
České vysoké učeńı technické v Praze

Fakulta jaderná a fyzikálně inženýrská

Katedra fyzikálńı elektroniky

BAKALÁŘSKÁ PRÁCE

Jan Tomsa

Praha – 2014

České vysoké učeńı technické v Praze

Fakulta jaderná a fyzikálně inženýrská

Katedra fyzikálńı elektroniky

Monitorovaćı nástroje pro sběr
dat fyzikálńıho experimentu

COMPASS v CERN
Monitoring tools for the data

acquisition system of the
COMPASS experiment at

CERN

Bakalářská práce

Autor práce: Jan Tomsa

Vedoućı práce: Ing. Vladimı́r Jarý, Ph.D.

Konzultant: Ing. Josef Nový

Akademický rok: 2013/2014

ČESKÉ VYSOKÉ UČENí TECHNICKÉ V PRAZE

FAKULTA JADERNÁ A FYZIKÁLNĚ INŽENÝRSKÁ

Katedra fyzikálni elektroniky

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student: Jan Tom s a

Obor: Inženýrská informatika

Zaměření: Informatická fyzika

Školní rok: 2013/2014

Monitorovací nástroje pro sběr dat fyzikálního experimentu
COMPASS v CERN

Název práce:
Monitoring tools for the data acquisition system of the COMP ASS
experiment at CERN

Vedoucí práce: Ing. Vladimír Jarý, Ph.D.

Konzultant: Ing. Josef Nový

Pokyny pro vypracování:
J ,.

1. Seznamte se se stávajícím' ~a;nově vyvíjeným systémem pro sběr dat experimentu
.Ó> ,

COMPASS v CERN. ,
2. Seznamte se s aktuálním stave~ monitorovacích nástrojů pro právě vyvíjený systém
3. Seznamte se s relačními databázemi a frarnéworkem Qt
4. Definujte vhodné datové struktury pro.repr~zentaci stavů systému
5. S využitím navržených struktur upravte monitorovací nástroje

Literatura:

1. T. Anticic et al. (the ALICE collaboration): ALICE DAQ and ECS Userřs Guide. CERN, ALICE
internal note, ALICE-INT -2005-015, 2005

2. J. Blanchette, M. Summerfield: C++ GUi Programming with Qt 4. Prentice Hall PTR, Upper Saddle
River, NJ, USA. 2006, ISBN:0131872494

3. M. Bodlák: COMPASS DAQ - Database architecture and support utilities . Prague, Czech
Technica! University in Prague, June 2012

4. J. Gehrke, R. Ramakrishnan: Database Management Systems, Third Edition. McGraw-Hill,
August 2002, ISBN 978-00-724-6563-1

Datum zadání:

Datum odevzdání:

24. říjen 2013

7. červenec 2014

r~'........... J ~
Vedoucí katedry Děkan

V Praze 24.10.2013

Acknowledgment

I would like thank to my supervisor, Ing. Vladimı́r Jarý, Ph.D., for leading
my bachelor thesis.

Poděkováńı

Chtěl bych poděkovat Ing. Vladimı́ru Jarému, Ph.D. za vedeńı mé bakalářské
práce, jej́ı jazykovou korekturu a věcné připomı́nky.

Declaration

I declare that I have carried out this bachelor thesis myself and I have men-
tioned all used information sources in bibliography.

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl
veškerou použitou literaturu.

V Praze dne 7. 7. 2014 Jan Tomsa

Název práce:

Monitorovaćı nástroje pro sběr dat fyzikálńıho experimentu
COMPASS v CERN

Autor: Jan Tomsa

Obor: Inženýrská informatika
Druh práce: Bakalářská práce

Vedoućı práce: Ing. VLadimı́r Jarý, Ph.D.
Konzultant: Ing. Josef Nový

Abstrakt

Tato práce se zabývá monitorovaćımi nástroji pro sběr dat na experimentu COMPASS
v CERN. Je to velmi d̊uležitá součást celého softwarového baĺıku sběru dat. Zajǐsťuje
stálý přehled o pr̊uběhu sběru dat. Na začátku proběhne seznámeńı s CERNem a ex-
perimentem COMPASS. Je popsán starý i nový systém sběru dat jak z hardwarového,
tak softwarového hlediska. Následuje seznámeńı s použitými softwarovými technologiemi
jako je programovaćı jazyk C++, framework Qt, komunikačńı knihovna DIM a MySQL
databáze. Práce se potom podrobněji zabývá návrhem a implementaćı programu Mes-
sage Browser pomoćı frameworku Qt a daľśıch technologíı. Je zmı́něn i program Message
Logger.

Kĺıčová slova: CERN, DAQ, COMPASS, Qt, DIM, C++, MySQL

Title:

Monitoring tools for the data acquisition system of the COMPASS
experiment at CERN

Author: Jan Tomsa

Abstract

This thesis covers the monitoring tools of the COMPASS experiment at CERN. It is a
very important part of the whole software package for the data acquisition. It provides
a constant overview over the progress of the data acquisition. The first part introduces
CERN and the COMPASS experiment at CERN. Then the thesis describes both the old
and the new Data Acquisition System of the COMPASS experiment from both hardware
and software point of view. The used software technologies are introduced, especially the
Qt framework and the DIM communication library. The following and the most important
part is dedicated to the design and implementation of the Message Browser program. The
Message Logger is briefly mentioned.

Key words: CERN, DAQ, COMPASS, Qt, DIM, C++, MySQL

Contents

1 CERN & COMPASS 8
1.1 CERN . 8
1.2 COMPASS . 8
1.3 COMPASS DAQ . 10

1.3.1 Current (Old) COMPASS DAQ 10
1.3.2 The New DAQ . 11

2 Software technologies 14
2.1 C/C++ . 14
2.2 Qt framework . 14

2.2.1 Graphical User Interface 15
2.2.2 Signals & Slots . 16

2.3 DIM Library . 16
2.4 MySQL . 18

2.4.1 Data types . 18
2.4.2 Flags . 19

2.5 Transport protocol . 19

3 Monitoring tools 21
3.1 Message Logger . 21
3.2 Message Browser . 21

3.2.1 Graphical user interface and control 22

4 Implementation 27
4.1 Message Browser . 27

4.1.1 Model . 27
4.1.2 Filtering . 31
4.1.3 The Online mode . 37

4.2 Message Logger . 41

A The content of the enclosed CD 47

6

Introduction

During the CERN shutdown during the years 2013 and 2014, both hard-
ware and software part of the Data Acquisition System of the COMPASS
experiment is being upgraded. The monitoring tools are not less important
than any other part of the project. They are a necessary part of the system,
because they ensure an overview over the progress of experiment. If some-
thing is not right with the DAQ process, monitoring tools provide immediate
feedback. The goal of this thesis is to document, improve and finish the
monitoring tools of the COMPASS experiment.

The first chapter is an introduction to CERN, COMPASS and it’s Data Ac-
quisition system. Both hardware and software part are mentioned.

The following chapter is dedicated to the description of the software tools
used in this project. It serves as an overview of the Qt framework, the DIM
communication library, and as a slight introduction to the MySQL database.

The third chapter describes the monitoring tools. It explains their capabili-
ties and how to use them.

The main contribution of this thesis is covered in the last, and the longest
chapter that is devoted to a detailed description of the implementation of
the monitoring tools.

7

Chapter 1

CERN & COMPASS

1.1 CERN

CERN, the European Organization for Nuclear Research, is an international
physics laboratory, operating one of the largest and most complex instru-
ments to study the basics of matter - fundamental particles. It is located
north-west of Geneva (Switzerland) in the Swiss-French borderland, with
the main site in Meyrin. CERN was established in 1954 by 12 European
countries. Currently, there are 20 countries with membership status and
7 observers.
CERN provides infrastructure and set of 6 accelerators, a decelerator and
many detectors for high-energy particle physics experiments. The largest
accelerator (LHC - Large Hadron Collider) is designed to produce particle
collisions with energy up to 14 TeV. Particles gain energy in the cascade of
accelerators and collide at speed close to the speed of light either with fixed
targets or with each other. Surrounding detectors record the results of these
collisions.

1.2 COMPASS

COMPASS (COmmon Muon Proton Apparatus for Structure and Spec-
troscopy) is a high-energy particle-physics fixed target experiment situated
in the north area of the Super Proton Synchrotron (SPS) particle accelerator
at CERN. It’s main mission is to study the structure and the spectroscopy
of hadrons using high intensity muon and hadron beams. The unique CERN
SPS M2 beam line is used as a source of these particles, serving the beam
with energy within the range of 50 GeV and 280 GeV.
The experiment was conditionally approved in 1997 by CERN Research

8

Figure 1.1: Experiment COMPASS is located in the North Area [9]

Board and assembled during the following years. The first period of data
taking took place between 2002 and 2004, followed by one year shutdown.
Then COMPASS resumed data acquisition with a muon beam (2006-2007),
hadron spectroscopy with pion and proton beam (2008-2009) and spin struc-
ture function measurements with a polarised proton target (2010-2011).
In 2010, the second phase of the experiment (COMPASS-II) has been ap-
proved by the CERN Research Board. The scientific program focuses mainly
on the Primakoff scattering, the Drell-Yan effect, and the generalized parton
distributions. [8]
COMPASS consists of two main parts - Small Angle Spectrometer (SAS) and
Large Angle Spectrometer (LAS). Both parts contain detectors for tracking,
particle identification, and calorimetry. Total length exceeds more than 60
meters, therefore the flight time of particles cannot be neglected and the
precise time synchronization is ensured by TCS (Trigger Control System).
The particle current from the beamline is not continuous. SPS sends 10

9

seconds long spills every 30-40 seconds (depending on the SPS cycle). One
spill for the hadron beam carries approximately 108 particles, 2 · 108 for
the muon beam. The record of the flight and interactions of the particle
in spectrometer is called event. The average size of every event is roughly
40 kB. The total amount of data recorded during one spill can reach up to
18 GB.

1.3 COMPASS DAQ

1.3.1 Current (Old) COMPASS DAQ

Figure 1.2: An artistic view of the experiment COMPASS [8]

Hardware

The COMPASS DAQ (Data Acquisition) is composed of multiple layers. The
first layer, the frontend electronics, is connected directly to the detectors
and reads out analogue data and converts it to digital values. COMPASS
contains around 250, 000 of these detector channels. In the second layer, 130
CATCH and GeSiCA modules create subevents. The assembly is coordinated
by the Trigger Control System (TCS). When the trigger signal arrives, data
from multiple channels are readout and concentrated into subevents enriched
with a timestamp. The subevents are then carried to 32 readout buffer
(ROB) servers via optical S-Link interface. Each of them contains 4 PCI
cards equipped with 512 MB of memory, called spillbuffers. Their purpose

10

is to buffer the subevents and to distribute the load during the whole SPS
cycle. Subevents are then moved through the Gigabit Network to event
building computers that filter and assemble the final events. Events, after
being locally stored on hard disks, are transfered to the CERN permanent
storage CASTOR. [1] [6] [2]

Software

The old DAQ was using modified DATE software package that was origi-
nally developed for the LHC experiment ALICE. DATE (Data Acquisition
and Test Environment) data acquisition software has been designed with em-
phasis on easy scalability. Thus it can run on one or many processors/com-
puters. It requires Intel compatible hardware and Linux operating system.
It offers tools to actual readout and event building, run control, messages
and information logging, and event sampling.
InfoLogger and InfoBrowser are tools used for monitoring purposes. The In-
foLogger retains incoming messages from the system and stores them into a
MySQL database. The InfoBrowser is a GUI (Graphical User Interface) pro-
gram for browsing and displaying those messages gathered in the database.

1.3.2 The New DAQ

Hardware

Due to increasing amount of collected data, the old DAQ hardware slowly
becomes insufficient. It has been decided to upgrade the obsolete technologies
such as PCI bus with modern hardware. The first (the frontend electronics)
and the second layer (CATCH and GeSiCA modules) of the DAQ system will
not be changed. However, Readout buffers and event builders are replaced
with modern FPGA (Field Programmable Gate Array) cards. The output
will be consistent with the old setup in order not to affect any following
processing and physical analysis of data. The new system will be easily
scalable (for simple future upgrades), more energy efficient, and will offer
sufficient performance.

Software

As a reaction to the upgraded hardware, a new DAQ software has to be
developed. It must maintain the same (or better) functionality and keep
the current data format unchanged (in order not to influence any further
parts of data processing - backward compatibility). It is inspired by the
DATE software package, however it will be more lightweight and thus easier

11

Figure 1.3: The new HW setup of COMPASS DAQ [2]

to maintain. It will be used only for control, configuration, and monitoring
purposes. The actual readout and event building will be performed by the
FPGA hardware. Five types of applications are currently under development:

• Master process - a Qt console application. It is the most important
part, almost all application logic is concentrated here. It serves as a
mediator between Slaves and GUI.

• Slave process - an application that controls and monitors a custom
hardware. It is controlled and configured by the Master, it informs the
Master about the state of the hardware it is deployed on.

• GUI - a Qt GUI application designed for controlling and monitoring
with emphasis on modularity. It can be launched in many instances,
however only one has the rights to change configuration and to execute
control commands, the other serve only for monitoring. It sends com-
mands to the Master. Master resends the monitoring data about the
hardware controlled by the Slaves to the GUI.

• Message Logger - a console application that receives informative and
error messages and stores them into the MySQL database. It is directly

12

connected to the Master and to the Slave processes via the DIM service
(DIM is presented in section 2.3).

• Message Browser - a GUI application that provides an intuitive access
to messages from system (stored in the database) with an addition of
online mode (displaying new messages in realtime). Equipped with
filtering and sorting capabilities, it is able to run independently from
the whole system in case of emergency.

13

Chapter 2

Software technologies

2.1 C/C++

C and C++ are a general-purpose and one of the most popular programming
languages. C was designed by Dennis Ritchie in 1972. C++ first appeared
in 1983, written by Bjarne Stroustrup. C++ extends functionality of pure C
by adding object oriented features. The latest C++ standard was approved
in 2011. [17]

2.2 Qt framework

Qt is a multi-platform application framework extensively used for developing
applications with a graphical user interface (GUI), although it can also be
used for developing non-GUI command-line programs.
The first version of the Qt was released in 1995. Qt was being developed by
a Norwegian company Trolltech until 2008, when it was acquired by Nokia.
Three years later, Nokia sold the commercial licensing part of Qt to Digia,
but Nokia still remains as the main developer of Qt. Qt is available under a
commercial license, GPL v3 and LGPL v2. [12] [11]
Qt is supported on broad spectrum of platforms including:

• Windows

• Apple OS X

• X11 - GNU/Linux, FreeBSD, HP-UX, Solaris . . .

• Wayland

• Android

• iOS

14

Qt has been also ported to many other operating systems and embedded
linuxes - Open Solaris, OS/2, webOS, Tizen, Ubuntu, Amazon Kindle DX,
Symbian, Windows Mobile. . .
Although the Qt Framework is primarily developed as a C++ library, Qt
provides several bindings for Java, Pascal, PHP, Python, Ruby, C#, and
other languages.
The Qt SDK offers variety of developers tools. Qt Designer is a software
used to design widgets and an appearance of graphical user interface (GUI).
It can act as a stand-alone application, but it is usually a part of a Qt Creator.
The Qt Creator is a complete IDE (Integrated Development Environment)
for developing C++ Qt applications. It supports syntax highlighting, code
control, revision control systems (GIT, Subversion) or performance testing
tools such as Valgrind.

2.2.1 Graphical User Interface

Qt offers an intuitive way of creating GUI. The whole GUI is based on
widgets. Widgets are visible elements that are used to display informations
or to control the running application. A QObject, the base class for all Qt
Objects, stays on top of the Qt class hierarchy. QWidget is derived from
QObject and all widgets are subclasses of QWidget.

Widgets are classified according to their main functionality:

• Buttons - Push Button, Radio Button, Check Box, . . .

• Item Widgets - List Widget, Tree Widget, Table Widget . . .

• Containers - Group Box, Frame, Widget, Scroll Area . . .

• Input Widgets

– Text input - Line Edit, Text Edit, Plain Text Edit . . .

– Numbers - Spin Box, Double Spin Box

– Time & Date Edit

– Scrollbars

– Sliders

• Display Widgets - Label, LCD Number, Progress Bar, Horizontal/Ver-
tical Lines . . .

• Layouts - Vertical, Horizontal, Grid . . .

• Spacers

15

Widgets are very flexible. They can be contained in other widgets (Group
Box, Frame . . .), every widget can act as a stand-alone window. To avoid
complications with fixed-size widgets (during window resizing), it is good
practise to place them into layouts. Layouts take care of their size and
position in respect to other layouts and widgets within the given layout. The
.ui file, where the information about GUI is stored, uses XML structure to
describe the hierarchy and settings of widgets in a window. [bodlos, pepa,
wiki, stranky qt]

2.2.2 Signals & Slots

The Signals & Slots mechanism is the major feature of Qt. It provides
independent inter-object communication between Qt objects. This concept
can be demonstrated in a scenerario, where GUI Widgets can send a signal
including data about the event which can be received by slot function in
another Qt Object. For example clicking a button causes the appropriate
widget to emit a signal. Slots are regular functions, that after being linked
with a signal, are immediately triggered when the signal is emitted. Signals
and slots can be connected and disconnected at any time during the execution
of an application by calling connect() or disconnect() function.

1 connect(sender ,SIGNAL(data),receiver ,SLOT(data));

disconnect(sender ,SIGNAL(data),receiver ,SLOT(data));

Widgets possess built-in signals and slots, additionally user-defined signals
and slots can be implemented. It is possible to establish multiple connections
and even connections between signals.

2.3 DIM Library

DIM library (Distributed Information management) is a communication sys-
tem originally developed for Delphi experiment at CERN. DIM, as many
other communication systems, is based on the client/server paradigm, that
is further extended by DNS (DIM Name Server).

DIM was designed to meet up to following requirements: [5]

• Efficient Communication Mechanism

– Asynchronous Communication - no polling at regular intervals
required, a process is informed when a change occurs.

16

Figure 2.1: Interaction of DIM components [13]

– 1 to N Communication - one or more processes have to be in-
formed, when something changes.

• Uniformity

– DIM should be able to handle all communication within the sys-
tem. A homogeneous system is much easier to program and main-
tain.

– The same interface for all types of machines

• Transparency

– Wherever a process runs, it should be able to communicate with
any other process in the system, using a location-independent
mechanism.

– The DIM should allow processes to move from one machine to
another, i.e.: to be independent of machine it runs at. It would
help to an easier recovery from errors and to balance the load
between different machines.

• Reliability and Robustness

– DIM should provide a mechanism for automatic recovery from
error situations or the migration of processes between machines.

17

A service is the fundamental base of the DIM. Service transfers a set of data
(of any type and size) from server to client. Services are requested by clients
usually only once at startup and the server updates them automatically in
a given period of time or upon a change of conditions. To assure the trans-
parency (i.e.: client does not need to know where a server is running), DNS
server was added into the architecture. Servers publish services and regis-
ter them to the DNS, whereas clients subscribe to these services. The DNS
keeps track of all running servers and services they provide. Clients initially
ask the DNS whether the service they request is provided. If it is so, the
DNS sends them the address of the server that offers the service and then
the communication is carried out directly between the server and the clients.
If any error or a change of a location of a server occurs, the DNS informs
affected clients and servers to re-establish their connection.

The DIM Library includes a tool that allows to monitor current setup -
DID - Distributed Information Display. It shows all servers, services they
provide, and a list of their clients. [13] [1]

2.4 MySQL

MySQL is an open-source implementation of SQL (Structured Query Lan-
guage) relational database management system (RDBMS). It was first re-
leased in 1995, since then, it has become the second most widely used [db-
engines.com] database system. Currently it is developed by ORACLE corpo-
ration and it’s source codes are available under GNU General Public License.
It is written in C++, but there are libraries allowing other programming lan-
guages to access the MySQL database. MySQL is available for all common
platforms such as Windows, Linux, OS X, Solaris . . . [1] [15]
A database is an organized collection of data. [16] Typically, it is a set of
mutually related tables. Tables are 2-D structures of rows and columns.
Data records are stored in rows, whereas each column is defined by it’s data
type. MySQL distinguishes between numerical, date/time, and string data
types.

2.4.1 Data types

Numerical data types include common integer, fixed-point and floating-point
types. Integer types in sizes from 1 to 8 bites can be both in signed and
unsigned versions. Boolean type is in fact only an alias for 1-bit integer type
(TinyInt). Decimal and Numeric represent the fixed-point data types. Float

18

and Double (Real) stand for floating-point numerical types.
Date and time related values can be stored in Time, Date, DateTime, or
TimeStamp columns.
MySQL recognizes several string types. Char and VarChar are similar types,
initially declared with the maximum length of the string they store. The
difference is that the char type always stores the full length, the stored value
is right-padded with spaces. The VarChar columns contain variable-length
strings.
Binary and VarBinary types store binary strings, that is, they have no char-
acter set and the comparison and sorting is based on numeric values of the
bytes in stored strings. The difference between Binary and VarBinary is the
same as between Char and VarChar.
Similar difference is also between Blob and Text types. Blob is binary,
whereas Text stores nonbinary character strings. These types are designed
for longer texts. According to given maximum required length in the decla-
ration, the actually used type is either TinyText, MediumText, or LongText
(or their -Blob alternatives).
MySQL also uses enumeration data type Enum and a Set type designed for
representation of a set of string values.

2.4.2 Flags

Beside the specific data type, columns can have additional properties and
restrictions.

• NOT NULL - the column cannot contain an empty field. NULL means
that the value is not known or that it has no value.

• UNIQUE - it assures that values in the column will not be duplicated;
it does not forbid NULL values.

• AUTO INCREMENT - it let’s the database engine to create an unique num-
ber for each new row in the column.

• PRIMARY KEY - it is the UNIQUE atribute combined with the NOT NULL;
only one column can be marked as a PK

2.5 Transport protocol

The Transport protocol is a custom protocol developed for exchanging in-
formation between the nodes of the system. It uses the QByteArray as a

19

data storage. It also provides methods to parse and create messages. More
detailed description of the Transport protocol can be found in [1] and [2].

20

Chapter 3

Monitoring tools

3.1 Message Logger

The Message Logger is a console application created for gathering informative
and error messages from the other DAQ nodes. It is using DIM to directly
connect to the Master and the Slave processes (the messages from Slaves are
not forwarded through the Master). It is using custom Transport protocol
(section [2.5]) and the DIM library to communication. These messages are
then stored into the MySQL database.
As a DIM client, it subscribes to many DIM information services from the
slaves and the master process. It is also registered as a DIM server via the
DIM DNS, therefore the master can control whether data taking is enabled
or disabled.

3.2 Message Browser

The Message Browser is a GUI (Graphical User Interface) application devel-
oped using Qt framework. It’s purpose is to display both messages already
stored in the MySQL database by the Message Logger and the currently in-
coming messages. It offers rich and intuitive filtering and sorting options. It
is intended as a replacement of the infoBrowser application from the DATE
software package [7] used in the old COMPASS DAQ setup.
The Message Browser is based on the standard model-view-controller soft-
ware architecture. Model is represented by the underlying data structure
containing all messages fetched from the database and received via the ”on-
line” part. The view is a table in the graphical interface displaying those
messages. Controller stands for the filtering mechanism, allowing only the
messages meeting the chosen criteria to be displayed.

21

Upon startup, the application loads messages from the MySQL database
from the last month (this time period might be refined later). Then it tries
to subscribe to the same services as the Message Logger does. If it suc-
ceeds, it begins to receive informative and error messages from system as
they supervene. Therefore it is not necessary to poll the database period-
ically for new messages. It is worth mentioning that it does not overtake
the job of the Message Logger of storing the messages into the database. If
the Message Browser is unsuccessful in connecting to the DIM services (that
probably means the whole system is down), the database-related part is still
untouched and working. This approach allows efficient usage of system re-
sources (no unnecessary polling), while ensuring independence from the rest
of the system.

3.2.1 Graphical user interface and control

The Graphical User Interface of the Message Browser consists of four main
widgets arranged into a grid. In the upper part of the window there are
sections called Column selector and Filter setting, the filter panel occupies
the right side of the window and the rest of the space is filled with a table
containing the actual informative and error messages. The dimension of these
widgets is managed by horizontal and vertical layouts (briefly described in
the section 2.2.1) thus ensuring resizing along with the main window.

Column selector

The Column selector widget contains eight CheckBoxes and two buttons.
CheckBoxes are assigned to corresponding columns (ID, Sender, Run, Spill,
Event, Message, Severity, and Date + Time) in the table with messages. As
the name of the widget suggests, checking or unchecking a CheckBox allows
the user to show or hide the desired column. The buttons are labeled ”Check
All” and ”Uncheck All”. Pressing them causes all CheckBoxes to check or
uncheck. It is the same as clicking on them independently, but faster. All
actions will take effect immediately.

Filter settings

The Filter settings section is made of three buttons (labeled as ”Set ini-
tial date”, ”Default”, and ”Show/Hide filters”) and one date picker. Upon
startup, the initial date is set by default to the date a month ago. User can

22

Figure 3.1: The Column selector widget with a few rows of underlying table

change this date and when the ”Set initial date” button is pressed, the Mes-
sage browser loads all records from the MySQL database since the selected
date. The filtering and column settings remains unchanged. The ”Show/hide
filters” button shows or hides the left side filter panel. When the panel van-
ishes, the resulting empty space is used by the table with messages. It is
useful to use when user doesn’t need to make any further adjustments to the
filter settings and wants to use the full width of the window for displaying
the messages.
The ”Default” button is a tool for resetting the application to it’s default
settings. All filters and column selectors are set to initial values and the
Message browser loads the last month of recorded data.

Figure 3.2: The Filter settings widget

Filter panel

The Filer panel is a widget designed to adjust filter settings. It is composed
of a big red ”Apply filter” button and seven checkable areas for setting up
parameters of the filter. If an area is checked, it expands and reveals detailed
settings of the corresponding parameter. Unlike column selector, user must
hit the ”Apply filter” button to use the new filtering settings.

23

The Sender group allows filtering the messages by the device that generated
them. It contains checkboxes only with the names and ID’s (in order to
distinguish between devices with the same name) of the source computers
whose messages are currently loaded in the memory. Additionally there are
”Check all” and ”Uncheck all” buttons to speed up the selection of desired
senders. If all senders are checked, it has the same resulting effect as if the
whole group is unchecked.

(a) The Severity (b) The Sender

Figure 3.3: The Severity and Sender filtering options

The Severity group allows filtering by the severity of the messages. It be-
haves the same way the Sender group does, except for the fact that there
are permanent choices (not dependent on messages currently loaded in the
memory). The severity of the messages can be one of - Info, Warning, Error,
Fatal Error, and Other. By default, the Info severity is unselected.

Run number, Spill number, and Event number groups are all very similar.
There are two Radio buttons to choose between an exact number or a range.
If the ”exact” option is choosen, only the messages with choosen number of
run, spill, or event will be displayed. If the ”range” is choosen, ”From” and
”To” checkboxes are enabled. Depending on which of them the user checks,
messages with number higher, lower, or within a given range will be displayed.

The Date&Time area allows filtering based on the date and time the messages
were generated. User can filter all messages originated before or after a
specified date and time, or within a desired date and time range.

24

Figure 3.4: The Number filters

Figure 3.5: The Date and Time filter

The last filtering option displays messages that contain the entered text. The
searching is not case sensitive. Pressing the Enter key triggers the filtering
- no need to click on the ”Apply filter” button.

Table view widget

The table view widget is the core of the application. It displays messages
loaded from the database and messages received from other nodes. It is a
table with eight columns - ID of the message, Sender name and ID, Run, Spill

25

Figure 3.6: The Message text filter

and Event numbers, text message, severity, and Date + Time. Every message
occupies a single row. It is possible to sort the entries by any column in both
ascending and descending order. When a header of a column is clicked the
first time, the content of the table is ordered by this column in the ascending
order. The second click causes the data to order in the descending order. The
width of columns can be easily adjusted to match the needs of the user. The
color of the rows is determined by the severity of the message to provide an
information about the occurrence of errors with a quick glance at the screen.
Informative messages appear with a green background, errors are red, fatal
errors blue, and the other messages are without any color highlighting.

Figure 3.7: The Message Browser application

26

Chapter 4

Implementation

4.1 Message Browser

4.1.1 Model

The implementation of the Message Browser uses a concept of the model-
view-controller software architecture. The model part is represented by a
newly designed msgDataModel class. Unlike the depreciated MSGBrowser-
Model class, which was built upon a QSqlQueryModel, the new one subclasses
Qt’s QAbstractTableModel. The QSqlQueryModel provides an easy access
to the MySQL database, on the other hand it doesn’t easily allow to display
data from other sources, which is necessary due to the ”Online mode” func-
tionality requirement. The QAbstractTableModel seemed a better choice,
because it is prepared to be a model for table views and a custom underlying
data structure is required as a temporary storage for messages.
The private section contains three important member variables:

private:

2 QList <QList <QVariant > > *m_data;

uint m_rows;

4 uint m_cols;

The m data variable is a dynamic two-dimensional structure of nested QLists
of QVariant. It is used as the temporary storage for messages. The m rows

and m cols variables contain the count of rows and columns that are cur-
rently stored in m data. QVariant acts like a union for the most common Qt
data types. [12, QVariant]

In order to subclass the QAbstractTableModel class, data(), rowCount(),

27

Figure 4.1: The class diagram of the Message Browser

and columnCount() methods have to be reimplemented. The data() func-
tion:

QVariant data(const QModelIndex &index , int role)

2 const;

is used by the view part of the application to retrieve everything it displays.
The view passes the index and role parameters. The index specifies co-
ordinates of the cell of interest, the role describes the type of information
required. The role can have many values, but the Qt::DisplayRole is the
most important. In case the role is set to Qt::DisplayRole, the data()

function returns the actual data from m data in a form of QVariant which
the view converts to a string value. The text information of messages is
stripped of whitespace and the time-stamp is converted into a convenient
date and time format.

switch (role){

2 case Qt:: DisplayRole :{

col=index.column ();

28

4 switch (col){

case COL_TEXT :{ // getting rid of whitespaces

6 qv=m_data ->at(index.row ()).at(COL_TEXT);

text=qv.toString (). trimmed ();

8 return QVariant(text);

}

10 case COL_STAMP :{

qv=m_data ->at(index.row ()).at(COL_STAMP);

12 return qv.toDateTime ().

.toString("yyyy/MM/dd hh:mm:ss");

14 }

default:

16 qv=m_data ->at(index.row ()).at(col);

return qv;}

18 }

For this application, the Qt::BackgroundRole is also important. It is used
to retrieve information about the background color of the involved cell. The
color for the whole row is determined by the severity of the message. The
Fatal error has a blue color, Error is red, Warning yellow, Informative mes-
sages are green, and the rest is without any color.

case Qt:: BackgroundRole :{

2 qv = m_data ->at(index.row ()).at(COL_SEV);

sev=qv.toString (). toLower (). left (3);

4 if (sev == "fer"){ // fatal error

return QVariant(QColor (0 ,0 ,255 ,125));

6 }

else if (sev == "err"){ //error

8 return QVariant(QColor (255 ,0 ,0 ,200));

}

10 else if (sev == "war"){ // warning

return QVariant(QColor (255 ,255 ,0 ,160));

12 }

else if (sev == "inf"){ // information

14 return QVariant(QColor (0 ,255 ,0 ,125));

}

16 else{ // everything else

return QVariant(QColor("white")); }

18 }

default: return QVariant ();}

29

Because this model provides resizable data structure (every new incoming
message should be added as a new row to the m data member variable), a
general insertRows() method has been reimplemented. It is important to
call beginInsertRows() before and endInsertRows() right after the inser-
tion of the new row into the model data structure. These methods notify
the connected views about the changes. Because only one row is added at
the time, simple addRow() public method was added. This method receives
a QList<QVariant> containing a new message and stores it into a private
member variable m new row and then calls insertRows() to carry out the
actual adding of the new message.

1 bool msgDataModel :: insertRows(int row ,int count =1 ,...

... const QModelIndex &parent=QModelIndex ())

3 {

beginInsertRows(parent ,row ,row+count -1);

5 m_data ->append(m_new_row);

m_rows=m_data ->length ();

7 endInsertRows ();

m_new_row.clear ();

9 return true;

}

11 void msgDataModel :: addRow(QList <QVariant > ql){

m_new_row=ql;

13 insertRows(m_rows);

}

The loadDtbData() is the last important method of the msgDataModel class.
This method is not only called at the startup of the application, but also when
user selects a new initial date, or presses the Default button. This method
completely changes the data in the model. Therefore it is necessary to notify
all components that depend on the model. Calling beginResetModel() on
the beginning and endResetModel() in the end will do so for us. At first, it
clears all previously stored data and then it loads new data from the database.
The connection to the MySQL database is provided by the database library
custom-made for the DAQ project [bodlos diplomka]. A MySQL query is
prepared according to the initial date provided as a parameter, and then
executed. The result is then appended row by row to the main data structure.
The rows are appended directly to the m data, there is no need to explicitly
call the addRows() method, as it would unnecessarily call insertRows() and
the connected methods for notifying of other components - they have already
been notified by the beginResetModel() method. The name of the source
device of a currently stored message is enriched by it’s database Id.

30

void msgDataModel :: loadDtbData(QString date){

2 beginResetModel ();

4 m_cols =8; // number of columns

m_data ->clear ();

6 QString query="SELECT a.Id, b.Name , a.run_number ,

a.spill_number , a.event_number , a.text ,

8 a.severity , a.stamp , a.process_id

FROM Message_log a, Process b

10 WHERE a.process_id = b.Id AND a.stamp >= :date

ORDER BY a.Id ASC";

12

QSqlQuery que;

14 que.prepare(query);

que.bindValue(":date", date);

16 que.exec ();

18 while (que.next ()){

for (uint j=0;j<m_cols; j++){

20 if (j== COL_NAME){ // source of mmsg + (Id)

m_new_row.append(QVariant(que.value(j).

22 .toString ()+" ("+que.value(COL_PROCID).

.toString () +")"));

24 } else {

m_new_row.append(que.value(j));

26 }

}

28 m_data ->append(m_new_row);

m_new_row.clear ();

30 }

m_rows=m_data ->length ();

32

endResetModel ();

34 }

4.1.2 Filtering

The FilterModel class is subclassed from the QSortFilterProxyModel class.
This class acts as a mediator between the data model and a view displaying

31

those data. It provides sorting and filtering capabilities. The QSortFilter-
ProxyModel acts as a wrapper for the original model. The model transforms
the structure of a source model by mapping the model indices it supplies
to new indices, corresponding to different locations, for views to use. This
approach allows a given source model to be restructured as far as views are
concerned without requiring any transformations on the underlying data, and
without duplicating the data in memory. [12, QSortFilterProxyModel]

The QTableView used for displaying data has a sortingEnabled property.
When it is set to true, the sorting capabilites of the QSortFilterProxyModel
are activated. When user clicks the horizontal header of the view, the view
calls the sort() method of the underlying model. By repeated clicking, the
sorting alters between ascending and descending order. The model then pro-
vides the data sorted in the desired way.

For filtering purposes, two major methods from the QSortFilterProxyModel
super class - the FilterAcceptsRow() and the FilterAcceptsColumn() -
have been reimplemented. They return true (and thus the row/column will
be displayed in the QTableView) in case that given row or column matches
the user-defined filter criterion.

Column filter

The column filter allows users to select (via checkboxes) columns which
should be displayed. The behavior is described in section 3.2.1. The check-
boxes are created dynamically upon startup and their labels are read from the
header data of the msgDataModel. Toggling of each checkbox is connected
to the columnSelectorChanged() slot method of the widget class. This
method fills a colBoolArray boolean array with information about which
checkboxes are checked, it also takes care of proper resizing of the remain-
ing columns. The boolean array is then passed to the filter model via
it’s interface. It is important to call fmodel->invalidate() to notify the
filter about changed criterion (fmodel is the instance of the FilterModel

class that takes care of filtering and sorting). The FilterAcceptsColumn()

method then allows filtering of columns according to this data. The colArray
points to the original colBoolArray, and the method returns true (column
will be displayed) if the related checkbox is checked.

fmodel ->setColumnFilter(colBoolArray);

32

1 bool FilterModel :: filterAcceptsColumn(

int source_column ,

3 const QModelIndex) const

{

5 return (colArray[source_column]);

}

Severity filter

The severity filter is used to filter messages depending on their severity. The
severity can be one of Info, Warning, Error, Fatal error, or Other. This fil-
ter is quite similar to the column filter. The severity checkboxes are created
upon startup and inserted into a checkable QGroupBox groupSev. The tog-
gle event of the group and checkboxes is connected to notifyFilter() slot
method of widget class that enables the ”Apply filter” button. When the
filter is applied, the status of the checkboxes is read-out into a sevBoolArray

boolean array. This array is then passed to the filter model via it’s
setSenderFilter() method.

Sender filter

This filter filters messages by the name of the device that generated them.
The functionality is similar to the Severity filter - a set of dynamically cre-
ated checkboxes layed out in a GroupBox. At the beginning of the sender
initialization, the names and Id’s of senders are loaded from the MySQL
Database. The getSendersInfo() method loads only those senders that
generated the messages currently stored in the data model. The n name is
a QVector<QString> variable that stores the names and Id’s of the loaded
senders. The n onlineIdToName is a QMap<uint,QString> variable that
maps the database Id’s of senders to their names. It is used in the ”Online
part” when a new message arrives (further discussed in section 4.1.3). The
n ids maps the sender’s rank to it’s name - it is used while evaluating the
filterAcceptsRow() method. When the GroupBox groupSen or the indi-
vidual checkboxes are checked or unchecked, it executes the notifyFilter()
slot. When the ”Apply button” is pressed, the information which check-
boxes are checked is passed to the filter model via the setSenderFilter()
method.

void Widget :: getSendersInfo (){

2 QString query="SELECT DISTINCT b.Name , a.process_id

FROM Message_log a, Process b

33

4 WHERE a.process_id = b.Id

AND a.stamp >=:date";

6 QSqlQuery que;

que.prepare(query);

8 que.bindValue(":date", initDateString);

que.exec ();

10

uint i=0;

12 while (que.next ()){

n_names.append(que.value (0). toString ()+" ("+

14 +que.value (1). toString ()+")");

n_onlineIdToName.insert(que.value (1). toInt(),

16 n_names.at(i)); //for incomming messages

n_ids.insert(n_names.at(i),i); //for filtermodel

18 i++;

}

20 nodesCnt=n_names.size ();

}

Number filters

Number filters provide filtering of messages based on their scope in the ex-
periment. The filters can be set in several ways. User can filter by an exact
number, or limit the values by a lower or upper boundary, or an exact range
of values can be defined. When Run number group, Spill number group, or
Event number group is (de)activated, or when anything inside these groups is
changed, a signal that triggers notifyFilter() slot is emitted. It enables the
”Apply filter” button. When the filter is applied, the settings of the Number
filters is passed to the filter model via setRNFilter(), setSNFilter(),
and setENFilter().

1 void FilterModel :: setENFilter(bool e, bool isex ,

int ex, bool isfrom , int from ,

3 bool isto , int to)

{

5 numGr[FEVE] = e;

numIsExact[FEVE] = isex;

7 numIsFrom[FEVE] = isfrom;

numIsTo[FEVE] = isto;

9 numValsExact[FEVE] = ex;

numValsFrom[FEVE] = from;

34

11 numValsTo[FEVE] = to;

}

The setENFilter() method passes seven arguments that are assigned to
seven corresponding member variables of the filter model. numGr stores
information if the group is activated (true). numIsExact is true if the given
group is set to ”exact”, false stands for ”range”. numIsFrom and numIsTo

indicate whether ”From” and ”To” checkboxes are checked. numValExaxt,

numValFrom, and numValTo hold the actual user-filled integer values from the
text fields. These variables are arrays of either three booleans or integers.
They hold information for all three Number filters. The index FRUN stands
for run numbers, index FSPI for spill numbers, and index FEVE for event
numbers.
These variables are passed to the filterAcceptsNumber() method that is
part of the filterAcceptsRow() method.

bool FilterModel :: filterAcceptsNumber(int num ,

2 bool e, bool isex , int ex , bool isfrom ,

int from , bool isto , int to) const

4 {

if (!e) return true;

6 if (isex) return (num == ex);

if (isfrom && isto) return

8 ((from <= num) && (num <= to));

if (isfrom && !isto) return (from <= num);

10 if (! isfrom && isto) return (num <= to);

return false;

12 }

The filterAcceptsNumber() returns true if the filter for the given group
is disabled, or if the filter is activated and the number meets the required
criteria. Otherwise false is returned and thus given message is rejected and
not displayed.

Date & Time filter

The Date and Time filter mechanism is almost identical to the Number fil-
ters. It filters the message according to the Date and Time of their origin.
The corresponding filterAcceptsDateTime() method works the same way
as in the Number filters section (but it compares Date and Time values
(QDateTime), not integers). The Date & Time only lacks the ”exact” option.

35

Text filter

The text filter is for filtering messages according to the text they contain.
When the text group is selected, a text is entered or changed, the filter is
notified via the connected signal. When the ”Apply button” is pressed, the
setTextFilter() method is called. It updates the filter model and it
starts rejecting those messages that do not contain the entered text.

Applying the filters

When the ”Apply filter” button is pressed, the current settings of all fil-
ters is read-out and passed to the FilterModel class via it’s setters. The
filterAcceptsRow() method then uses this information to determine whether
given row will be displayed. It returns true if the row passes filters for every
category.

bool FilterModel :: filterAcceptsRow(int source_row ,

2 const QModelIndex &source_parent) const

{

4 bool acceptNums = true;

bool acceptDt;

6 .

.

8 .

10 for(uint i = 0; i < 3; i++)

{

12 acceptNums = ((acceptNums) &&

(filterAcceptsNumber(nums[i],numGr[i],

14 numIsExact[i],numValsExact[i],numIsFrom[i],

numValsFrom[i],numIsTo[i],numValsTo[i])));

16 }

18 acceptDt=filterAcceptsDateTime(dt ,dtGr ,dtIsFrom ,

dtIsTo ,dtFrom ,dtTo);

20

return (!sevGr || sevArray[sevNum]) &&

22 (!txtGr ||

errText.contains(text , Qt:: CaseInsensitive)) &&

24 (!senGr || senArray[senIdMap[sender]]) &&

(acceptNums) &&

26 (acceptDt); }

36

4.1.3 The Online mode

The so-called ”Online mode” is a brand new feature of the Message Browser.
It allows for displaying new messages in real-time at the moment they are
generated, without querying the MySQL database. It uses the DIM library
to subscribe to the same services as the Message Logger does. It utilizes the
DimStampedInfo and DimBrowser.

Figure 4.2: The activity diagram of the Online mode

Subscribing

The onlineCheckLive() method takes care of subscription to information
services that can possibly generate and send a new messages. In order to
obtain a list of these services, it is necessary to take an advantage of the

37

DimBrowser class. The getServices() method returns the count of the ser-
vices that match the given name (in this case, it returns the count of all ser-
vices named ”INFO SERVICE *”, where the asterisk stands for any string).
An instance of InfoServLog class is created for every ”INFO SERVICE”
to handle. The infLog is a variable of QVector<InfoServLog*> type that
holds pointers to instances of the InfoServLog class. The connectedInfLog

string contains the names of all info services subscribed. When a new in-
stance of InfoServLog is created, it’s newMessage() signal is connected to
the onlineMsgReceived() slot in order to save the received message to the
data structure. This onlineCheckLive() method is triggered by a times ev-
ery five seconds to periodically check for changes in the Information Service
providers.

void Widget :: onlineCheckLive (){

2 count = br.getServices("INFO_SERVICE_*");

if(count >0)count --;

4 if(count >infCount)

{

6 infCount =0;

InfoServLog *Il;

8 while (br.getNextService(name , format) != 0)

{

10 if(! connectedInfLog.contains(name))

{

12 Il=new InfoServLog(name ,ready);

infLog.append(Il);

14 connect(Il,SIGNAL(newMessage(QList <QVariant >)),

this ,SLOT(onlineMsgReceived(QList <QVariant >)));

16 infCount ++;

connectedInfLog.append("||");

18 connectedInfLog.append(name);

}

20 }

qDebug () << "Subscribed to " << count;

22 }

}

Message handling

The InfoServLog class is subclassed from the DIM DimStampedInfo class
in order to receive and handle new messages enriched with a timestamp.

38

Every time a new message arrives, the infoHandler() method is executed.
It extracts the timestamp (getTimestamp()) and the data (getString())
from the message. The data is then parsed via the Transport Protocol [2].
The msgBody is split into pieces that are used to assemble the message in a
format used in the msgDataMode class. However, the ID of the message is
not known yet - the data model is out of scope, an arbitrary value of -1 is
inserted as a space-filler. The likely ID will replace it in the next phase. The
sender is represented by it’s database Id, not by the typical combination of
it’s name and Id.

1 void InfoServLog :: infoHandler ()

{

3 TransportProtocol tp;

if (ready)//if info taking is enabled

5 { //gets message with message size

QByteArray data(getString(),getSize ());

7 QByteArray sender , receiver , msgNumber , msgBody;

QDateTime dt;

9 uint sec(getTimestamp ());

dt = QDateTime :: fromTime_t(sec);

11 tp.parseMsg(data , &sender , &receiver , &msgNumber ,

&msgBody); // parses received message

13 QList <QByteArray >list = msgBody.split(’|’);

15 if(msgNumber.toUInt ()>0 && msgNumber.toUInt () <1000

&& list.size () >=5)

17 {

QList <QVariant > nMsg;

19 nMsg.append(QVariant (-1)); //ID of msg

nMsg.append(QVariant(tp.ByteToNumber(sender)));

21 nMsg.append(QVariant(

tp.ByteToNumber(list[MSG_RUN])));//run

23 nMsg.append(QVariant(

tp.ByteToNumber(list[MSG_SPI])));// spill

25 nMsg.append(QVariant(

tp.ByteToNumber(list[MSG_EVE])));// event

27 nMsg.append(QVariant(list[MSG_MSG]));// message

nMsg.append(QVariant(list[MSG_SEV]));// severity

29 nMsg.append(QVariant(dt.toString(

"yyyy/MM/dd hh:mm:ss"))); // timestamp

31

39

emit newMessage(nMsg); //sent to the next phase

33 qDebug () << "Info came.";

}else

35 {

qDebug()<<msgNumber.toUInt()<<" "<<list.size ();

37 qDebug()<<"Invalid info";

}

39 }

}

The assembled message is received by the onlineMsgReceived() slot. The
Id of the message is immediately set to it’s probable value (previous Id +
1). The real Id is assigned by the MySQL database when the Message Log-
ger stores the message into the database. The Id of sender is read from
the message and assigned to the integer ind variable. If the program has
been in touch with this sender Id before (i.e. the QMap n onlineIdToName

contains this Id), the sender part in the message is replaced by the mapped
value (combination of the sender’s name and Id). Nevertheless, if the Id of
the sender is not recognized (meaning that the local copy of the data does
not contain any messages from this sender yet), the Id has to be assigned
(mapped) to the sender’s proper name. The name is loaded from the MySQL
database. n names, n onlineIdToName, and n ids are updated with this
new name. Then a new checkbox for the new sender is created in the sender
area to extend sender filtering options. Finally, the new message is inserted
into the data model data structure.

void Widget :: onlineMsgReceived(QList <QVariant >nMsg){

2 nMsg [0]= QVariant(dmodel ->currentId ()+1);

4 QString newName;

int ind=nMsg[COL_NAME].toInt (); //~1, sender col

6 if (! n_onlineIdToName.contains(ind)){

//dtb query

8 QString query="SELECT b.Name

FROM Process b

10 WHERE :currInd = b.Id";

12 QSqlQuery que;

que.prepare(query);

14 que.bindValue(":currInd", ind);

que.exec ();

40

16 if (que.next ()){

newName=que.value (0). toString ();

18 } else {

newName="UNKNOWN";

20 }

// updating structures

22 int ii=n_names.size ();

n_names.append(newName+" ("+

24 +QString :: number(ind)+")");

n_onlineIdToName.insert(ind ,n_names.at(ii));

26 n_ids.insert(n_names.at(ii),ii);

//new checkbox

28 nodesCnt ++;

nodesCh.append(new QCheckBox(n_names[ii],

30 ui ->senderArea));

senderLayout ->addWidget(nodesCh[ii]);

32 nodesCh[ii]->setChecked(true);

senBoolArray.append(true);

34

connect(nodesCh[ii], SIGNAL(toggled(bool)),

36 this , SLOT(notifyFilter ()));

fmodel ->setSenderFilter(ui ->groupSend ->isChecked(),

38 n_ids , senBoolArray.data ());

40 }

nMsg [1]= QVariant(n_onlineIdToName[ind]);

42

this ->dmodel ->addRow(nMsg); //new msg stored

44 }

4.2 Message Logger

The core of the Message Logger is very similar to the Online part of the
Message Browser. The main difference is that it has a direct access to the
MySQL database and instead of just displaying the received messages, it
stores them into the database. The main() function takes care of subscribing
to the informative services and keeping up-to-date list of services that are still
active. It uses the DimBrowser class to get a count of active services and their
names. The main() function contains an infinite loop that keeps checking

41

whether there are any new services and subscribes to them, if necessary.

int main(int argc , char *argv [])

2 {

. . .

4

if (db.createCMADConnection ()) {

6 cout <<"Database connection established."<<endl;

}else {

8 cout <<"Database connection not established."<<endl;

qDebug () << db.dberror ();

10 }

12 . . .

14 while (true)

{

16 count = br.getServices("INFO_SERVICE_*");

if(count >0)count --;

18 cout <<count <<endl;

if(count >infCount)

20 {

infCount =0;

22 while (br.getNextService(name , format) != 0)

{

24 if(! connectedInfLog.contains(name))

{

26 infLog.append(new InfoServLog(name , &db ,

ready));

28 infCount ++;

connectedInfLog.append("||");

30 connectedInfLog.append(name);

}

32 }

cout << "Subscribed to " << count << endl;

34 }

sleep (1);

36 }

return 0;

38 }

42

Every time a message is received, an infoHandler() of the InfoServLog

class is called. It works almost the same way as in the online part of the
Message Browser. The difference is that the messages are stored into the
database.

void InfoServLog :: infoHandler ()

2 {

TransportProtocol tp;

4 if (ready)//if info taking is enabled

{

6 .

.

8 .

tp.parseMsg(data , &sender , &receiver , &msgNumber ,

10 &msgBody); // parses received message

QList <QByteArray >list = msgBody.split(’|’);

12 if(msgNumber.toUInt ()>0 && msgNumber.toUInt () <1000

&& list.size () >=5)

14 {

if (!db ->newLogEntry(tp.ByteToNumber(sender),

16 list[MSG_SEV], list[MSG_MSG],

(list[MSG_RUN]). toUInt(),

18 (list[MSG_SPI]). toUInt(),

(list[MSG_EVE]). toUInt ()))

20 {

cout <<"Writing into database failed."<<endl;

22 qDebug () << db->dberror ();

}

24 cout << "Info came." << endl;

}

26 else

{

28 cout << "Invalid info" << endl;

}

30 }

}

43

Conclusion

The planned shutdown of the CERN during the years 2013 and 2014 was
utilized to upgrade the hardware and software of the Data Acquisition Sys-
tem of the COMPASS experimnet at CERN. The harware part was equipped
with the programmable FPGA cards. The software was completely reimple-
mented. The finish of upgrade of the monitoring tools has been covered in
this thesis.

All objectives of this thesis have been fulfilled. In the beginning, the CERN,
the COMPASS experiment at CERN and both the old and the new Data
Acquisition Systems were fully introduced. The Data Acquisition System
was approached from both the hardware and software direction.

In the following part, all important software technologies (such as the Qt
framework, MySQL database, and the DIM communication library) were
sufficiently explained to the level of requirements of this thesis.

The improvements for the Message Browser, such as the new data model and
the online mode have been designed and successfully implemented. Many
other adjustments in the design, functionality and user experience have been
completed.

Further testing and fine-tuning is planned during the summer 2014 to achieve
perfect stability and robustness that is required during the run. The start of
data taking is planned on the fall 2014.

44

Bibliography

[1] M. Bodlák: COMPASS DAQ – Database architecture and sup-
port utilities.
Prague, Czech Technical University in Prague, June 2012

[2] J. Nový: COMPASS DAQ - Basic Control System.
Prague, Czech Technical University in Prague, June 2012

[3] Blanchette J., Summerield M.: C++ GUI Programming with Qt
4 (2nd ed.)
Prentice Hall, Qt preview for Symbian S60, February 2008.

[4] Adolph Ch. et al. (The COMPASS Collaboration): COMPASS-II Pro-
posal
CERN-SPSC-2010-014; SPSC-P-340, May 2010.

[5] C. Gaspar, M. Dönszelmann, Ph. Charpentier: DIM, a Portable,
Light Weight Package for Information Publishing,Data Trans-
fer and Inter-process Communication)
CERN, European Organisation for Nuclear Research, CH 1211 Geneva
23, Switzerland

[6] M. Bodlak, V. Frolov, V. Jary, S. Hube,r I. Konorov, D. Levit, A. Mann,
J. Novy, S. Paul, and M. Virius: New data acquisition system for
the COMPASS experiment)
Topical Workshop on Electronic for Particle Physics, September 2012

[7] Anticic T. et al.: (ALICE DAQ Project): ALICE DAQ and ECS
User’s Guide)
CERN, EDMS 616039, January 2006

[8] http://wwwcompass.cern.ch/
The COMPASS official website

[9] http://cern.ch/
European Organization for Nuclear Research

45

[10] http://en.wikipedia.org/wiki/CERN
Wikipedia, the Free Encyclopedia

[11] http://en.wikipedia.org/wiki/Qt (software)
Wikipedia, the Free Encyclopedia

[12] http://qt-project.org
The Qt developers site

[13] http://dim.web.cern.ch/
The DIM website

[14] http://db-engines.com/en/ranking
Knowledge Base of Relational and NoSQL Database Management Sys-
tems [June 2014]

[15] http://www.mysql.com/
MySQL database management system. [June 2014]

[16] http://en.wikipedia.org/wiki/Database
Wikipedia, the Free Encyclopedia [June 2014]

[17] http://en.wikipedia.org/wiki/c++
Wikipedia, the Free Encyclopedia

46

Appendix A

The content of the enclosed CD

• The electronic version of this document

• The source codes for the Message Browser

• The source codes for the Message Logger

47

	CERN & COMPASS
	CERN
	COMPASS
	COMPASS DAQ
	Current (Old) COMPASS DAQ
	The New DAQ

	Software technologies
	C/C++
	Qt framework
	Graphical User Interface
	Signals & Slots

	DIM Library
	MySQL
	Data types
	Flags

	Transport protocol

	Monitoring tools
	Message Logger
	Message Browser
	Graphical user interface and control

	Implementation
	Message Browser
	Model
	Filtering
	The Online mode

	Message Logger

	The content of the enclosed CD

