experiment at CERN is a such high-energy physics experiment.

Using CERN’s SPS accelerator, it aims to study the hadron spectrum of light
mesons, which are composed of up, down or strange quarks. These mesons are
produced in inelastic scattering reactions of a 190 GeV/c secondary hadron beam,
which is produced by the 400 GeV/c SPS proton beam impinging on a beryllium
target. The hadron beam, which consists mostly of π with a small admixture of K,
is shot onto a liquid-hydrogen target. In the strong decay observed, the colliding
particles form unstable intermediate, labelled X−, that are assumed to be domin-
ated by resonances. The goal of the COMPASS experiment is to identify and study
these resonances through the final-state particles. For this analysis, the partial-wave
method is employed. In order to be able to calculate the X− decay amplitude, it
is assumed that the decay takes place as a series of two-body decays, with addi-
tional intermediate two-body resonance states ξ, called the isobars. However, isobar
parameters, i.e. the masses and widths of the isobar resonances, need to be known
precisely from other experiments. For practical reasons, these parameters cannot
be left as free parameters in the analysis, which leads to important systematic
uncertainties.

In this thesis, we therefore investigate these uncertainties and study the parameters
of some isobars that appear in the partial-wave analysis of the K−π+π− final state,
using the maximum likelihood method. This method is used to compare a model
to measured data, by construction of a likelihood value, which indicates how well
the model fits to the data. We will search for those isobar parameters which yield
the highest likelihood for four hadronic isobar resonances, and compare them to the
world averages that are used in the partial-wave analysis.
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Chapter 1 Methods

In this chapter, we will give a short overview of the analysis methods and formal-
isms used for the description of the studied scattering processes and the evaluation
of the COMPASS data. A more mathematically in-depth description can be found
in [1].

1.1 Partial-wave analysis

1.1.1 Scattering process

We study diffractive dissociation reactions of hadrons of the following form:

a︸︷︷︸
high-energetic beam particle

+ b︸︷︷︸
target particle

→ (1 + 2 + 3)︸ ︷︷ ︸
hadronic final state

+ c︸︷︷︸
target recoil

(1.1)

More precisely, we examine the collision

K− + p→ (K−π+π−) + precoil (1.2)

of a kaon beam on a hydrogen target, illustrated in fig. 1.1a.
The basic assumptions of the analysis method are that the three-body intermediate

states X−, produced by the excitation of the K− via the strong interaction, are
dominated by resonances, so that the scattering process can be decomposed into two
independent reactions:

K− + p→ X− + precoil and X− → K−π+π−

Resonance production and decay are independent and can be treated separately.
Therefore, we can factorize the amplitude Mf,i describing a certain state X into a

(a) Scattering process and kinematic vari-
ables (b) The isobar model

Figure 1.1: An overview of the scattering process K− + p→ K−π+π− + precoil
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1.1 Partial-wave analysis

production amplitude T , describing the production of the intermediate state X, and
a decay amplitude Ψ, describing the decay of X into the three-body final state:

Mf,i = T (mX , t
′) ·Ψ(mX , τ) (1.3)

The kinematic distribution of the final-state particles depends only on the invariant
mass mX , the reduced squared four momentum transfer t′ ≡ |t| − |t|min, |t|min being
the minimum value of |t| needed to produce an intermediate state with mX > mK− ,
and a set of five kinematic variables τ needed to describe the three-body system.

1.1.2 Isobar model

To describe the decay of X into the final-state particles K−, π+ and π−, it is con-
venient to use the isobar model, illustrated in fig. 1.1b. In this model, the decay
is described as a chain of subsequent two-body decays via additional intermediate
two-body resonances, the isobars ξ, i.e.

X → ξ + 1 and ξ → 2 + 3 (1.4)

Particle 1 is called the bachelor particle. Note that in our case, there are two possib-
ilities for the isobar subsystem: it could consist of a K−π+ state or a π−π+ state.
We also neglect final state interactions by assuming that the outgoing particles do
not interact with each other. In the first decay, an orbital angular momentum L
between the final-state particle 1 and the isobar ξ may arise. The decay amplitude
Ψ(mX , τ) describes the entire kinematics of the final state for particular X quantum
numbers, orbital angular momentum L and the isobar ξ.

1.1.3 Reference frames and kinematic variables

The two decays in eq. (1.4) are described in specific reference frames, by boosting
into the rest systems of the X and the isobar ξ, respectively.
The Gottfried-Jackson frame is used to describe the decay of the intermediate

state X, which is at rest in this reference frame. Since the outgoing particles are
emitted back-to-back, the angular distribution can be described by the polar angle
ϑGJ and the azimuthal angle φGJ of one of the daughter particles.
The isobar decay is described in the so-called helicity frame. Again, the two final-
state particles are emitted back-to-back, the angular distribution is hence given by
the angles ϑHF and φHF of one outgoing particle.
Together with the isobar massmξ, we obtain the five variables describing kinematic

distribution of the final-state particles:

τ = ( mξ, ϑGJ , φGJ , ϑHF , φHF ) (1.5)

3



Chapter 1 Methods

1.1.4 Two-body decays

The two-body decays R → 1 + 2 that are taking place in the discussed reference
frames are represented by the two-body decay amplitudes ARJR,MR

, where JR and
MR are the spin of R and its projection. This decay amplitude can be factorized
into an angular and a dynamical part, while summing over the helicities of the
daughter particles:

ARJR,MR
=
∑
λ1,λ2

fJR,MR
ang (ϑR, φR, λ1, λ2) · fJR,MR

dyn (mR, λ1, λ2) (1.6)

The angular part is given by first principles and completely defined by the quantum
numbers of the particles. The dynamical part, however, describes the dependence of
the amplitude on the invariant mass mR of the subsystem and needs to be modeled.
This will be discussed in section 1.4. The dynamical part also contains the usually
unknown coupling αR appearing at the decay vertex.
Using the isobar model, we can factorize the total decay amplitude Ψ into

Ψ(mX , τ) =
∑
λξ

AXJX ,MX
(mX , ϑGJ , φGJ) · AξJξ,Mξ

(mξ, ϑHF , φHF ) (1.7)

Here, the daughtersK−, π+ and π− are spin-0 particles, thus having helicities λK,π =
0. Hence, we sum only over the helicity λξ = ±1 of the isobar .

1.1.5 Partial-wave decomposition

The amplitude Ψ for the decay X → K−π+π− is uniquely defined by two indices:
the set i = (IG, JPC , M) of the X quantum numbers and j = (ξ, L), which rep-
resents a particular decay channel with isobar ξ and orbital angular momentum L.
We therefore write Ψ = Ψi,j . This amplitude is often called partial wave, defined by
its indices (i, j), which contain all information about the decay. Initially, the pro-
duction amplitudes in eq. (1.3) depend only on the X quantum numbers. However,
it is convenient to absorb the unknown couplings of the decay vertices αX and αξ,
which describe the strength and phase of the decay, into the unknown production
amplitudes. This is done by redefining Ψ and T :

Ψ̃i,j =
Ψi,j

αXαξ
(1.8)

T̃i,j = αXαξ Ti (1.9)

The modified production amplitudes are referred to as "transition amplitudes", since
they now also contain information about the decay channel. The indices i and j rep-
resent a certain partial wave a = (i, j). In order to obtain the total amplitude, we
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1.2 Binning of the data

sum coherently over all contributing partial waves. The measured intensity distribu-
tion is hence given by

I(mX , t
′, τ) =

∣∣∣∣ ∑
a=i,j

T̃a(mX , t
′) · Ψ̃a(mX , τ)

∣∣∣∣2 + Iflat (1.10)

Notice we have incoherently added the so-called flat wave. It is an isotropic phase-
space distribution Iflat = |Tflat|2 that models the contaminations from misreconstruc-
ted or only partially reconstructed events.

1.2 Binning of the data

The goal of the partial-wave analysis is to extract the unknown transition amplitudes
{Ta} by fitting eq. (1.10) to the data.The transition amplitudes contain information
about the X resonances. However, their dependence on the invariant mass mX is
a-priori unknown. Therefore, the event sample is divided into equidistant mX bins
that are narrower than the typical resonance widths. Also, the t′ dependence of Ta
is unknown. This is solved by further dividing the data into t’ bins, in such way that
each bin contains approximately the same number of events. Within a given (mX ,
t′) bin, we neglect the dependence on these two variables. That way, no assumption
about the resonance content of the intermediate state X has to be made in the
analysis process. Also, the intensity in a given kinematic cell is only a function of
the phase-space variables τ , and the transition amplitudes appear in it as constants:

I(τ) =
∣∣∑

a

T̃a · Ψ̃a(τ)
∣∣2 + Iflat (1.11)

Here, the sample is divided into 100 mX bins. The total mass spectrum of
the sample is 0.5 GeV/c2 < mX < 2.5 GeV/c2. Each mass bin thus has a width
of ∆mX = 20 MeV/c2. The sample is also divided into eleven non-equidistant t′ bins.

To simplify the notation, we will from now on refer to the redefined amplitudes Ψ̃a

and T̃a as Ψa and Ta.

1.3 Maximum Likelihood method

The maximum likelihood method is a method to estimate the values of paramet-
ers of a model function by maximizing the likelihood function L, which is the joint
probability density of the dataset. For a dataset x = (x1, ..., xN ) of N measure-
ments that follow the same probability density function f(x;θ) with m unknown
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Chapter 1 Methods

parameters θ = (θ1, ..., θm), and in the case where the number N of data points is
not predetermined, the likelihood function is:

L(θ, λ;x, N) =
λNe−λ

N !︸ ︷︷ ︸
Poisson

distribution

N∏
k=1

f(xk,θ)︸ ︷︷ ︸
Likelihood
function

(1.12)

We apply the maximum likelihood method to our partial-wave analysis to estimate
the values of the transition amplitudes {Ta} in our model for the intensity distribution
I(τ) in eq. (1.11). In this case, the likelihood function is given by

L({Ta}) =
N̄N

N !
e−N̄

N∏
i=1

I(τi; {Ta})∫
dϕ3(τ)ε(τ)I(τ ; {Ta})︸ ︷︷ ︸
probability for event i

(1.13)

Here, N is the number of measured events and N̄ is the expected number of events
measured by the detector. N̄ depends on the detector acceptance ε(τn), which cor-
responds to the probability of measuring an event produced at the phase-space co-
ordinates τn:

N̄ =

∫
dϕ3(τ)ε(τ)I(τ ; {Ta}) (1.14)

To find the maximum likelihood estimate for the {Ta}, we need to maximize the
likelihood function in eq. (1.13). Since the value of L at the maximum is irrelevant,
constant factors are omitted. To obtain a numerically better behaved expression,
the logarithm of L is used . This yields

lnL =
N∑
i=1

log

(∣∣∣∣∑
a

Ta Ψa(τ)

∣∣∣∣2 + Iflat
)

−
∑
a,b

TaTb
∫
dϕ3(τ)ε(τ)ΨaΨ

∗
b︸ ︷︷ ︸

≡Iab

−Iflat
∫
dϕ3(τ)ε(τ)︸ ︷︷ ︸
≡Iflat

(1.15)

The integral matrix Iab is calculated using Monte Carlo methods. The transition
amplitudes Ta(mX , t

′) are determined by maximizing the likelihood function in
eq. (1.15) independently in every (mX , t

′) bin. Note that, as numerical methods
traditionally find the minimum of a given function, we minimize the negative log-
likelihood, − lnL, in practice.
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1.4 Isobar parametrization

1.4 Isobar parametrization

The choices of the isobar resonances, which contribute to the sum in eq. (1.11), and
of the parametrization of their amplitudes which appear in eqs. (1.6) and (1.7), have
a great influence on the result of the partial-wave analysis. They are therefore an
important source of model dependence and hence systematic uncertainties.
As mentioned in section 1.1.2, two different isobar subsystems appear in our ana-

lysis. The isobar can either be constituted of a K−π+- or of a π−π+-system. These
systems are dominated by certain isobar resonances. First, the appearance of the
various possible isobar resonances depends on the invariant mass mX . At lower mX ,
isobar resonances with mass larger than mX −mbachelor cannot be produced, or con-
tribute only partially depending on their width. One must also take into account
the total spin of the resonance: the higher the spin, the more the appearance of
the resonance is suppressed. We therefore choose to include resonances with spin
up to J = 2. Former experiments, e.g. [1], also hint which resonances dominate
the two-body subsystems. For the scope of this thesis, we select the following isobar
resonance ground states for our analysis:

Table 1.1: The four studied resonances
Name Mass [MeV/c2] Width [MeV/c2] Strangeness S Spin parity JP

ρ(770) 769.0 150.9 0 1−

f2(1270) 1275.5 186.7 0 2+

K∗(892) 895.81 47.4 +1 1−

K∗2 (1430) 1432.4 109 +1 2+

Although they contribute to the data, we did not include the JP = 0+ resonances,
e.g. f0(500) for π−π+ and K∗0 (700) for K−π+, since these resonances are very
broad and the usual approximations and parametrizations discussed below cannot
be applied, rendering them difficult to describe and analyse. As this thesis consti-
tutes a proof of principle of the isobar parameter analysis method, we choose isobar
resonances that are better known and approximately well-behaved.

As introduced in eq. (1.6), the two-body decay amplitude for the isobar decay is
split up in an angular and a dynamical part. The latter one contains the dependence
on the invariant mass mξ of the two-body subsystem:

fdyn(mξ) = Dξ(mξ) · FLξ(mξ) (1.16)

The dynamical amplitude consists of:

1. the angular-momentum barrier factor FLξ(mξ), which describe the centrifugal
barrier effect caused by the orbital angular momentum Lξ in the ξ decay
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Chapter 1 Methods

2. the propagator term Dξ(mξ), which describes the propagation of the interme-
diate state ξ. It is equivalent to the line shape of ξ.

We need to make assumptions on the resonances ξ that appear as isobars and
model their line shape. The isobar resonances are usually described by a relativistic
Breit-Wigner amplitudes of the form:

DBW
ξ (mξ;m0,Γ0) =

1

m2
0 −m2

ξ − im0Γ(mξ)
(1.17)

with m0 and Γ0 being the nominal mass and width of the resonance. For narrow res-
onances, assuming that Γ(mξ) = Γ0 is a good approximation. For wider resonances
however, a mass-dependent width has to be used to accurately describe the opening
of the phase-space over the resonance width.
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Chapter 2 Method of determination of isobar parameters

2.1 Isobar parameter dependence

As we have seen in section 1.4, our isobar model and thus the whole partial-wave
analysis result depends substantially on the isobar parameters. The propagator terms
in eqs. (1.6), (1.7), (1.16) and (1.17) that describe the unstable isobars contain the
masses and widths of the included isobar resonances as parameters. In order to
calculate the decay amplitude, we therefore need to specify values for these masses
and widths.
However, we cannot leave the isobar parameters as free parameters in the PWA

fit. As seen in eq. (1.15), the likelihood function contains the integral matrix Iab
that is expensive to calculate. By ensuring that the decay amplitudes do not con-
tain any free parameters, these amplitudes as well as the integral matrix Iab can be
pre-calculated before maximizing the likelihood function, rendering the whole com-
putational process actually feasible in terms of computing time. The values for the
masses and widths of the isobar resonances can therefore not be determined from
data in the maximum-likelihood fit, but have to be specified beforehand.
These isobar parameter values are usually taken from the Particle Data Group

(PDG) [2]. However, the mass and width values for the mesonic resonances are in
some cases known only poorly. In addition, some of the parameters depend also
on the experiment and the production channel. To take an example, the PDG lists
the width of the f2(1270) resonance (neutrally produced) as Γ = 186.7+2.2

−2.5 MeV.
However, the experimental results vary between Γ = 240± 40 and Γ = 152± 9 MeV.
This leads evidently to considerable systematic uncertainties, the studies of which is
the goal of this thesis.

We will therefore study how well the PDG parameter values fit the COMPASS
data based on the likelihood function in eq. (1.15). The presence of the bachelor
particle may cause final-state interactions between the particles and non-resonant
contributions might distort the line-shape of the isobars, leading to effective masses
and widths values that differ from the PDG values.

2.2 Isobar parameter scans and likelihood maximum

2.2.1 Parameter range

In order to determine the optimal isobar parameters, we perform parameter scans
for various isobar resonances; i.e. we carry out the partial-wave analysis process
multiple times using various isobar resonance parameter values in a certain parameter
range. This way, we obtain the values of the minimum of the negative log-likelihood
generated for these isobar values. We select one isobar resonance to study and select
a grid of parameter values, i.e. mass and width values, to be probed, relative to the

10



2.2 Isobar parameter scans and likelihood maximum

values from the PDG. Note that we vary the two parameters, isobar mass and width,
independently and simultaneously, so that we perform a two-dimensional parameter
scan. This is crucial for our analysis, since, as we will see in chapter 3, the optimal
isobar parameter values are often shifted in mass and width compared to the PDG
values. The parameter interval have to be adapted for each isobar resonance. Hence
the parameter ranges may cover intervals from ± a few MeV to ± 50 MeV depending
on the isobars and their behavior. The ranges are determined in such way that
the log-likelihood difference between the parameter points is in the order of a few
log-likelihood units.

2.2.2 Computational procedure

The parameter scans are basically done by handing over modified particle data values
to the analysis program. After choosing the parameter range and number of steps,
we perform the analysis process multiple times using the modified isobar parameter
values. The procedure for a single scanning step is as follows: The decay amplitudes
as well as the integrals discussed in sections 1.3 and 2.1 are pre-calculated. We then
use the maximum-likelihood method to fit the intensity distribution model presented
in eq. (1.10) to the measured data, by minimizing the negative log-likelihood in
eq. (1.15). For this last step, we perform 50 fit attempts with random start values,
in order to make sure the global − lnL minimum is found.

2.2.3 Isobar parameter scans

Now that we have performed PWA fits using different isobar masses and widths
within the chosen parameter range, we can associate with each set of isobar parameter
values a maximum likelihood value, i.e. each fit can be represented by a point in
the (m,Γ,L) space. The complete scan for one isobar resonance then consists of
numerous points within the mass and width range, each associated with a value of
the maximum likelihood.
Since all performed PWA fits have the same number of free parameters (the trans-

ition amplitudes {Ta}), the value of the maximum likelihood is a measure for the
agreement of the model with the data. Obviously, our goal is to find those isobar
parameter values that correspond to the highest likelihood value, and hence, fit best
to the experimental data. We are also interested in the likelihood trend amongst the
scan points. First of all, we have to make sure that the maximum we found is not
at the borders of the chosen parameter range, as then, there could be parameters
with a higher likelihood value. Also, the curvature around the likelihood maximum
provides information about how well the maximum is localized (see section 2.2.5).
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Chapter 2 Method of determination of isobar parameters

2.2.4 Graphical representation

It is easier and clearer to examine the results of the parameter scans by representing
the data graphically in a three-dimensional plot like fig. 2.1. For each studied isobar
resonance, we plot mass and width along the x- and y-axes and assign to each point
a likelihood value along the z-axis. However, as discussed in section 1.3, we compute
the negative log-likelihood − lnL. Therefore, we search for the minimum of the log-
likelihood instead of for the maximum of L. Moreover, the absolute log-likelihood
value is irrelevant, we are only interested in the log-likelihood difference with respect
to the minimum. The following plots, figs. 2.1 to 2.3, are results from scans with
Monte Carlo data (see section 3.2), where the isobar parameters are known and
correspond to the PDG values. These PDG resonance parameters are indicated by
a dark-blue point.

Figure 2.1: Result of a parameter scan for the K∗(892)-isobar with MC data

The maximal log-likelihood difference with respect to the minimum should be in
the order of a few units to gain significant information. Indeed, due to the asymptotic
normality of the likelihood function, L is a Gaussian in the parameters in the limit of
an infinitely large data sample, meaning that lnL is a parabola. Hence, in the vicinity
of the minimum of the negative log-likelihood function, the scan points should follow
a second-order surface. We can thus fit a two-dimensional parabola to the scan
points, following the equation:

z(x, y) = a1 · x2 + a2 · x+ a3 · y2 + a4 · y + a5 · x · y + a6 (2.1)

12



2.2 Isobar parameter scans and likelihood maximum

Using a least-square approach, we can determine the parameters of the parabola.
The parameters are used to determine the minimum of the parabola, thus finding
the exact position of the negative log-likelihood minimum. We have now extracted
the optimal isobar parameter values from our scan!

Figure 2.2 shows the fit of eq. (2.1) to the points in fig. 2.1. Here, the value of the
parabola minimum is used to define the origin of the z-axis; i.e. the vertical position
of the points is given by the log-likelihood difference from the computed minimum.
This minimum is also represented by the red point in the graph.

Figure 2.2: Like fig. 2.1, but with fitted parabola overlaid. The red point indicates
the minimum of the parabola.

2.2.5 Uncertainty estimation

In addition to the best estimate for the isobar parameters, we can also calculate
their uncertainties from the fitted parabola. This information is required to be able
to compare the measured isobar parameter values to the unmodified parameter values
and see if there is a discrepancy.
The curvature of the parabola at the minimum relates to the uncertainty of the

isobar parameters. Indeed, the steeper the parabola is in the vicinity of its minimum,
the smaller are the uncertainties. This is illustrated in figure 2.3: On the left, the
result of a scan is shown based on a data sample with 5000 events; The diagram
on the right shows the same for a 10 times larger data sample with 50 000 events.
Because of the increased size of the data sample, the curvature of the fitted parabola
is larger: while we use the same parameter values for the points of both scans, the
log-likelihood difference on the scan with 50 000 events is way higher than on the
5000 events scan.
There are at least two ways to estimate the uncertainties of the isobar parameters.

13



Chapter 2 Method of determination of isobar parameters

Figure 2.3: Scans of theK∗(892) isobar resonance, using MC data samples of different
size. Left: 5000 events; Right: 50 000 events.

First, there is a graphical method where the uncertainty ellipse in the (m,Γ) plane
is determined by the intersection of the horizontal plane at ∆L = 1/2 with the second
order surface.
Calculating the uncertainties numerically is, however, more convenient. To do

so, we compute the uncertainties directly from the curvature of the parabola. An
estimate to the covariance matrix V̂ of the isobar parameters is given by the negative
inverse of the Hessian matrix Ĥ of our parabolic curve at the maximum likelihood
estimate

V̂ = −Ĥ−1
(2.2)

Hence, the standard deviations are given by the square root of the diagonal elements
of the covariance matrix:

∆m =

√(
−Ĥ−1

)
11

(2.3)

∆Γ =

√(
−Ĥ−1

)
22

(2.4)
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Chapter 3 Results and Discussion

In this chapter, we present the results of the parameter scans of the isobar reson-
ances, for Monte Carlo data as well as for real data.

3.1 Data

We inspect data from two different invariant mass bins1:

mX ∈ [1.30, 1.32] GeV/c2

mX ∈ [1.80, 1.82] GeV/c2

The mass bin may influence on the result of the scan, especially for isobar resonances
with masses mξ larger than mX .

As introduced in section 1.4 and table 1.1, the four studied isobar resonances are
the ρ(770) and f2(1270) in the π−π+-subsystem and the K∗(892) and K∗2 (1430)
resonances with strangeness S = +1 in the K−π+-subsystem.
For each isobar resonance, we perform a parameter scan in each mX bin, as ex-

plained in chapter 2, using first Monte Carlo data and then real datasets. We com-
pute the values of the log-likelihood minima for each set of isobar parameters and
compare them to the unmodified parameter values. Assuming a parabolic depend-
ence of the log-likelihood on the isobar parameters, we perform a fit in order to
extract the isobar parameters that correspond to the global minimum of the neg-
ative log-likelihood. The goodness of the fit is also interesting, as it gives us an
indication on the validity of our parabolic assumption.
Note that while we change the parameters for one isobar resonance, the parameters

of other isobar resonances remain unchanged. Therefore, this approach does not take
into account possible correlations between the parameters of different isobars.

3.2 Monte Carlo analysis

Before studying the real data, the analysis method was verified using generated
pseudo-data with known values of the isobar parameters. For this task, isotropic
phase-space events were generated using Monte Carlo methods1 and weighted ac-
cording to the intensity in eq. (1.11). This is done the following way: For each
phase-space event, the decay amplitudes Ψa(τ) are calculated. For the transition
amplitudes Ta, we use prior fit results1 from real data. With these amplitudes, the
intensity I(τ) can be computed for every phase-space event. The calculated intensity

1The real and Monte Carlo data, as well as the transition amplitudes Ta have been provided by
[3]
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3.2 Monte Carlo analysis

is applied as a weight using the acceptance-rejection-method. The parameter scans
are then performed on these Monte Carlo data.
The Monte Carlo (MC) data are generated (according to the intensity distribution

model I(τ)) using the Particle Data Group values for the isobar resonance paramet-
ers. The scan results should be consistent with the values of the isobar parameters
that we used to generate the MC data. Once this is verified for each inspected isobar
resonance, the real data can be analysed.

3.2.1 MC study in the 1.80 GeV/c2 mass bin

We begin with isobar parameter scans in the mX = 1.80 GeV/c2 mass bin.

(a) K∗(892) (b) K∗
2 (1430)

(c) f2(1270) (d) ρ(770)

Figure 3.1: Like fig. 2.2, but for the scan of the resonance parameters using MC data,
for the 1.8 GeV/c2 mass bin.
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Chapter 3 Results and Discussion

The results of the MC scans of the four studied isobar resonances are shown in
fig. 3.1. The results are listed in table 3.1. The positions of the parabola minima are
within the uncertainties compatible to the unmodified PDG parameter values which
were used to generate the MC data.

Resonance Mass at minimum
[MeV/c2]

PDG mass
[MeV/c2]

Width at minimum
[MeV/c2]

PDG width
[MeV/c2]

K∗(892) 897.2± 1.0 895.8 48.0± 2.1 47.4
K∗2 (1430) 1431.8± 3.1 1432.4 103± 8 109
f2(1270) 1279± 11 1275.5 174± 30 186.7
ρ(770) 777± 8 769.0 130± 19 150.9

Table 3.1: Isobar parameter values from the study of MC data in the mX = 1.8
GeV/c2 bin

3.2.2 MC study in the 1.30 GeV/c2 mass bin

We repeat the parameter scans for the Monte Carlo data in the 1.30 GeV/c2 mX

bin. The scans are shown in fig. 3.2, and the results are presented in table 3.2. For
the two isobars with lower masses, K∗(892) and ρ(770), the scan results resemble
those from the 1.80 GeV/c2 mass bin, and the parameter values that correspond to
the shown negative log-likelihood minimum are consistent with the PDG parameter
values within the uncertainty estimates.
For the f2(1270) andK∗2 (1430) isobars, however, the parameter scans yield nothing

useful. As discussed in section 1.4, at low mX , not all resonances appear as isobars.
Both the f2(1270) and theK∗2 (1430) have masses that are larger thanmX−mbachelor.
Hence, only their low-mass tails, which are nearly independent of the resonance para-
meters, may contribute to the data. This is confirmed by the isobar parameter scans:
the log-likelihood difference across the studied isobar parameter range is extremely
small and we cannot fit a parabola to the scan points. We therefore conclude that
the parameters of these two isobar resonances have no influence on our model in this
mX range.

3.3 Real data analysis

Now that we have shown that the method works on MC data, we can study the
model dependence of the PWA result on the isobar parameters using real data. The
goal is to investigate if there are any discrepancies between the isobar parameters
that correspond to the lowest negative log-likelihood value and the PDG parameter
values for each isobar resonance that are used in the standard PWA fit, i.e. if we can
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3.3 Real data analysis

(a) K∗(892) (b) K∗
2 (1430)

(c) f2(1270) (d) ρ(770)

Figure 3.2: Like fig. 2.2, but for the scan of the resonance parameters using MC data,
for the 1.3 GeV/c2 mass bin.

find isobar parameter values for our model that make it fit better to the measured
data. We thus perform parameter scans of the four isobar resonances and in both
mX bins. In sections 3.3.1 and 3.3.2, the results for K∗(892), K∗2 (1430) and f2(1270)
will be presented. The ρ(770) isobar will be treated separately in section 3.3.3.

3.3.1 Real data study in the 1.80 GeV/c2 mass bin

In this section, we present the results of the parameter scans for the K∗(892),
K∗2 (1430) and f2(1270) isobar resonances in the 1.80 GeV/c2 mX bin. The three
scans are shown in fig. 3.3 and the numerical results are presented in table 3.3. The
scans resemble those using Monte Carlo data. While the differences between the
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Chapter 3 Results and Discussion

Resonance Mass at minimum
[MeV/c2]

PDG mass
[MeV/c2]

Width at minimum
[MeV/c2]

PDG width
[MeV/c2]

K∗(892) 896.2± 0.7 895.8 47.2± 1.4 47.4
K∗2 (1430) none found 1432.4 none found 109
f2(1270) none found 1275.5 none found 186.7
ρ(770) 770± 5 769.0 142± 9 150.9

Table 3.2: Isobar parameter values for the study of MC data in themX = 1.3 GeV/c2

bin

isobar parameters at the negative log-likelihood minima and the PDG parameter
values is relatively large for some isobars, especially for the f2(1270), the large un-
certainties make them compatible. The estimated isobar parameter values match
the PDG values within one to two standard deviations. For the three isobars, the
second-order surfaces fit the scan points well.

Resonance Mass at minimum
[MeV/c2]

PDG mass
[MeV/c2]

Width at minimum
[MeV/c2]

PDG width
[MeV/c2]

K∗(892) 896.9± 1.5 895.8± 0.20 52.0± 3.3 47.4± 0.5

K∗2 (1430) 1427± 5 1432.4± 1.3 104± 10 109± 5

f2(1270) 1283± 15 1275.5± 0.8 216± 38 186.7+2.2
−2.5

Table 3.3: Isobar parameter values of real data parameter scans in the mX = 1.8
GeV/c2 bin

3.3.2 Real data study in the 1.30 GeV/c2 mass bin

We are now going to present the results of the parameter scans for the K∗(892),
K∗2 (1430) and f2(1270) resonances in the 1.30 GeV/c2 mX bin. The scans are shown
in fig. 3.4, and the parameter values found are listed in table 3.4. The scan of the
K∗(892) isobar resonance parameters is similar to the scan in the 1.80 GeV/c2 mX

bin. The parameters of the minimum match the PDG values within the uncertainties,
although the K∗(892) width deviates nearly 2.5 times the standard deviation. For
the K∗2 (1430) and f2(1270) resonances, however, no minimum in the negative log-
likelihood can be found. This coincides with the observations made in the Monte
Carlo analysis in section 3.2.2. In the 1.3 GeV/c2 mX bin, only the low-mass tail
of these two resonances contributes to the data. Hence, there is no significant log-
likelihood change across the parameter range.
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3.3 Real data analysis

(a) K∗(892) (b) K∗
2 (1430)

(c) f2(1270)

Figure 3.3: Like fig. 2.2, but for the resonance parameter scans of three resonances
using real data for the mX = 1.8 GeV/c2 mass bin.

3.3.3 Real data study of the ρ(770) isobar resonance

For the ρ(770) isobar, the scans reveal major discrepancies between the parameter
values of the negative log-likelihood minimum and the PDG values in both mX bins.
The scan plots are shown in fig. 3.5, and the numerical results are summarized in
table 3.5.
The PDG lists the mass and width of the ρ(770) resonance as mPDG = 769.0±0.9

MeV/c2 and ΓPDG = 150.9 ± 1.7 MeV/c2. The mass of the negative log-likelihood
minimum of the scans differs only slightly from the PDG value in the 1.3 GeV/c2 mX

bin. In the 1.8 GeV/c2 bin, the estimated mass is a little more than two standard de-
viations away from the PDG value. The ρ(770) widths at the negative log-likelihood
minima, however differ significantly from the PDG value. In the 1.8 GeV/c2 mX
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Chapter 3 Results and Discussion

(a) K∗(892) (b) K∗
2 (1430)

(c) f2(1270)

Figure 3.4: Like fig. 2.2, but for the resonance parameter scans of three resonances
using real data for the mX = 1.3 GeV/c2 mass bin.

bin, the negative log-likelihood minimum is located at Γmin = 94 ± 12.8 MeV/c2,
which is more than 4.4 σ away from the PDG value. This difference is still present,
although less pronounced, in the 1.3 GeV/c2 mX bin, where the width deviates by
approximately 2.8 σ.
The scan points also do not fit well the parabolic assumption that we make at

the negative log-likelihood minimum. This is shown in fig. 3.6, where we see the
parabolas and scan points from the side. There are significant vertical mismatches
between scan points and the parabolas especially in the 1.3 GeV/c2 mX bin. We can
calculate a pseudo-χ2 coefficient by adding together the vertical differences squared
and dividing by the amount of data points. In the 1.3 GeV/c2 mX bin, this yields
χ2 = 0.466, and in the 1.8 GeV/c2 mX bin, we get χ2 = 0.053. To put those
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3.3 Real data analysis

Resonance Mass at minimum
[MeV/c2]

PDG mass
[MeV/c2]

Width at minimum
[MeV/c2]

PDG width
[MeV/c2]

K∗(892) 896.2± 1.0 895.8± 0.20 51.9± 2.0 47.4± 0.5

K∗2 (1430) none found 1432.4± 1.3 none found 109± 5

f2(1270) none found 1275.5± 0.8 none found 186.7+2.2
2.5

Table 3.4: Isobar parameter values of real data parameter scans in the mX = 1.3
GeV/c2 bin

(a) ρ(770), 1.30 GeV/c2 mass bin
(b) ρ(770), 1.30 GeV/c2 mass bin

(c) ρ(770), 1.80 GeV/c2 mass bin (d) ρ(770), 1.80 GeV/c2 mass bin

Figure 3.5: Like fig. 2.2, but for the real data ρ(770) parameter scans in both mass
bins.
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mX bin
[GeV/c2]

Mass at minimum
[MeV/c2]

Width at minimum
[MeV/c2]

[1.30, 1.32] 766± 4 128± 8

[1.80, 1.82] 753± 7 94± 13

PDG values (MeV/c2): 769.0± 0.9 150.9± 1.7

Table 3.5: Parameter values for the ρ(770) isobar

(a) ρ(770), 1.30 GeV/c2 mass bin (b) ρ(770), 1.80 GeV/c2 mass bin

Figure 3.6: Like fig. 2.2, only showing the ρ(770) isobar parameter scans with the
fitted parabola from the side.

numbers into perspective, we can calculate the χ2 coefficient for, e.g., the parabolic
fit of the K∗(892) isobar parameter scan in the 1.3 GeV/c2 mX bin, which yields
χ2 = 0.00106.
We thus have considerable discrepancies of the ρ(770) parameters between the

negative log-likelihood minimum and the PDG values and gaps between the para-
bola and the scan points, indicating our parabolic assumption comes to its limits.
Effects of final-state interactions between the three outgoing particles K−, π+, π−

are expected to shift the parameter values. However, these effects should be smaller
than the differences we observe for the ρ(770) width. Thus, even though final-state
interactions may appear, an additional phenomenon has to cause the observed dis-
crepancies. One possible cause could be systematic effects in the analysis. Indeed,
some partial-waves appearing in the ρ(770) isobar are hard to distinguish. The
modification of the ρ(770) parameters may induce alterations of the partial-wave
intensities: intensity could be transferred from partial waves to others, which could
cause the observed effects.
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3.4 Recapitulation

3.4 Recapitulation

For the three isobar resonances K∗(892), K∗2(1430) and f2(1270), no significant dis-
agreements between the estimated optimal parameter values and the model values
could be found. Minor differences could be caused by final-state interactions. For
the ρ(770) resonance however, new optimal parameters have been determined that
are significantly different from the PDG values. These deviations and the low quality
of our parabolic fit cannot be simply explained by final-state interactions.
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The partial-wave analysis of the K−π+π− data from the COMPASS experiment
is performed to identify and study hadronic resonances. The isobar model is used
to calculate the amplitudes for the decays of the intermediate resonances into the
K−π+π− final state. The model assumes that the decay proceeds in a series of
subsequent two-body decays with an intermediate isobar state. This model, however,
is largely dependent on the parameters of the isobar resonances, which constitutes
a source for systematic uncertainties. The isobar resonances are usually modelled
using Breit-Wigner amplitudes, where the masses and widths of the resonances have
to be taken from other experiments.
We have conducted isobar parameter scans by selecting a particular isobar reson-

ance to study and by performing PWA fits using modified isobar mass and width
values arranged on a grid. The minimum log-likelihood value of each PWA fit is
an indicator of how well the chosen parameter values fit the data. A complete scan
for one isobar resonance consists of several points within the chosen mass and width
range, each associated with a negative log-likelihood value. Using these scans, we
estimate the optimal parameter values by fitting a second-order surface to our scan
points and by computing the parabola minimum. The uncertainties are estimated
from the curvature of the second-order surface. We then compare the estimated
isobar parameters with the PDG world averages.
We have inspected four isobar resonances with spin-parity J = 1− and 2+:

K∗(892), ρ(770) and K∗2 (1430), f2(1270). While the scans of the K∗(892), K∗2 (1430)
and f2(1270) resonances yield optimal isobar parameter values that are in agreement
with the PDG world averages, we observe significant disparities of the parameter val-
ues for the ρ(770) isobar, ranging up to 50 MeV/c2. These differences could be in
part due to final-state interactions of the outgoing particles. In addition, the mixing
of intensities of partial waves with the ρ(770) isobar might play a role..
Further steps could be taken to continue the analysis of the ρ(770) resonance

parameters and to potentially find the source of the discrepancy. First, the partial-
wave mixing hypothesis could be tested by studying the partial-wave intensities as a
function of isobar parameters. Potential effects from correlations of the parameters
of different isobar resonances could be studied by scanning through the parameters of
several isobar resonances simultaneously. Such an approach is, however, practically
limited to up to three isobars, since higher-dimensional analyses become increasingly
costly.
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