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Abstrakt: Drell-Yan (DY) process, ļili produkce leptonov®ho p§ru z hadron-hadronov® 

interakce, je jedn²m z unik§tn²ch n§strojŢ ke studiu hadronov® struktury. V t®to pr§ci 

pŚedstavujeme teoretick® pozad² za t²mto procesem a jeho souvislost s popisem spinov® 

struktury nukleonu. Je pops§n formalismus PartonovĨch Distribuļn²ch Funkc² (PDF) a 

PDF z§vislĨch na pŚ²ļn® hybnosti (TMD PDF), kterĨ s t²mto procesem ¼zce souvis². D§le 

je vysvŊtlena z§sadn² teoretick§ pŚedpovŊŅ tĨkaj²c² se TMD PDF lichĨch pŚi otoļen² ļasu 

o zmŊnŊ jejich znam®nka pŚi mŊŚen² v DY a v Semi-inkluzivn²m hlubok®m nepruģn®m 

rozptylu (SIDIS), kterou se snaģ² potvrdit experiment COMPASS. Experiment je struļnŊ 

pops§n v dalġ² ļ§sti pr§ce s dŢrazem na modifikace potŚebn® k mŊŚen² DY procesu 

proveden®ho v letech 2014 a 2015 se 190 GeV/c
2
 svazkem z§pornŊ nabitĨch pionŢ na 

protonov®m terļi (v roce 2015 polarizovan®m). V posledn² ļ§sti pŚin§ġ²me vĨsledky naġ² 

nez§visl® analĨzy dat z roku 2015. Byly extrahov§ny tŚi azimut§ln² asymetrie, kter® d§vaj² 

pŚ²stup k rŢznĨm TMD, s pouģit²m dat s koncovĨm stavem o dvou mionech a invariantn² 

hmotŊ od 4.3 do 8.5 GeV/c
2
. Naġe vĨsledky jsou v souladu s vĨstupem ofici§ln² analĨzy, 

jeģ byla v souļasnosti pod§na k publikaci, a naznaļuj² naplnŊn² pŚedpovŊd² o zmŊnŊ 

znam®nka T-lichĨch TMD. 

 

Kl²ļov§ slova: Drell-Yan proces, spinov§ struktura nukleonu, TMD PDF, Transverz§ln² 

spinov® asymetrie, COMPASS  
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in agreement with the official results recently submitted for publication, and give 

a significant hint toward the sign change. 

 

Keywords:  Drell-Yan process, spin structure of nucleon, TMD PDF, Transverse spin 

asymmetries, COMPASS

 

 



1 

Contents 

 

Introduction  ....................................................................................................................... 1 

1. Physics case: The Drell -Yan process ............................................................................ 4 

1.1. Kinematics of deep inelastic processes ...................................................................... 4 

1.2. Features of the parton model ...................................................................................... 8 

1.2.1 The Unpolarised nucleon structure ...................................................................... 8 

1.2.2 The Spin structure of nucleon.............................................................................. 12 

1.2.3 The QCD improvement of the parton model ....................................................... 15 

1.3 Transverse-spin-dependent nucleon structure ............................................................. 18 

1.3.1 The Transversity distribution .............................................................................. 18 

1.3.2 Transverse Momentum Dependent PDFs ............................................................ 19 

1.3.3 The Sivers distribution ........................................................................................ 20 

1.3.4 The Pretzelosity distribution ................................................................................ 24 

1.4 The Drell-Yan process ................................................................................................ 25 

1.5 The SIDIS process ....................................................................................................... 30 

1.6 The Sign change of the T-odd TMDs .......................................................................... 32 

2. COMPASS experiment at CERN ................................................................................. 33 

2.1 The General outline of the spectrometer ..................................................................... 33 

2.2 The Data acquisition system and triggers ................................................................... 39 

 



 2 

2.3 The Data reconstruction and analysis.......................................................................... 41 

2.4 The Setup for the Drell-Yan measurement ................................................................. 41 

2.3.1 The Polarised target ............................................................................................. 43 

3. Drell-Yan measurement at COMPASS ....................................................................... 48 

3.1 The 2015 DY data-taking ............................................................................................ 48 

3.2 Monte Carlo simulations for the DY measurement .................................................... 49 

3.3 The Strategy for the extraction of the asymmetries .................................................... 52 

3.3.1 The Correction factors of the measured asymmetries ......................................... 56 

3.4 The Data sample .......................................................................................................... 59 

3.4.1 The Data stability studies .................................................................................... 60 

3.4.2 The Event selection ............................................................................................. 64 

3.5 The Systematic studies ................................................................................................ 73 

3.5.1 The Compatibility of results from different periods ............................................ 73 

3.5.2 The Evaluation of the false asymmetries............................................................. 76 

3.6 The Results of the Transverse spin asymmetries ........................................................ 81 

Conclusion .......................................................................................................................... 85 

Bibliography  ....................................................................................................................... 87 

List of Abbreviations ......................................................................................................... 91 

Attachments ....................................................................................................................... 93 

 

 

 



1 

Introduction  

 

For the last hundred years the frontiers of the human knowledge of the microscopic 

structure of matter have been profoundly expanded. For more than 100 years ago, the famous 

scattering experiments performed by H. Geiger and E. Marsden on the advice of sir 

E. Rutherford heralded the birth of a new  branch of physics studying matter on the nuclear 

and subnuclear level. The scattering experiments revealed the existence of an atomic nucleus 

and electron cloud, and gradually helped to penetrate deeper into the nucleus and discover its 

structure, made of protons and neutrons. With the improving resolution of the particle 

accelerators it has become clear that the nucleons are not the fundamental elementary particles 

which constitute matter. In the 50ô in the Stanford University Robert Hofstadter brought an 

evidence of a finite radius of a nucleon from an elastic e-p scattering. In the late 60ô the 

Stanford Linear Accelerator Center (SLAC) using the elastic and inelastic e-p scattering 

published the results indicating a presence of point-like constituents of a nucleon. The 

constituents were described by Feynmanôs Parton Model (PM) developed shortly after the 

discovery. In this model, the nucleon is composed of point-li ke fermions, so called partons 

which makes this model compatible with constituent quark model (QM) of Gell-Mann and 

Zweig, assuming valence quarks with spin İ and electric charges of +2/3e and -1/3e. Further 

investigation of the inner dynamics in nucleon and hadrons in general lead to the formulation 

of the Quantum Chromodynamics (QCD) in the 70ô, a non-abelian quantum field theory 

describing strong interaction between the quarks intermediated by newly predicted and 

subsequently discovered vector bosons called gluons. QCD has defended its position as the 

most successful theory of strong interaction even after decades of experimental tests, and is 

still being tested. QCD improved PM has served for almost complete description of the 

structure of nucleons though a lot of unanswered questions remain regarding the low energy 

processes in hadrons (non-perturbative regime).  

One of those questions appeared during the investigation of the nucleon spin. The 

problem was discovered in 1988 at the European Muon Collaboration (EMC) at CERN when 

testing the naµve theoretical prediction from the QM that the nucleon spin is fully given as 

a composition of the spins of the three valence quarks, however, the results that surprised the 

whole physics community have shown that quarks contribute only one third to the total spin 

of a nucleon [1]. This result has led to the formulation of new theoretical tools and stirred a lot 
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of experimental effort to explain the processes contributing to the nucleon spin and this ñspin 

crisisò has not yet been resolved. This topic became a subject of study in lepton scattering 

experiments at CERN namely SMC and COMPASS, HERMES at DESY, SLAC laboratory, 

and JLab, and also in polarised proton-proton collider at RHIC. One of the possible 

contributions comes from the gluon polarisation ȹG, whose measurement was one of the 

points of interest of the HERMES, SMC, and the COMPASS. The COMPASS experiment, 

which is subject of this thesis, is a fixed target experiment located on the SPS M2 beamline at 

CERN. Experiments mentioned above also have contributed to measurement of the significant 

left-right spin asymmetries which suggested an important role of the intrinsic transverse 

momentum of partons connected with the orbital angular momentum (OAM), and the 

experimental efforts on this matter are still ongoing. 

Nucleon structure can be described by spin-independent unpolarised structure functions 

F1 (x, Q
2
) and F2 (x, Q

2
), and the polarised structure functions, G1 (x, Q

2
) and G2 (x, Q

2
), 

which can be directly measured in the scattering experiments. In the parton model in the 

leading order in the collinear approximation (with parton intrinsic transverse momentum 

integrated over) they can be interpreted in terms of Parton Distribution Functions (PDF) f1, g1, 

and h1. Nowadays, the understanding of the longitudinal structure of nucleon described by 

unpolarised PDF f1 and helicity function g1, has been virtually reached. However, the 

transverse structure of the nucleon concerning the intrinsic motion of partons and transverse 

spin distribution is still little known. Beyond the collinear approximation the nucleon 

structure is described by eight Transverse Momentum Dependent Parton Distribution 

Functions (TMDs). The knowledge of the intrinsic transverse momentum of partons and its 

correlation with spin is essential for determining parton orbital motion and thus hopefully 

answering the question for the origin of nucleon spin at last. 

There are two experimental tools for obtaining TMDs which are complementary to each 

other
1
, Semi-Inclusive Deep Inelastic Scattering (SIDIS), and Drell-Yan process (DY). The 

COMPASS experiment (ñCOmmon Muon and Proton Apparatus for Structure and 

Spectroscopyò) design allows studying both of these processes with basically the same setup 

which gives the possibility to test the universality of the TMD picture and thus one of the 

important predictions of QCD. 

                                                 
1
 The connection of those processes and the implication for the theory will be described in the 

Section 1.6. 
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The aim of this thesis is the extraction of the leading twist transverse-spin-dependent 

azimuthal asymmetries (TSA) in polarised pion-induced Drell-Yan process from 2015 

COMPASS data. In the following, the theoretical background on the structure of nucleon is 

reviewed. The details of the COMPASS spectrometer layout and experimental goals are 

presented in Chapter 2. In the following chapter, we will describe the data sample, the 

procedure for extracting the TSAs and the systematic studies. And in the final part, we will 

present the results obtained from our analysis. 
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1. Physics case: the Drell-Yan process 

 

Scattering processes have played the most important role in probing the inner constituents 

of matter. The elastic scattering enabled to discover basic structure of atom in the times of 

Rutherfordôs experiment; measuring the size, shape, and the form-factors of the nuclei; the 

size and elastic form-factors of nucleons; and continues to be an important tool for testing of 

the Standard model. The deep inelastic scattering (DIS), involving the collision of 

electromagnetic probe (lepton) to the target particle, has moved the frontiers into the inner 

structure of nucleon and its dynamics. The measurement at SLAC in 1968 brought a clear 

evidence of point-like constituents of nucleon in the discovery of the Bjorken scaling. The 

DIS was the essential tool for linking the partons and quarks, and somewhat later for finding 

the missing constituent of nucleon, filling the gap in the measurements (see Chapter 1.2.3), 

the gluon. The polarised DIS, which uses longitudinally polarised lepton projectile and 

longitudinally or transversely polarised target nucleon, gave the access to the longitudinal spin 

structure of the nucleon via measuring the helicity distribution of partons in the nucleon. On 

the other hand, transversal spin structure described by the transversity distribution function or 

TMDs, being chiral odd, is not accessible by DIS. In the DIS the chiral odd processes are 

strongly suppressed, but in SIDIS, or DY the chiral odd processes can be observed. 

In the following subsection the formalism of the DIS is shortly reviewed, the naµve Parton 

Model and QCD are introduced in the part 1.2. Then, the unpolarised and polarised structure 

of nucleon is presented, with the emphasis on the transverse spin distributions, the helicity 

and TMDs. In the last subsection 1.4 the DY process is discussed and its comparison to the 

complementary process of SIDIS and the process of extracting the TSAs in order to obtain the 

transverse spin distributions. 

1.1. Kinematics of deep inelastic processes 

The DIS is a process of scattering the charged or neutral lepton l with the momentum k on 

a nucleon H with the momentum P, as follows:   

 XklPHkl ++ )'(')()( ,      (1.1) 

where X denotes any hadronic final state created from the energy transfer from the 

incoming lepton. If X = H and l = lô then (1.1) describes an elastic scattering, where no energy 

transfer occurs. In the case of the neutral current DIS processes l = lô, and the other case of 

the charged current processes involves leptons differing in one unit of electric charge e. 
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However, the latter process is not relevant for the topic of this thesis. The neutral 

intermediation particle can be either photon or Z boson, but for the following discussion we 

will  consider the photon intermediator only
2
. The lowest order Feynman diagrams for the 

processes of elastic electron-proton scattering and the inelastic case scheme are shown on 

figures 1.1a and 1.1b, respectively. Concerning the DIS diagram 1.1b, the lepton vertex is 

described by the perturbative QED, while the photon-proton interaction involves non-

perturbative QCD effects of the proton structure, described by the proton structure functions. 

 

(a) Elastic scattering on point-like proton (b) Inelastic scattering 

Figure 1.1: The lowest order Feynman diagram of electron-proton scattering (a) and the 

schematic of the inelastic e-p scattering. The diagrams are taken from ref. [3]. 

The following Lorentz invariant variables are commonly used for the description of DIS 

process [4]:   

 )2(2)( 22

plabp MEMPkMPks +=Ö+=+¹ ,      (1.2) 
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22 )1(
)( pM

x
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PqW +

-
=+¹ ,      (1.6) 

where W is the invariant mass of the hadronic system X produced by the absorption of the 

virtual photon by the nucleon. The Mandelstam invariant s denotes the center-of-mass (CMS) 

energy of the lp system squared. The Mp corresponds to the proton mass, while the lepton 

mass is neglected here; E and Eô are the energies of the incoming and scattered lepton in the 

CMS, respectively, P and k, kô are the same as in eq. (1.1), and J describes the scattering 

angle of the lepton. The Q
2
 invariant is the negative value of the squared four-momentum of 

                                                 
2
 In the COMPASS DIS experiments the CMS energy ãs å 20 GeV/c

2
 is well below the Z peak, 

thus its contribution can be safely neglected. 
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the virtual photon, i.e. a momentum transfer between the leptonic and hadronic system. The 

variable y gives the amount of energy transferred between the lepton and hadron system, and 

x stands for the Bjorken x variable which is related with the inelasticity of the collision. 

Bjorken x varies from 0 to 1, the latter being the elastic scattering, while with decreasing 

value we move to the higher energy scales. In the parton model the Bjorken x represents the 

fraction of momentum carried by a parton inside the proton. The momentum transfer is a 

measure of experimental resolution, so in the DIS kinematic domain, where Q
2
 >> Mp and 

P.q >> Mp [4] it is high enough to probe the internal structure of nucleon. Note that 

(neglecting the masses) we can express sxyQ @2 , which means that (for the unpolarised case) 

with the given s only two of the above invariants are independent. 

Let us first remind the expression for the cross-section of a general process 

1+2Ÿ3+4+é+n: 
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where iv
C

 is the velocity of a particle in initial state, and ( )iii pEp
C

,=  denotes the four-

momentum of the i-th particle. Mfi is the Lorentz-invariant amplitude of transition between 

initial and final state. S is the statistical factor standing for the case of more identical particles 

in final state. From this basic formula the cross-section for the elastic scattering of electron on 

a point-like proton can be derived [4]: 
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And in the laboratory frame (LAB) we get: 
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where ůMott is the Mott formula for scattering of relativistic Dirac particle (unpolarised) on 

static point-like charge potential, and Ŭ is fine structure constant. If we consider that proton 

has an internal structure, we have to modify the cross-section with the form-factors
3
 or 

structure functions [4],[6]. After some treatment we arrive to the following expression: 
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3
 Form-factor F (q

2
) is a Fourier transformation of charge distribution in a particle. In the 

scattering cross-section formula it accounts for the effect of the extension of the charge distribution from 

a nonpoint-like particle [5]. 
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where  
2

2

4M

Q
=t  and GE

2
 and GM

2
 are the electric and magnetic form-factors. 

In the DIS the kinetic energy is not conserved, i.e. the variables Q
2
 and ɜ become 

independent, thus the eq. (1.10) changes. The following formulae are valid in CMS and LAB, 

respectively [4],[7]: 
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where F1 (x,Q
2
) and F2 (x,Q

2
), or equivalently W1 (ɜ,Q

2
) and W2 (ɜ,Q

2
) are the inelastic 

electromagnetic form-factors or structure functions of the proton, which comes from 

symmetric part of the hadronic tensor W
ɛɜ

 ( mn
mns WL

Q4

1
´ ) [4][7]. Within the parton model 

the structure functions are related to the Parton Distribution Functions (PDFs) which will be 

discussed in the next section.  

Let us now consider the polarised DIS with the longitudinally polarised lepton and 

longitudinally or transversely polarised target hadron: 

 XklSPHkl ++ )','('),(),( xx ,          (1.13) 

which is the same as (1.1) with only adding the spins of the lepton ɝ, ɝô and hadron spin S, 

respectively. In the polarised case two additional polarised structure functions appear, 

1

~
G  (ɜ,Q

2
) and 2

~
G (ɜ,Q

2
) coming from the antisymmetric part of W

ɛɜ
. Following equations 

apply for the Wi (ɜ,Q
2
) and iG

~
(ɜ,Q

2
): 
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The longitudinally and transversely polarised DIS cross-section can be then expressed in 

the following way [7]: 
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where ŷŹ denote the longitudinal polarisation of lepton and ÝÛÜÞ,  are the longitudinal and 

transversal polarisation of target nucleon, respectively. Averaging of the cross-section over 

the target spin orientations yields the equation 1.12 In the unpolarised cross-section the 

antisymmetric part of W
ɛɜ

 and the lepton tensor L
ɛɜ

 vanish and the cross-section is 

parametrized only be the form-factors F1 (x,Q
2
) and F2 (x,Q

2
), and on the contrary in the 

polarised one the antisymmetric part of hadronic and lepton tensor appear and structure 

functions G1 (x,Q
2
) and G2 (x,Q

2
) can be accessed. The experimental quantity that is measured 

for obtaining them is the longitudinal spin-spin asymmetry: 

 
¬Ü¬Þ

¬Ü¬Þ

+

-
=

ss

ss
||A .          (1.20) 

Of course, the asymmetry gives access only to the combination of the polarised structure 

functions not the individual ones. Nevertheless, one can see that in (1.18) the coefficients of 

G1 and G2 differ in the magnitude, the G2 contribution is suppressed w.r.t. G1 by a factor M/E. 

Thus, the longitudinal double spin asymmetry is used for measuring G1 function. On the other 

hand, in the process (1.19) no such suppression is present. Therefore, the function G2 can be 

extracted using the double spin asymmetrŷA : 

 
¬Û¬Ý

¬Û¬Ý

^
+

-
=

ss

ss
A ,          (1.21) 

combined with the G1 known from the asymmetry (1.20). 

1.2 Features of the parton model 

1.2.1 The Unpolarised nucleon structure 

The first measurements of the structure functions and elastic form-factors with electron-

proton unpolarised DIS were performed at the SLAC laboratory (Standford Linear 

Accelerator) in the late 60ô. The data showed factors a rapid decrease of the elastic form-

factors with rising Q
2
 and conversely the increase of the inelastic form-factors to a constant 

non-zero value. The explanation of this phenomenon was given by Richard P. Feynman, 

namely, that if the target nucleon has any internal structure, there is a lower probability that its 

constituents recombine back after the high energy collision. This behaviour of the nucleon 

form-factors had originally been predicted by James D. Bjorken [8], and then called after him, 

the Bjorken scaling. Later it has been shown that Bjorken scaling is an approximate scaling 

because the inelastic form-factors actually do approach zero, but very slowly. Thus, the 

equations (1.14)-(1.17) can be rewritten in a sense of Bjorken scaling: 
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Figure 1.2: The scaling of proton structure function F2 measured in electromagnetic 

scattering of positron beam from the fixed proton target in the experiments ZEUS [10] and H1 

[11] at HERA, for x > 0.00006, and for electrons in SLAC [12] and muons in BCDMS [13],  

E665 [14], and NMC [15]. The data are plotted as a function of Q
2
 in bins of x. Taken from 

ref. [9]. 
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On the basis of the results of DIS experiments, Feynman formulated the parton model 

(Parton is an abbreviation for ñpart of protonò [9]). In the parton model the DIS is viewed as a 

ñquasi-free scattering from point-like constituents within the proton, as viewed from a frame 

where proton has infinite momentum.ò [8] 

In the infinite momentum frame the proton becomes Lorentz-contracted to a disc and the 

internal movement of the partons is strongly slowed down by the time dilatation, thus the 

constituents can be considered as free particles during the collision in the sense that the 

lifetime of the parton states is much longer than the duration of the collision. This makes the 

parton model valid only in high energy scale. The DIS cross-section is then an incoherent sum 

over elastic lepton-parton cross-sections. The hadronisation process (conversion of the partons 

to the final state hadrons) takes place much later after the collision, as can be seen on the 

figure 1.3. In the collinear approximation it is assumed that the transverse momentum of the 

partons can be neglected as well as their rest masses and only their longitudinal momentum is 

considered. The longitudinal momentum of the i-th parton can be expressed as a fraction of 

the proton momentum ɖiP. Note that the momentum conservation law of the proton vertex in 

figure 1.1a: 

   ( ) ( ) PqQPqQPP iiii hhhh 22' 2222
=Ý+-= ,          (1.26) 

implies that Bjorken x represents the fraction of the proton momentum ɖi carried by a 

particular parton. Under the consideration of high energy limit s Ÿ Ð in (1.11), and thus the y 

variable being small, the elastic cross-section of electron on parton with charge fraction ep is 

given: 

    
4

22

2

4

Q

e

dQ

d ppas
= .          (1.27) 

After comparing (1.11) with weighted sum of the partonic cross-sections, we get the 

inelastic electron-proton cross-section in high energy limit: 

   
( )

()ä==
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ii xfe
Qx

QxF

QdxdQ

d 2

4

22

2

4

2

2

4,4 papas
,          (1.28) 

where fi(x) is the probability to find the i-th parton with charge ei and momentum fraction xP 

inside the proton. The functions fi(x) are called the Parton Distribution Functions (PDFs). And 

the function F2(x,Q
2
) is given as: 

 ( ) () ()ä==
i

ii xfexxFQxF 2

2

2

2 , .          (1.29) 
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Figure 1.3: Deep inelastic scattering in parton model. The process of hadronisation begins 

much latter after the collision; this is called the independent fragmentation model (taken from 

the ref. [5]). 

Parton model then naturally leads to Bjorken scaling (F2 does not depend on Q
2
). Also the 

function F1(x) from the cross-section (1.11) contributes in finite energies. The relationship 

between Fi(x) functions can be approximated by the Callan-Gross relation for partons with İ 

spin: F2(x) = 2xF2(x) which has been confirmed by experimental data, e.g. [4]. In the 1970ôs, 

the charged partons in the nucleon were unambiguously identified with the quarks from the 

additive quark model, proposed in 1964 to explain the hadron spectrum, but then some 

inconsistencies arose. One of the problems was the discrepancy between the experimental 

data and the probability definition of the structure function F2(x) expressed by the momentum 

sum rule: 

 ()äñ =
i

i dxxxf

1

0

1,          (1.30) 

as the actually measured value is only 0,5 [6]. It was a clear indication of a presence of some 

additional particles not interacting electromagnetically. 

There is another problem with the interpretation of partons as quarks. As only u, d, c, and 

s quarks can be constituents of the proton (b and t are too heavy) the proton structure function 

can be calculated as a sum of the PDFs of all quarks and antiquarks: 

    () () () ()[ ] () () () ()[ ]ö
÷

õ
æ
ç

å
+++++++= xfxfxfxfxfxfxfxfxF ssddccuu

p

9

1

9

4
2 .   (1.31) 

Integrating F2(x) over x we get a mean square charge per parton. The experimental value 

is 0,17 Ñ 0,009 [4] which is considerably lower than expected value of ӎ of the 3-quark 

model, i.e. this is another strong indication for additional constituent particle in proton. 

Another issue is the behavior of the parton distribution which is roughly proportional to 

1/x for x Ÿ 0 and the integral from this function diverges. This would imply an infinite 
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number of charged partons in the proton. We can define the so-called valence and sea PDFs as 

a combination of quark and antiquark distribution functions as follows: 

    () () (),xfxfxf qq

val

q -¹     () ().xfxf q

sea

q ¹           (1.32) 

Then the integral of the valence function for u and d quark is fully in agreement with 

static quark model [4]: 

 ()ñ º

1

0

2dxxf val

u ,    ()ñ º

1

0

1dxxf val

d ,    ()ñ º

1

0

0dxxf val

s           (1.33) 

while the integral of the sea PDFs diverges. These problems have been solved with the 

formulation of the QCD, a non-abelian gauge theory of strong interaction, see the section 

1.2.3. 

 

Figure 1.4: x times the unpolarised PDF f(x) for the valence and sea quark and gluons in 

proton for scales ɛ
2
 = 10 (GeV/c)

2
 and ɛ

2
 = 10

4
 (GeV/c)

2
 and Ŭs(MZ

2
) = 0.118 [17]. 

1.2.2 The Spin structure of nucleon 

ñYou think you understand something? Now add spinéò 

Robert L. Jaffe 

In the collinear approximation, the structure of the nucleon is reflected by the unpolarised 

parton distribution function reviewed above and the polarised PDF g1(x) which is called 

helicity function
4
, as follows [7]: 

       () () () ()( ) () ()( )( )ää ®Ü®Ü¬Ü¬Ü +-+=D¹
q

qqqq

q

q

q xfxfxfxfexfexg 1111

22

1
2

1

2

1
,   (1.34) 

                                                 
4
 The helicity denotes the projection of the particle spin onto the direction of its momentum. 
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that denotes the difference between the density of quarks with spin parallel with respect to the 

longitudinally polarised hadron and the quarks with spin anti-parallel. The transversal 

structure described by the transversity function h1(x)
5
 which is analogous to g1(x), but for the 

transversely polarised hadrons. 

We can determine the first moments of g1(x) function for proton and neutron: 

 () ù
ú

ø
é
ê

è
++°==G ñ 083

1

0

,

1

,

1
4

1

4

3

9

1
aaaxdxg npnp ,          (1.35) 

where a0, a3, and a8 are given: 

 ( )DS¹D+D+D+D+D+D= ssdduua0 ,          (1.36) 

   ( )dduua D-D-D+D=3 ,          (1.37) 

 ( )( )ssdduua D+D-D+D+D+D= 2
3

1
8 .          (1.38) 

The a3, and a8 can be obtained from the hyperon ɓ-decay. Using the known value of a3 

and a8, the a0 can be determined via measuring the ũ1
p
. In the 1988 the EMC collaboration 

provided the first measurement of ũ1
p
 for a very wide range of x. The results are shown on 

figure 1.5 and the measured value was [1]: 

 .)(019.0.)(013.0123.01 syststatp °°=G .          (1.39) 

With the reasonable assumption of neglecting the contribution of strange quark to the 

proton spin 0=D=D ss  (on the basis of Elis-Jaffe sum rule, eq. (1.44)) also the contribution 

of valence quark spins to the spin of a proton, ȹɆ (ibid.):  

 .)(226.0.)(094.0120.020 syststatSa
duz

EMC °°===DS
+

.          (1.40) 

which was in contradiction with the naµve expectation as the 3-quark parton model assumes 

the nucleon as an ensemble of approximately free partons moving collinear with nucleon with 

no orbital angular moment, and the nucleon spin consisting only from the contribution of the 

3 valence quarks and thus ȹɆ must equal 1 with two valence quarks with parallel spin and one 

with anti-parallel, İ + İ - İ = İ. But the surprising results of EMC measurement, basically 

compatible with zero, brought a crisis to parton model known as a ñspin crisisò and triggered 

new experimental and theoretical efforts for explaining the origin of the nucleon spin. 

 

                                                 
5
 The subscript 1 denotes the leading order of perturbative QCD. The notation we use is called 

the Amsterdam notation (Jaffe, Ji, and Mulders); one of the older notations which is also often used 

denotes f(x) ſ q(x), g1
q
(x) ſ ȹq, and h1

q
(x) ſ ȹƍq(x). 
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Figure 1.5: The xg1
p
(x) (in circles) and ũ1

p
 (in crosses) measurement of the EMC 

collaboration in 1988 [1]. 

 
Figure 1.6: The spin dependent structure function xg1(x) of the proton, deuteron, and proton 

on varying energy scales from 0.3 ï 100 GeV/c
2
. The figure was taken from ref. [17]. 
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1.2.3 The QCD improvement of the parton model 

 The formulation of the QCD brought gluons as another type of partons in the nucleon and 

the presence of the gluon field explained the violation of the Bjorken scaling in high energies. 

Just to give a short overview, QCD is based on SU(3) symmetry of colour charges with eight 

massless and coloured field quanta, vector bosons called gluons. Gluons carry the colour 

charge (8 colours) which allows self-interaction. In the low energy under 1 GeVc the strong 

coupling Ŭs(Q
2
) diverges which leads to confinement of the quarks and perturbative methods 

of the QCD are not valid. In the high energy the gluon radiation appears which causes the 

breaking of the Bjorken scaling, and in the limit of infinite energy (equivalent to distances 

going to zero) Ŭs goes to zero
6
. The Q

2
-evolution of the parton distribution functions can be 

then derived perturbatively. With increasing the Q
2
, the resolution of the probe increase as 

well. At high energies a valence quark appears to be surrounded by additional qq  pairs, i.e. 

the sea quarks, and gluons. This is described by the splitting functions Pqq, Pqg, Pgq, and Pgg
7
. 

The Q
2
 evolution of parton distribution function can be calculated by the DGLAP equations if 

they are known at a certain scale.
 
The first moment of g1(x) can be then rewritten in Q

2
-

dependence [7]: 
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where the ENS and ES are the non-singlet and singlet coefficient functions are expansions of 

the running coupling Ŭs(Q
2
): 

 ( )
ö
ö

÷

õ

æ
æ

ç

å
ö
÷

õ
æ
ç

å
-ö

÷

õ
æ
ç

å
öö
÷

õ
ææ
ç

å
--=

32

2

15.3

58.3
1

p

a

p

a

p

a sss

NS OQE ,        

 ( )
ö
ö

÷

õ

æ
æ

ç

å
ö
÷

õ
æ
ç

å
-ö

÷

õ
æ
ç

å
öö
÷

õ
ææ
ç

å

-
--=

32

2

07.0

10.1
1

p

a

p

a

p

a sss

S OQE ,          (1.42) 

where the upper and the lower number in the parentheses represent a coefficient used if 3 or 4 

quark flavours are considered, respectively. A fundamental sum rule can be derived by the 

means of QCD: 

 () () ( )2

11
6

QE
g

xx NS

Anp =G-G .          (1.43) 

This rule is called Bjorken sum rule and was first experimentally tested by EMC [1] and 

SMC [16] via measuring ũ1
p
 and ũ1

n
, respectively. The importance of this result lies in the 

                                                 
6
  This phenomenon is called asymptotic freedom; Nobel prize: Politzer, Gross, Wilczek, 2004. 

7
 These functions describe a probability of a parton (denoted by the first subscript) emitting 

a different parton (the latter subscript). 
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fact that it was not derived from the parton model and thus it can be then used for 

its confirmation. The measurements have shown consistent with the expectations, using the 

known value of a3.  

Using an assumption that 0=D=D ss  then 80 3aa =  from the eq. (1.36) and (1.38) and 

(1.41) turns to: 

 () ö
ö
÷

õ
æ
æ
ç

å
+°=G

3
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3
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1
3

5
1

12

1

a

a
axnp ,          (1.44) 

which is called the Ellis-Jaffe sum rule. The results of the Ellis-Jaffe sum rule verification are 

shown on fig. 1.5 together with the predicted value marked by an arrow [1]. As one can see 

there is a significant violation of Ellis-Jaffe sum rule implicating that the above assumption 

cannot be valid. 

 
Figure 1.7: The world data on scaling of the g1

p
 as a function of Q

2
 and x. One can see the 

slight hint of Bjorken scaling violation for small x, however the Q
2
 and x range of the data is 

smaller than the collected data for the structure function F2(x,Q
2
) as can be seen on the fig. 

1.2. The figure was taken from ref. [19]. 
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The ũ1
p
 and the value of quark spin contribution ȹɆ and a0 have been measured by many 

other experiments, one of the most recent result is from 2007 COMPASS ɛp DIS data [18]: 

 .)(03.032.0 statCOMPASS °=DS ,          (1.45) 

 .)(03.033.00 stata
COMPASS

°= .          (1.46) 

Both of the results are nearly identical, the latter was derived from the ũ1
d
 using the octet 

axial charge a8. This value is rather higher but far from the original assumption. 

As a result of the QCD corrections, the gluonic contribution to the nucleon spin is non-

zero, the equality of a0 and ȹɆ (eq. (1.36)) is no longer valid, it applies: 

 
( ) ( )2

2

0 3 QG
Q

a D-DS=
p

a
,          (1.47) 

where ( ) ( ) ( )222 ,, QxGQxGQG ®Ü¬Ü -=D  is the gluonic contribution to the spin of nucleon. 

Thus the small measured value of a0 does not necessarily mean the ȹɆ is small.  

 

Figure 1.8: Results of the QCD fits to g1 world data at a scale ɛ
2
 = 3 (GeV/c)

2
 for singlet 

xȹf
S
(x) and gluon distribution xȹg(x) (top band) and the distributions () ()( )xfxfx D-D  for the 

flavours u,d, and s. The dark bands denotes the statistical errors and the light ones the 

systematic errors. The figure was taken from ref. [19]. 

The ȹG has been subject of various measurements, e.g. the COMPASS experiment which 

confirmed the non-zero value of ( ) 06.0

07.0

2 2.0 +

-=D QG  [20] but this contribution is still not 

sufficient. Contemporary experiments are ongoing for determining the last possible 
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contribution of quark and gluon orbital angular momentum to conclude the spin puzzle as is 

described in the Jaffe-Manohar sum rule [21]: 

       gq LLG ++D+DS=
2

1

2

1
,          (1.48) 

where Lq and Lg are the quark and gluon orbital angular momentum, respectively. 

1.3 Transverse-spin-dependent nucleon structure 

In the previous section we presented the results of the measured contribution of quark and 

gluon polarisation to the nucleon spin. All the remaining effect that creates the total nucleon 

spin has to be addressed to the orbital angular momentum of partons. The only possible way 

to access Lq and Lg are the transverse spin or momentum effects in the nucleon. In the past 

there had been a common assumption that in high energies the transverse-spin effects are 

suppressed. However, it is far from the truth, there is a difference between the polarisation 

itself and its measureable manifestation [22]. The problem is to find a process which is 

sensitive to the transverse-spin effects as they are often strongly suppressed. Transverse 

polarisation of quarks cannot be observed in the DIS but it is accessible by SIDIS and Drell-

Yan processes. 

Let us first explain the Jaffe-Ji-Mulders notation (also called the Amsterdam notation) we 

use for the PDFs and consequently the TMDs [22],[23]. The letters f, g, and h denote the 

unpolarised, the longitudinally polarised, and the transversely polarised PDFs, respectively. 

The subscript 1 stands for the leading-twist functions, and the subscripts L and T correspond 

to the longitudinally or transversally polarised parent nucleon. The superscript ƍ denotes the 

presence of the transverse momenta with the uncontracted Lorentz indices. 

1.3.1 The Transversity distribution  

It has been shown in the section 1.2 that there are 3 PDFs describing the structure of the 

nucleon in the collinear approximation, two of them has been already presented. The third 

PDF, the transversity distribution ()xhq

1

8
, is analogous to the helicity but applies for the 

transversely polarised hadrons and quarks. It describes the density of the transversely 

polarised quarks with the fraction of momentum x and spin parallel with the nucleon spin 

minus the density of quarks with spin antiparallel w.r.t. the transversely polarised nucleon 

[24]. 

          () () ()( ) () ()( )( )xqxqxqxqxhq «Ý«ÝÝÝ +-+=1 .          (1.49) 

                                                 
8
  The Q

2
-dependence of the PFDs and TMDs is omitted for brevity.   
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Again, within the QCD improved Parton model the Q
2
-dependence appears in order to 

renormalize the quark fields. Same as the f1 and g1 distributions, the h1 is a leading twist 

quantity
9
 thus there is no reason for the transversity to be smaller than the helicity. However, 

in the Q
2
-evolution it is suppressed in low x range with respect to the helicity. Another 

distinction from the helicity is the non-existence of the transversal counterpart of the gluon 

polarisation which makes the overall contribution of the transversity lower than the helicity 

contribution. The transversity is connected with the helicity and unpolarised PDF by the 

Sofferôs inequality [7] (for a particular quark flavour): 

      () () ()[ ]xgxfxh 111
2

1
+¢ .          (1.50) 

The transversity was introduced by Ralston and Soper in 1979 [27]. But more thorough 

theoretical efforts were developed in the ó90s and first proposals for the measurements of the 

transversity were submitted. However, there is still very little data collected nowadays [22]. 

The reason is that h1(x) is a chiral-odd function thus its measurement requires a flip of the 

probed quark chirality. But as it has been mentioned above, this process cannot be accessed in 

the DIS due to the conservation of helicity in the QCD processes. To measure the transversity, 

one has to flip the chirality twice, so either two hadrons in initial state are needed, as in DY, 

or one hadron in the initial state and one in the final, like in SIDIS. The present measurements 

of the transversity are held in the COMPASS, JLab, or RHIC experiment (and a contribution 

from the past HERMES experiment data). 

1.3.2 Transverse Momentum Dependent PDFs 

If we abandon the collinear approximation and consider the transverse momentum of 

quarks kT to be finite, we can expand the description of the nucleon structure to a 3D picture 

in the momentum space given by the Transverse Momentum Dependent (TMD) PDFs. 

Another approach using the finite kT and developed in the 90ô are the Generalised Parton 

Distribution (GPD) which describe a longitudinal momentum of partons and their radial 

position distribution, but those are not a subject of this thesis.  

TMD approach is applicable only for small transverse momenta of partons kT << Q
2
 [22]. 

In the leading twist, 8 kT-dependent time-reversal invariant TMDs emerge [22]: f1(x, kT
2
), 

g1L(x, kT
2
), h1(x, kT

2
), g1T(x, kT

2
), h1T

ƍ
(x, kT

2
), h1L

ƍ
(x, kT

2
), h1

ƍ
(x, kT

2
), and f1T

ƍ
(x, kT

2
). They are 

summarized in the figure 1.9. The first three TMDs integrated over kT
2
 give the already 

                                                 
9
 Twist t denotes for the order of the expansion of the cross-section (DY or SIDIS) proportional 

to (1/Q)
t-2

. 



 20 

discussed f1(x), g1(x), and h1(x) distributions. The other 5 TMDs are chiral-odd functions 

which vanish after the integration. The distribution h1T
ƍ
(x, kT

2
) is called the pretzelosity 

function; g1T(x, kT
2
) and h1L

ƍ
(x, kT

2
) are the worm-gear functions which correlate two 

perpendicular spin directions [24]. The two last functions, which arise if we donôt demand the 

time-invariance of the amplitude, are the naively T-odd distributions, the Boer-Mulders 

function h1
ƍ
(x, kT

2
) and the Sivers function f1T

ƍ
(x, kT

2
). The Boer-Mulders distribution 

measures the correlation between the transversal spin and the kT of the quarks within the 

unpolarised nucleon. The Sivers function together with the naµve T-reversal will be discussed 

in the following subsection. 

 

Figure 1.9: The whole set of TMDs ordered by the nucleon polarisation versus the 

polarisation of quarks. 

For further convenience, we mention the role of fragmentation functions (FF). In the 

hadron production processes (e.g., SIDIS) the transverse spin and kT dependent structure 

functions consist of the TMDs and the FFs of the daughter hadrons. FFs are in a sense 

a mirror of the parton distributions as they represent the probability of a particular quark with 

a given polarisation to form a certain daughter hadron with the momentum fraction z in the 

process of hadronisation [22]. 

1.3.3 The Sivers distribution  

As the QCD is a T-invariant theory, one might expect that the above introduced naively  

T-odd distributions are equal to zero. In the following subsection we will give a brief 

theoretical justification of the observed data which proof otherwise (e.g. the Sivers asymmetry 

results from SIDIS at COMPASS [26]), more details on the derivation of the relations below 

and the TMD factorization can be found e.g. in referencies [22],[27],[28]. In the second part 
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of the subsection, we give an outline of one of the naively T-odd distributions, the Sivers 

function. The other T-odd function, the Boer-Mulders will not be discussed as it was not a 

topic of our analysis. 

The cross-section of the high-energy hadroproduction (e.g. DY) or leptoproduction 

(SIDIS) can be factorized into lepton part L
ɛɜ

 and hadron part W
ɛɜ

, as it was mentioned in the 

section 1.1. The soft part of the hadron tensor is represented by the quark-quark correlation 

matrix. The general form of the correlation matrix is [22]: 
 

 ( ) ()0,, .4

j

ik

ij PSedSPk yx x

ñ=F LÀ( )¤,0 L( )()PSi xyx,¤ ,                (1.51) 

where L is a light-like gauge-link operator, path-ordered exponential, so-called Wilson line, 

inserted between the quarks to preserve the gauge invariance, defined as: 
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õ

æ
æ
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mexp, ,                (1.52) 

where y is the initial time, and g is the coupling constant of a gluon gauge field A
ɛ
. Then the 

quark distribution functions can be expressed as: 

 Tr( ) ()0.4

j

ik PSed yx x

ñ=GF LÀ( )¤,0 ũL( )()PSi xyx,¤ ,          (1.53) 

It is the presence of the Wilson lines which guarantees the non-vanishing of the T-odd 

distributions from the cross-section. Following symmetries apply for the quark-quark 

correlator matrix: 

 ( ) ( )00 ,,,, gg SPkSPk F=F+  (hermicity)     (1.54) 

 ( ) ( )00 ~
,

~
,

~
,, gg SPkSPkP -F=F  (parity)     (1.55) 

  ( ) ( ) 55 ~
,

~
,

~
,, gg +F=F CSPkCSPkT  (time-reversal)     (1.56) 

The equation (1.56) can be applied only if the Wilson lines are not inserted. The correlator 

can be decomposed in a Dirac matrices basis in a following way: 
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where S, V, A, P, and T are scalar, vector, axial, pseudo scalar, and tensor terms. After some 

treatment (see [22]) we get the form with the distribution functions: 
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The function Pq/N (x, kT
2
) represents generally the quark distribution functions, i.e. the 

probability to find a quark with nucleon momentum fraction x and with intrinsic transverse 

momentum kT; TLs / denotes the longitudinal or transversal spin of the quark; the SL/T is the 

spin of the target nucleon with respect to nucleon momentum. The analogous relations apply 

for antiquarks as well (with the antiquark-antiquark correlatorF). Then the unpolarised PDF 

is composed as an addition of f1 for quarks and antiquarks 11 ff + , i.e. the flavour singlet, and 

the rest of the 8 TMDs is a subtraction
11 ff - , the flavour non-singlet [22]. The last terms of 

the relations Tr(ɔ
ɛ
ū) and Tr(iů

ɛɜ
ɔ

5
ū) in equations (1.58) appear only if the condition (1.56) is 

not applied. 

Finally, we can explain why the constraint (1.56) is ñnaµveò and why T-invariance of the 

correlator (1.51) is preserved. The link operator presented above (eq. (1.52)) is 

a representation of a final-state interaction (in the eikonal approximation, see [29][30]) 

between the struck quark and the remnant of the nucleon. It is integrated from the time y to 

the future. On the other hand, under the time-reversal the future-pointing Wilson lines are 

flipped into the past-pointing ones, thus representing the initial-state interaction. This is the 

reason why it is naµve to assume that the eq. (1.56) is the appropriate form of the T-reversal 

valid for the correlator (1.51). This was the Collinsôs argument [29] based on QCD of non-

vanishing of the T-odd distributions, as they are actually not T-odd, but naively T-odd. The 

requirement of the gauge invariance caused the presence of the Wilson lines, and thus not the 

classic T-reversal, but a naµve one have to be used to preserve the T-invariance of the 

correlator. As a consequence of the Wilson lines application, the discussed distributions 

appear to be T-odd under a classic T-reversal. Another consequence is the process dependence 

of the correlator incorporated into the Wilson lines which change their sign when applied in 

the initial state interaction versus the final ones due to the switching of the direction of 

integration. 

One of the T-odd functions is the Sivers distribution f1T
ƍ
. It was introduced by Dennis W. 

Sivers in 1990 [31] in order to explain the large single-spin asymmetries measured in 70ôs in 

DIS. Sivers function describes the correlation of the transverse spin ST of the nucleon with the 

intrinsic transverse momentum kT of the quark, in other words it describes the left-right 

asymmetry in the distribution of partons in the nucleon with respect to the plane spanned by 

the directions of momentum and spin of the nucleon. A correlation between the kT and the 

transverse polarisation of a hadron is related to the non-zero orbital angular momentum in the 
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nucleon. The non-zero value of the Sivers distribution was shown experimentally by the 

HERMES [32] and COMPASS [26]. 

 The Sivers asymmetry was measured at COMPASS in production of charged pions, 

kaons, and neutral kaons in SIDIS. Recently, new analysis of the COMPASS data from 2007 

and 2010 was issued [26] showing the Sivers asymmetry summed up for the positive hadrons 

and the negative ones in four Q
2
 ranges which are almost identical as the ones used in the 

recent DY analysis [35] to enable the direct comparison of the Sivers asymmetry results, 

measured by COMPASS in the SIDIS and DY processes. The complete results for the four Q
2
 

ranges are shown in figure 1.10 [26]. 

 

Figure 1.10: The Sivers asymmetries from COMPASS for the positive and negative hadrons 

as function of x, z, and h

Tp  (taken from ref. [26]) in four different Q
2
 ranges. 
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One can see that for positive hadrons, positive Sivers asymmetry was observed in the 

whole x-interval in all four mass ranges [26]. The amplitude is apparently rising to the value 

of x ~ 0.2 and then possibly decreasing for larger x. The Sivers asymmetry in z and h

Tp  seem 

to have approximately linear dependence. The data for the negative hadrons show lower 

amplitude and for the lower Q
2
 ranges is rather compatible with zero, except for the low Q

2
 in 

the z distribution where it drops to the negative values, while in the high mass range there is 

an indication for a slight rise in the positive values. The integrated values of the complete set 

of the cross-section amplitudes are depicted in the figure 1.11. 

 

Figure 1.11: The integrated transverse-spin asymmetries (TSA) in the high Q
2
 range. 

Systematic errors are shown as the horizontal bars. The first is the Sivers asymmetry, the 

second is the transversity asymmetry, and the third the pretzelosity asymmetry (the remaining 

modulation amplitudes are mostly of higher twist origin and are not the subject of this thesis). 

Taken from ref. [26]. 

1.3.4 The Pretzelosity distribution  

The pretzelosity function h1T
ƍ
(x, kT

2
) is a chiral-odd TMD which describes a correlation 

between the transverse spin of the nucleon with a transverse spin and kT of a quark. It is 
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predicted to be suppressed compared to f1 in large and small x. There is a constraint on a value 

of pretzelosity after integration over the kT given by an inequality [33]: 

    ( ) )()()(
2

1
)( 111

)1(

1 xfxgxfxh T ¢-¢^ .          (1.59) 

In a sense, the pretzelosity measures a deviation of the nucleon shape from a sphere. And 

similarly, like transversity, it has no analogy for gluons.  

1.4 The Drell -Yan process 

In this section we will give a short review of the DY formalism and observables (used 

notation follows the article of Arnold, Metz, and Schlegel [34]). The Drell-Yan process was 

first introduced in 1970 by Sidney D. Drell and Tung-Mow Yan [35]. It is a process of 

hadron-hadron reaction (in the leading order, the reaction proceeds via quark-antiquark 

annihilation) with a production of a massive lepton pair: 

 ( ) ( ) () ( ) ( ) XsklsklXqSPHPH bbbaa ++++ +- ',',, *g ,           (1.60) 

where Pa,b are the momenta of the colliding hadrons; Sb denote the spin of the target hadron 

(considering only the polarised target as in the case of COMPASS measurement), which have 

the following properties: SpĿPp = 0 and Sp
2
 = -1; k and kô are the momenta of leptons; and s 

and sô their spins. q = k + kô is the total momentum of the lepton pair, or equivalently, of the 

virtual photon ɔ
*
. And X denotes the hadron shower created from the remnants of the struck 

initial hadrons. The figure 1.12 shows the Feynman diagram of this process: 

 

Figure 1.12: The Feynman leading order diagram of the Drell-Yan process: annihilation of a 

quark-antiquark pair into a lepton pair. The circles denote the PDFs of the hadrons. The 

colliding hadrons are ˊ
- 
and p such as at COMPASS experiment (taken from ref. [24]). 

We assume a reference frame of hadron-hadron collision head-on along the z axis. The 

following invariant kinematic variables can be defined: 

  ( )2ba PPs += ,   

 
( )qP

q
x

ba

ba

,

2

,
2

= ,   
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s

q
xxx baF

2
@-= ,          (1.61) 

 
s

m24
=t , 

 ball xsxqQM @== 222 ,   

where s describes the total CMS energy squared, x is the Bjorken x of a parton in hadron (see 

eq. (1.4)), xF denotes the so-called Feynman variable, and the last quantity is the invariant 

mass squared of the dilepton. The equalities in the second and last equation apply only if we 

neglect the parton masses. The cross-section of the unpolarised case using the parton model is 

given [4]: 

( )()( )( )ä ññ ---ù
ú

ø
é
ê

è
=

i

baFbababiaii

F

dxdxxxxmsxxxfxfe
mdxdm

d
dd

pas 2

11

2

2

2

2 3

4

3

1
,     (1.62) 

where the expression in the square brackets stands for the parton-antiparton annihilation 

cross-section. The factor of ӎ is a colour factor and reflects the probability that both quark 

and antiquark have the same colour charge, i.e. colour-anticolour, which is necessary for 

annihilation into a colourless photon. The index i runs over both quarks and antiquarks from 

the hadrons a and b. After the integration of (1.62) over x2 from the eq. (1.63) by means of the 

second ŭ-function we get: 
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FF xxx .      (1.63) 

The r. h. s. of the eq. (1.63) scales with the parameter Ű independently on the particular 

shape of the quark PDFs [4]. This is another example of scaling behaviour of the parton 

model as we could see in DIS (see fig. 1.2 and 1.7). 

Along with the DIS, the unpolarised DY process played an important role in testing of the 

Parton model. However, unlike the DIS, the DY enables to determine the PDFs of pions and 

kaons, and its polarised version has proven [36] to be a convenient tool for studying the 

transversity distribution and T-odd TMDs (see Section 1.3) and some other issues both in 

perturbative and non-perturbative QCD. Nevertheless, the measurement of the polarised DY 

is rather demanding because of its very low total cross-section [34]. 

The complete cross-section of the Drell-Yan process containing the polarised part was 

derived by Arnold, Metz, and Schlegel [34]. In their article, two special reference frames are 

used: the first is called Collins-Soper (CS) frame depicted in the figure 1.13a. It is a dilepton 

(or equivalently virtual photon) CMS frame, the z-axis corresponds to the bisector between 

the directions of the beam and target particle momenta, the x-axis is located on the plane 
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spanned between the two momenta, and the y-axis is perpendicular to both of them in a right-

handed direction [24]. If  we neglect the lepton mass, we can write the l and l momenta as 

follows [37]: 

 ( )qfqfq cos,sinsin,cossin,1
2

k
l CS=
- ,           (1.64) 

 ( )qfqfq cos,sinsin,cossin,1
2

'
---=+ k

l CS .           (1.65) 

The second is a target frame (TF) shown in the figure 1.13b where the z-axis is defined in 

the beam momentum direction, the x-axis along the transverse component qT of the dilepton 

(or virtual photon) momentum q, and xzy ĔĔĔ ³= , yielding: 

 ( )3

,

0

,, ,0,0, TFaTFaTFa PPP =m
,          (1.66) 

 ( )0,0,0,, bTFb MP =m ,          (1.67) 

 ( )30 ,0,0, TFTFTF qqq =m ,          (1.68) 

 ( )LSTSTTF SSSS ,sin,cos,0 ffm = ,          (1.69) 

where a and b denote the beam and the target hadron, respectively. The angles present in the 

equations above are following: the ʟ s angle which is an azimuthal angle of the transverse 

polarisation in the TF; and the ʟ and ɗ angles which denote the azimuthal and polar angle in 

the CS, respectively. 

 

(a) The Collins-Soper frame. Definition of polar 

and azimuthal angles ɗ and ū. 

(b) Target rest frame. The definition of the 

azimuthal angle ūS of the proton spin. 

Figure 1.13: Definition of the angles from Collins-Soper reference frame used for DY. (taken 

from ref. [24]). 

If we assume the QCD TMD factorization theorem [34], it was shown that at the limit of 

high energies (s, q
2
 >> Ma

2
, Mb

2
) and low transverse momentum (qT << q) the cross-section 

can be expressed as a sum of weighted convolutions of TMDs. We will use the following 

shorthand [34]: 
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where w is a kinematic factor, the Nc is a number of colours and fi(x, kT
2
) are the TMDs. For 

the full form of the DY cross-section see ref. [27] (for its full derivation), or ref. [34]. Here, 

we are interested only in the case of transversely polarised target and beam hadron 

unpolarised as will be elaborated below. Let us also assume for further convenience the beam 

hadron a as ˊ
-
 and the target hadron b as proton. Thus, we get a following formula [34][37]: 
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where ( ) 222
4 baba MMppF -Ö=  denotes the flux of incoming particles; Ŭ is the fine 

structure constant; ( )21
Ĕ FFU +=s  is the unpolarised part of cross-section, which does not 

depend on the azimuthal angles sʟ and ʟ , factorised out of the cross section (F1 and F2 are the 

unpolarised structure functions discussed in the section 1.2.1); and
U

w

TUw

TU

s

s
F

A
s

ff

ff

Ĕ

),(

)(),(

)( =  are the 

measured amplitudes of the modulations of the azimuthal angles where the superscript stands 

for the azimuthal modulation which is described by the structure function and the subscript U, 

L, or T for unpolarised, longitudinally, or transversely polarised target proton, respectively 

(beam pions are taken as unpolarised, hence the subscript U is omitted). Now, it is convenient 

to introduce the depolarisation factors 
[ ]q

q
q 21)(

cos1

)(

U

f
A

f
D

+
=  to isolate the azimuthal 

modulations in the braces (the factor ( )qs 21 cos1Ĕ UU A+  is the only surviving term which after 

integrating over the azimuthal angles sʟ and ʟ ). Then we get: 

 .     (1.72) 

Finally, in the leading order QCD the cross-section simplifies [37] as some of the 

amplitude are of higher twist order, as follows: 


