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Abstract

A modern understanding of the nucleon’s spin structure is presented. Polarisation depen-

dent deep inelastic experiments have shown that the helicity contribution of quarks to the

nucleon spin is much smaller than expected from the simple quark model. This observation

and the role of the triangle anomaly lead to the conclusion that gluons - if strongly polarised,

might solve the spin problem of the nucleon. Therefore a direct gluon polarisation measure-

ment is the one of main goals of the COMPASS experiment spin physics programme. Gluon

polarisation is determined from the longitudinal double spin asymmetry in the scattering of

160 GeV polarised muons off a polarised 6LiD and a polarised proton target. The gluons are

accessible by the selection of photon-gluon fusion events. The well-known processes to tag

the photon-gluon fusion events in the energy range covered by the COMPASS experiment

are: the production of open-charm D0 mesons and of light hadron pairs with large transverse

momenta. A special emphasis is put on a Neural Network approach that has been widely

used in both gluon polarisation determination methods. Thanks to a weighting method and

the Neural Network used in the signal selection, as well as in the parameterization of an

analyzing powers, the statistical precision of the results is significantly increased. The appli-

cation of Next-to-Leading Order Quantum Chromodynamics corrections to the polarisation

dependent and polarisation averaged partonic cross sections for open-charm production is

discussed. These higher order contributions are non-negligible in the COMPASS kinematical

domain. New results for the gluon polarisation, including these contributions, are obtained.

The results strongly support the hypothesis, that the gluons inside the nucleon are weakly

or not polarised. Therefore, the possible importance of quark and gluon angular momenta

are also discussed. Combining new results obtained in a Lattice Quantum Chromodynamics

approach, the possible scenario of the nucleon spin decomposition as a sum of the valence

quarks helicity and the orbital angular momentum of the gluons is discussed. The new con-

cept that the presence of the angular momentum of quarks inside nucleon is related to the

spatial deformation of the quark densities in the transverse plane is also reviewed.
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Chapter 1

Spin degrees of freedom

Spin is a fundamental degree of freedom originating from a space-time symmetry. It plays

a critical role in determining the basic structure of fundamental interactions. Spin is a

relativistic, quantum object. Effects related to spin survive also in the high-energy limit.

Spin also provides an opportunity to probe the inner structure of composite systems such

as the nucleon. After more than 25 years of measurements of the spin-dependent structure

functions of the nucleon the third generation of polarised experiments is now running and

delivering more precise data. Although our knowledge about the spin decomposition in the

frame of quark parton model (QPM) and Quantum Chromodynamics (QCD) is now more

complete and the polarisation dependent parton distribution functions (polarised PDFs) are

better constrained by data, the driving question for QCD spin physics still has no answer:

where does the nucleon spin come from? Pioneering experiments on the spin structure

were performed in the seventies at SLAC [1]. The famous EMC double spin asymmetry

measurement [2] and the naive interpretation of the results based on the Ellis-Jaffe sum rule

[3] have introduced the so-called ”spin crisis” to Particle Physics : quark spins carry only a

small fraction of the nucleon helicity. A lot of theoretical work has been done to understand

the spin crisis in the framework of QCD, e.g. higher order corrections to the Ellis-Jaffe sum

rule [4].

The quark helicity distributions ∆qi(x,Q
2) are related to the vector-axial quark current.

This current is not conserved due to the Adler-Bell-Jackiw anomaly [5]. The anomaly can

explain the spin crisis by changing the interpretation of the measurement: instead of the

quark spin content ∆Σ =
∫ 1

0

∑nf

i=1 ∆qi(x,Q
2)dx the flavor-singlet axial current matrix el-
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ement a0 = ∆Σ − 3αS

2π
∆G is measured, where ∆G =

∫ 1

0
∆G(x,Q2)dx is a gluon helicity

inside the nucleon. The spin crisis can be then avoided if ∆G is large enough. This inter-

pretation was the driving force in the preparation of a series of new polarisation dependent

Deep Inelastic Scattering (DIS) experiments dedicated to the precise measurement of par-

ton helicity distributions, transverse nucleon structure, and to the direct measurements of

gluon polarization: HERMES [6] at DESY, SMC [7] and COMPASS [8] at CERN, E155

[9] at SLAC and CLAS [10] at JLAB. The collider experiments STAR [11] and PHENIX

[12] at RHIC measure the gluon polarisation by observing helicity asymmetries for hadrons

and jets in polarised proton-proton collisions. In the light of the results obtained by these

new spin-dependent experiments the role of the axial anomaly seems to be marginal as data

prefer the gluon helicity contribution to the nucleon’s spin to be small.

Beside the quark and gluon helicities, also Orbital Angular Momenta (OAM) can con-

tribute the nucleon spin structure. The definition of the angular momentum of quarks and

gluons, both orbital and total, is a very delicate and nontrivial topic. It should be gauge

invariant and expressed in terms of well defined local QCD operators built from quark and

gluon fields. A possible solution was recently been proposed [13] although also this approach

has difficulty [14]. The presence of OAM inside nucleon requires the extension of the usual

QPM beyond the longitudinal approximation.

Complementary measurements to the longitudinal spin structure of the nucleon are per-

formed on transversely polarized targets. New polarisation dependent parton distribution

functions called ”transversity” are associated with such a ”transverse” spin nucleon struc-

ture. They are defined by the difference between quark (antiquark) distributions for two

different spin projection orientations relative to the transversely polarised target .Transver-

sity probes the relativistic nature of quarks. For models with non-relativistic quarks there is

no difference of the helicity and transversity distributions due to rotation symmetry. Rela-

tivistic quarks make a difference (relativistic Lorent’z boosts and rotations don’t commute)

which can be easily calculated in relativistic models. A good ”textbook” example is the MIT

bag model (see e.g.[15]). This model explains why ∆Σ ∼ 0.6 is below the naive expectation

∆Σ = 1 and predicts the reduction factor of about 0.83 for transversity. There is no transver-

sity analog of the gluon helicity distribution due to angular momentum conservation (the

nucleon spin decomposition in the case of transversity does not contain gluons). Because

tranversity is a C-odd and chiral-odd distribution it cannot be accessed in inclusive DIS ex-

periments. The Collins effect [16] uses the spin-dependent part of the hadronization process

as a ”polarimeter”. The Collins chiral-odd and T-even fragmentation functions are associ-

ated with a correlation between the transverse momentum of the produced hadron and the

transversely oriented fragmenting quark spin. The semi exclusive processes with observed
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e.g. ρ mesons are also considered to be a good reactions for accessing transverse structure of

the nucleon. In proton-proton collisions there is a possibility to study transversity function

measuring double transverse spin asymmetry (but the effect is ”double” small comparing

to DIS single spin asymmetry measurement), and an azimuthal distribution of hadrons in

jets. The Drell-Yan (DY) lepton pair production seems to be also interesting process. The

observation of the Collins effect requires the non-zero Collins fragmentation function. The

existence of this finite fragmentation function has measured by BELLE Collaboration in

e+e− collisions at KEK accelerator [17].

To go beyond the collinear approximation in the QPM, the transverse internal momen-

tum of partons inside the nucleon, k⊥, should be taken into account in the description of the

nucleon structure. Transverse Momentum Dependent parton distribution functions (TMDs)

are necessary in generalized decomposition of the semi inclusive cross sections, when az-

imuthal angle and internal k⊥ are considered. They are mostly accessed via measurements

of spin-dependent in particle production at experiments with transversely polarised tar-

gets. The interpretation of the TMDs in the framework of the QPM is not straightforward.

TMDs describe different types of correlations between transverse spin projection (of quarks

or the nucleon) and transverse momentum of quarks. The Boer-Mulders function, for exam-

ple, quantifies the correlation between quark spin and quark transverse momentum (or the

correlation between quark spin and quark orbital angular momentum) and describes trans-

versely polarised quarks inside unpolarised nucleon. This function is accompanied by the

kinematical Cahn effect - a reflection of the presence of the k⊥ inside unpolarised nucleon.

The Sivers function links quark (parton) internal motion to the nucleon spin inside trans-

versely polarised nucleon. This function describes unpolarised quarks inside transversely

polarised nucleon. Another example is the convolution of twist-two parton distribution from

the unpolarised hadron with twist-three quark-gluon correlation function from transversely

polarised second hadron, together with a short-distance hard partonic processes calcula-

ble in the frame of perturbative QCD, The latter is an example of a possible production

mechanism for transverse single-spin dependent asymmetries (SSA) for pions, observed by

the FermiLab experiment E704 [18] in proton-antiproton collisions and recently measured

in proton-proton interactions at RHIC by STAR [19] and PHENIX [20] experiments and -

also for kaons and protons - by BRAHMS [21] experiment. Factorization problem for the

TMDs for proton-proton collisions has been discussed in [22]. The so-called Pretzelosity

and Worm-Gear functions complete the twist-two QCD description of the structure on the

nucleon [23].

The Collins and Sivers effects have been recently measured by HERMES [24] and COM-

PASS [25, 26] experiments. These results together with SSA measurements suggest the
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existence of non-zero TMD functions. Their more precise measurement is thus expected to

lead to better understanding of factorization and twist-expansion in QCD. The advantage of

studying TMD functions lies in the fact that the leading terms cancel in some of them. This

provides the unique opportunity to test higher twist contributions. Usually these contribu-

tions are very small compared to the leading terms and difficult to measure experimentally.

The role of TMDs in understanding the nucleon spin is, however, not completely clear. Some

of them can be related to the existence of the quark OAM and maybe also of gluons. On the

one hand precise measurement of the TMDs can thus give insight in the role of OAM. On the

other hand the relation between the OAM and TMDs (some of them) is rather qualitative

and model dependent [27]. The Sivers function [28] seems to be the most promising. In

the Sivers effect, associated with the intrinsic quark transverse momentum in a transversely

polarized nucleon, final state interactions produce an asymmetry before the struck quark

fragments. The Sivers distribution is chiral-even and T-odd. It is not universal because

it is generated via final state interactions in DIS and through initial state interactions in

DY process. Technically the Sivers effect requires a correlation of the two QCD amplitudes

where two different transverse nucleon spin states produce the same final state. To produce

a T-odd effect both amplitudes should have different phases and cannot appear at tree level.

In addition, the two different nucleon spin state amplitudes can give a non-zero correlation

if there is non-zero OAM of the quarks inside the nucleon (see [15] and references therein).

The interesting idea proposed in [30] introduces the relation between TMDs and a Fourier

transform of Generalized Parton Distribution functions (GPDs) [29]. In this approach the

Fourier transform of the GPDs can be expressed in terms of an Impact Parameter Distri-

butions (IPDs). The IPDs provide a probabilistic interpretation of GPDs 1. These IPDs

are transversely distorted when one considers transversely polarised nucleons (Sivers) or

quarks (Boer-Mulders). This distortion together with final state interactions (FSI), called

”Chromodynamic lensing”, produces a Sivers asymmetry and dynamically generates k⊥ of

partons inside the nucleon. This elegant idea, if exists in nature, makes it possible to inter-

pret the correlations in transversely polarised nucleon described by TMDs in terms of IPDs

and their distortions. On the other hand, TMDs and IPDs contain complementary informa-

tion about three-dimensional images of the nucleon (nucleon ”tomography”): in momenta

space (TMDs) and in mixed coordinate-momentum space (IPDs). The higher-twist effects

like quark-gluon correlations can also be manifested in quark transverse plane distortions

(Boer-Mulders)

The GPDs are related to Total Angular Momentum (TAM) as defined in Ji’ s sum rule

[31]. A possible determination of OAM of quarks and gluons can be based on this sum rule.

1It is essential for the probabilistic interpretation that skewness parameter ξ = 0.
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The open question is if the OAM of partons can be related to transverse plane distortion

of IPDs. The GPDs can be accessed measuring Deeply-Virtual Compton Scattering process

(DVCS). The asymmetries for DVCS process were measured by CLAS [32] - [34], HALL A

[38, 39] and HERMES [35, 36] experiments. H1 and ZEUS experiments measured DVCS cross

section [37]. These initial data on GPDs have given limited insight and future measurements

are eagerly awaited [40, 41, 42].

At present one thus relies on models and lattice QCD calculations. The recent results of

the Lattice QCD computations [43, 44, 45] suggest that the OAM of quarks however non-zero

for u and d quarks separately, cancels out nearly exactly in the sum. Assuming in addition

that gluon polarisation ∆G is close to zero the missing part of the nucleon spin should origin

from OAM of gluons. Therefore the measurement of the Sivers function on the gluons should

be very interesting. The small gluon polarisation is partially confirmed by the data, however

the precision of the measurements of gluon polarisation is still not satisfactory. Moreover,

these measurements are in the limited range of the nucleon momentum fraction carried by

gluons. The gluon polarisation results obtained from QCD evolution of the precise, inclusive

and semi-inclusive DIS data, and from the asymmetries measured at RHIC experiments are

also consistent with zero but the obtained error is still very large [46, 47], mainly due to

lack of precision data at large Bjorken x region. The improvement of the precision of the

gluon polarisation measurement will be a very difficult task, probably possible in the future

collider experiment [42].

The Lattice QCD results depend on an initial scale parameter and can be evolved with

the help of QCD evolution equations. The evolution of the TAM of quarks shows increase

the quark contribution to the nucleon spin when the scale is decreasing. At some particular

low scale point (µ2 ' 0.18 GeV2) the Lattice and QCD evolution predict that the spin

of the nucleon is fully explained by quarks only. Gluons don’t contribute to the nucleon

spin budget at this scale. These results agree very well with predictions obtained in the

relativistic chiral models, where pion cloud is a significant part of the nucleon structure and

gluons are not present.[48, 49]. This agreement shows that Lattice QCD approach links the

perturbative QCD regime with the non-perturbative chiral limit of QCD.

In this thesis modern understanding of the nucleon spin structure, based on existing

and new experimental and theoretical results, is presented. The main part of the thesis is

dedicated to the direct gluon polarisation measurements with the COMPASS experiment.

The author was deeply involved in these measurements and had key responsibilities for the

data analysis.

In the LO QCD approximation, only the Photon Gluon Fusion (PGF) subprocesses have

sensitivity to gluons inside the nucleon. Two of such subprocesses were used in COMPASS:
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the production of open-charm D0 mesons and the production of two hadrons in the final

state with relatively high transverse momenta pT , with respect to the photon direction. New

methods using statistical weighting and an Artificial Neural Network (ANN) approach have

been developed to increase the statistical precision and to optimize the usage of the collected

data.

Gluon polarisation was determined from open-charm muoproduction in LO and NLO

QCD approximations. The application of NLO QCD calculations and the modification of

the weighted method are discussed in detail in this thesis. The decomposition of double

helicity asymmetry decomposition for the high-pT data samples in the DIS domain with

Q2 > 1 GeV/c2 is discussed in LO QCD approximation and the new method to extract gluon

polarisation from the measured asymmetries for inclusive and high-pT events is presented.

The new result of the gluon polarisation obtained from the large Q2 high-pT hadron pairs is

discussed. New gluon polarisation results are presented.

This thesis is organized in the following way: in chapter 2 the longitudinal spin structure

of the nucleon is reviewed as it is based on inclusive measurements of the spin-dependent

structure function g1 and on semi-inclusive measurements of the quark helicity distributions

in DIS experiments. The role of the axial anomaly, the Operator Product Expansion (OPE)

and QCD evolution are also discussed in this chapter. In chapter 3 the recent results of

Collins and Sivers effects measurements performed on transversely polarised targets are dis-

cussed. The review of the leading TMDs is also presented. The COMPASS experimental

setup is shortly described in chapter 4. In chapter 5 the determination of the gluon polari-

sation from the open-charm D0 mesons production is discussed in the QCD LO and QCD

NLO approximations. Chapter 6 is dedicated to the determination of gluon polarisation

determination from high-pT hadron pairs at large scale Q2, Q2 > 1 GeV2. The COMPASS

result of the gluon polarisation, obtained from the observation of the high-pT hadron pairs

at low Q2, Q2 < 1 GeV2, is also shortly discussed in this chapter. Chapter 7 is dedicated to

the interpretation of the Sivers effect in terms of Chromodynamics Lensing. The controversy

on the definition of orbital and total angular momentum of quarks and gluons and recent

Lattice QCD results for the spin structure of the nucleon are discussed. The summary and

concluding remarks are in chapter 8.

The convention of units used in the reminder of this thesis is: ~ = c = 1.



Chapter 2

Longitudinal spin structure of the

nucleon

A description of the longitudinal nucleon spin structure in the framework of the QPM with

QCD as a theory of parton interactions is presented in this chapter. A short review of the

experimental results on the polarisation dependent structure functions and on the helicity

distributions of quarks and gluons is given. QCD evolution and corrections to the naive QPM

approach are discussed. It is shown that the inclusive as well as the semi-inclusive polarised

data obtained by different experiments agree well and lead to the intriguing observation that

quarks are responsible for not more than 1/3 of the nucleon spin.

The review of the experimental results is far from being complete. The selected results

showed here are used to illustrate the modern understanding of the spin structure of the

nucleon.

2.1 Measurement of the inclusive asymmetry A1 and

structure function g1

2.1.1 Spin-dependent DIS cross section

Our present knowledge about the structure of the nucleon in the perturbative regime (large

probing scales) comes mostly from DIS experiments. A point-like lepton projectile interacts

with a target particle via the exchange of photons and weak bosons which penetrate the

internal structure of the nucleon. The energy range covered by fixed-target experiments like

COMPASS is not large enough to have a significant fraction of the subprocesses with an

exchange of the W and Z bosons between lepton and the nucleon. The interference between
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Figure 2.1: Inelastic scattering lN → l′X in one-photon approximation.

γ and Z bosons are also negligible. The probability of double-photon exchange as a higher

order QED correction is very small and can be neglected, except the case of heavy targets

[50]. The other QED corrections: real photon emissions from the lepton and virtual/soft

corrections are taken into account in a radiative corrections scheme used by the experimental

groups to correct their results and to present them as one-photon data (e.g.[51]). The weak

interactions become important for larger Center-of-Mass-System (CMS) energy in collider

experiments ZEUS and H1 at HERA. Since all spin-dependent DIS experiments are thus far

the fixed-target experiments the one-photon exchange is a very good approximation. The

virtuality of the exchanged photon, Q2, is usually considered as the perturbative scale and

the DIS perturbative regime is defined by Q2 > 1 GeV2. The perturbative scale can be

defined not only by the photon virtuality but also by other momenta or large masses in the

system. A good example is photo-production of heavy flavour where the mass of the heavy

quark pair forms the perturbative scale while the photon virtuality can be close to zero.

Photo-production of high-pT hadrons belongs to the same category; here the perturbative

scale is defined by the large pT of the hadron(s) observed in the final state. In these cases

it is more convenient to speak of Inelastic Scattering rather than Deep Inelastic Scattering,

nevertheless the presence of a hard scale allows one to probe the internal nucleon structure

described by Quark Parton Model (QPM) and perturbative QCD. Instead of the photon a

virtual heavy quark or a quark with high pT is the ”hard” probe here. The DIS process is

shown schematically in Fig. 2.1

To describe the inclusive DIS cross section at the CMS energy, sqrts, in the one-photon

approximation it is enough to use two independent Lorentz invariant variables. They can

be chosen as: Q2, the virtuality of the photon and, the virtual photon energy transferred to
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the nucleon:

−Q2 = q2 = (k − k′)2 lab
= 2(|k̃||k̃′| cos θ − EE ′ +m2), (2.1)

ν =
p · q
M

lab
= E − E ′ , (2.2)

where the momenta of the incoming and outgoing lepton, cf. Fig. 2.1, are:

kµ = (E, k̃)
lab
= (E, 0, 0, |k̃|), (2.3)

k
′µ = (E

′
, k̃′)

lab
= (E ′, |k̃′| sin θ cosϕ, |k̃′| sin θ sinϕ, |k̃′| cos θ). (2.4)

The definition of the angles in the laboratory frame (the rest frame of the nucleon) is shown

in Fig. 2.2.

Instead of Q2 and ν the two dimensionless variables: x, the Bjorken scaling variable and

y, the virtual photon energy fraction transferred to the nucleon, can be defined:

x =
Q2

2p · q
lab
=

Q2

2Mν
, y =

p · q
p · k

lab
=

ν

E
. (2.5)

The interpretation of the Bjorken x variable (0 < x ≤ 1) was first given within the framework

of the Quark Parton Model by Feynman [53]: it corresponds to the fraction of the nucleon
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momentum carried by the parton interacting with the virtual photon.1 The helicity of the

incoming lepton can be defined with the help of the four-vector sµ such that it is orthogonal

to the lepton momentum s · k = 0 and is normalised so that s2 = −1:

sµ
lab
= hl

1

m
(|k̃|, 0, 0, E), (2.6)

where hl = ±1 is the lepton helicity and m denotes its mass. Since the nucleon is at rest, it

can be polarised in any arbitrary direction, cf. Fig. 2.2:

Sµ
lab
= (0, sinα cos β, sinα sin β, cosα) . (2.7)

The spin four-vector of the target Sµ satisfies S · p = 0 and S2 = −1.

The DIS inclusive cross section can be decomposed into leptonic and hadronic parts as

follows:

dσ

dE ′dΩ
=

(
E ′

Mν

)
dσ

dxdydϕ
=

(
Q2E ′

yMν

)
dσ

dxdQ2dϕ
=

e4

16π2Q4

E ′

ME
LµνW

µν , (2.8)

where Ω (θ, ϕ) is the solid angle of the lepton scattered from the nucleon target. The leptonic

tensor Lµν in general is a sum of symmetric and antisymmetric parts, calculable in QED:

Lµν = Lµν(S) + iLµν(A), (2.9)

where

Lµν(S) = 2k′µkν + 2k
′νkµ + 2(m2 − k′ · k)gµν , (2.10)

Lµν(A) = −2mεµνρσqρsσ, (2.11)

with εµνρσ - the antisymmetric Levi-Civita tensor. Only the antisymmetric part of Lµν

depends on the lepton spin four-vector sµ. The hadronic tensor W µν , which describes the

internal structure of the hadron, can also be written as a sum of symmetric and antisymmetric

parts:

W µν = W µν
(S) + iW µν

(A). (2.12)

The most general form of the hadronic tensor W µν depends on non-perturbative QCD dy-

namics and cannot be calculated directly. However, It can be written in terms of the vari-

ables pµ, qµ, Sµ, gµν and εµνρσ and can be parameterized by certain hadron spin-averaged

and spin-dependent structure functions, that respect the Lorentz covariant structure, gauge

1This nice interpretation (simple consequence of the energy-momentum conservation law) is correct only

if the QCD corrections can be absorbed into an effective definition of the structure functions; it is not true

e.g. for the PGF process.
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Figure 2.3: The squared amplitude for lepton-nucleon inelastic scattering and its factorisation into

leptonic and hadronic tensors Lµν and Wµν .

invariance, parity and time reversal invariance, and electromagnetic current conservation

(qµL
µν = 0 and qµW

µν = 0) [54, 15]. To parameterize the hadronic tensor W µν four

indepedent structure functions are used: F1 and F2 are unpolarised and g1 and g2 are polar-

isation dependent [54]. Each of them depends on two independent kinematic variables, e.g.

(x,Q2), but the explicit dependence will be omitted here for simplicity of the notation. The

symmetric and antisymmetric terms of W µν are given by:

W µν
(S) = −gµνF1 +

F2

p · q
pµpν , (2.13)

W µν
(A) = g1

M

p · q
εµνλδqλSδ + g2

M

(p · q)2
εµνλδqλ (p · qSδ − S · qpδ) , (2.14)

in which terms proportional to qµ, qν have been omitted since qµL
µν = 0.

The Lorentz invariant differential cross section for polarised inelastic lepton-nucleon in-

clusive scattering is then given by :

dσ

dxdQ2dφ
=

e4y2

16π2Q6
(2Q2(1− 2m2

Q2
)F1 + 4M(

E ′

y
− Q2

4Ey
)F2 (2.15)

+ 4mM2Ey

[
(s · q)(S · q)
(p · q)(p · q)

+ 2x
(s · S)

p · q

]
g1

+ 4mMQ2

[
s · S
p · q

− (s · p)(S · q)
(p · q)(p · q)

]
g2).

In a fixed target laboratory frame with the angles defined as in Fig.2.2 the polarised lepton-

nucleon inclusive scattering cross section can be written as a sum of a spin-averaged term σ
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and a spin-dependent term ∆σ, which can be further decomposed in ∆σ‖ and ∆σT :

σ = σ − 1

2
hl∆σ = σ − 1

2
hl(cosα∆σ‖ + sinα cosφ∆σ⊥), (2.16)

where:

σ ≡ d3σ

dxdQ2dφ
=

e4y

4π2Q4

[
y

2
(1− 2m2

Q2
)F1 +

1

2xy
(1− y − γ2y2

4
)F2

]
, (2.17)

∆σ‖ ≡
d3∆σ‖
dxdQ2dφ

=
e4y

4π2Q4

[(
2− y − γ2y2

2
− 2m2

Q2
y2

)
g1 − γ2yg2

]
, (2.18)

∆σT = cosφ∆σ⊥ ≡
d3∆σT
dxdQ2dφ

= cosφ
e4y

4π2Q4
γ

√
1− y − γ2y2

4

[
y(1 +

2m2

Q2
y)g1 + 2g2

]
. (2.19)

Here γ = 2Mx√
Q2

= 2Mx
Q

= Q
Ey

. The cross sections ∆σ‖ and ∆σ⊥, given by Eqs (2.18, 2.19)

can only be measured in experiments with a polarised target and a polarised beam. They

refer to the two configurations where the nucleon spin is (anti) parallel or orthogonal to the

lepton momentum direction and have been determined up to terms of order m2/Q2(∼ 10−7

in the SMC and COMPASS kinematic domain). The structure function g1 is measured in

the (anti) parallel configuration, where g2 is supressed by a factor γ which is small since the

energy of the beam is high, . The structure function g2 is determined by combination of a

measurement of ∆σ⊥ with the results on g1.

The inclusive polarisation dependent DIS cross section, discussed so far, has been ob-

tained for a nucleon target with spin 1/2. Among the data collected by high-energy polarised

DIS experiments, the data collected on a deuteron target (e.g. SMC and COMPASS po-

larised targets, [55, 56] )are a significant fraction. Since the deuteron is spin-1 particle,

the polarisation dependent cross section fromulae for lepton-deuteron inclusive scattering

are slightly more complicated; instead of four structure functions, the eights independent

structure functions are needed to parameterize the cross section. Since the additional four

structure functions, called quadrupole structure functions, b1−4, are very small their contri-

bution can be neglected [57, 58]. The details of the spin-1 target are not further discussed is

this thesis. A review of the formulae for the differential cross sections and asymmetries for

the nucleon as well as for the deuteron target can be found in [59], where all approximations

used in the SMC fixed-target experiment are discussed in detail. It is easy to show that

the asymmetry decomposition for nucleon and deuteron targets are the same if the deuteron

quadrupole structure functions are neglected.
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The g1 and g2 structure functions contain all information about the spin structure of the

nucleon available in inclusive measurements. The g1 structure function can be interpreted

in terms of the parton helicities. It will be discussed in the next sections in detail. The g2

structure function is a more complicated object with no direct QPM interpretation. Because

of the Optical Theorem the inclusive hadronic tensor W µν is related to the imaginary part

of the forward Compton scattering amplitude. This amplitude can be then expressed in

terms of the matrix elements of local operators within Operator Product Expansion (OPE)

approach. When Q2 →∞ (light-cone regime) the leading contribution to the forward Comp-

ton amplitude comes from the nucleon matrix elements of a tower of gauge invariant, local

operators multiplied by Wilson Coefficients. These twist-2 operators are constructed from

the quark and gluon fields. The higher-twist operators are suppressed on the light-cone.

The OPE is an equation relating operators and does not depend on the states between the

operator matrix elements are evaluated. The Wilson coefficients are target independent and

may be calculated in the framework of perturbative QCD. The OPE method is more general

than the QCD improved QPM and allows one to discuss the asymptotic properties and QCD

evolution of the Compton amplitude in terms of Quantum Field Theory (QCD) without the

additional assumptions as used in the definition of the QPM. The g1 and g2 structure func-

tions can be discussed in the framework of the OPE with a dispersion relations techniques.

A set of sum rules for the moments of g1 and g2 can be established. In particular the integral

over x of the g2 structure function should vanish for all Q2 (Burkhardt-Cottingham sum rule,

[60]) and g2 can be split into two parts, the so-called Wandzura-Wilczek part [61], expressed

in terms of the twist-2 structure function g1 and its integral, and the twist-3 part, which

contains a non-trivial higher twist contribution and a ”transversity” term h1 (see chapter

3). The higher twist contributions represent quark and gluon correlations in the nucleon.

The most precise measurements of the structure function g2 come from SLAC proton and

deuteron experiments (E155 and E143 [62]) and from a JLAB measurement using a 3He

(neutron) target [63]. Since the structure function g2 measures correlations between quarks

and gluons and higher-twis effects, its contribution to the nucleon spin structure is marginal.

Additional details of the OPE method and of the dispertion relations in the context of

nucleon spin physics can be found in [64] and [15]. The OPE method is limited to inclusive

processes. Semi-inclusive measurements, where some hadrons are observed in the final state,

require a description based on so-called ”hard factorization” and the QPM. As seen in Fig. 2.3

the final states must be resummed to reduce the Compton amplitude to the matrix elements

of the product of two quark currents which can then be decomposed into an OPE series.

The observation of the final state hadrons makes this impossible. The other limitation of

the use of the OPE concerns experimental input: the measurement of the matrix elements
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of the higher-twist operators is still an experimental challenge.

It is convenient to introduce the virtual photon-nucleon cross section before one defines

the asymmetry measured in polarisation dependent experiments. Since the virtual photon

flux is an ill defined object some convention is needed to define the virtual photon-nucleon

cross section. The Hand convention, where the flux K is:

K =
W 2 −M2

2M
= ν − Q2

2M
, (2.20)

is used in this thesis. The virtual photon-nucleon cross section is obtained from the forward

Compton amplitudes, calculated as a contraction of the hadronic tensor W µν and the virtual

photon polarisation vectors. For a spin-1/2 nucleon there are ten helicity amplitudes. Among

them only four are independent. This reduction results from conservation of TAM, the time

reversal and the parity invariance. The number of these amplitudes is the same as the

number of structure functions that parameterize the hadronic tensor Wµν . This means that

all the structure functions can be expressed as linear combinations of the amplitudes and

vice versa. The calculations and discussion of the helicity virtual photon-nucleon amplitudes

can be found in [57] and [59].

The virtual photon-nucleon cross sections are defined in the following way [57]:

σT3/2 =
4π2α

MK
A(+1,+

1

2
; +1,+

1

2
) =

4π2α

MK
[F1 − g1 + (κ− 1)g2] , (2.21)

σT1/2 =
4π2α

MK
A(+1,−1

2
; +1,−1

2
) =

4π2α

MK
[F1 + g1 − (κ− 1)g2] , (2.22)

σTL1/2 =
4π2α

MK
A(+1,−1

2
; 0,+

1

2
) =

4π2α

MK

√
κ− 1 [g1 + g2] , (2.23)

σL1/2 =
4π2α

MK
A(0,+

1

2
; 0,+

1

2
) =

4π2α

MK

[
−F1 +

κ

2x
F2

]
, (2.24)

where κ = 1 + 4x2M2

Q2 = 1 + Q2

ν2
= 1 + γ2. Here the subscript is the total spin of the photon-

nucleon system and the supperscript corresponds to the polarisation of the photon in the

initial and the final states.

It is also useful to define the total absorption cross section of longitudinally and trans-

versely polarised photons:

σL = σL1/2 =
4π2α

MK

[
−F1 + (1 + γ2)

F2

2x

]
, (2.25)
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σT =
1

2

(
σT1/2 + σT3/2

)
=

4π2α

MK
F1, (2.26)

and the function R = σL/σT , the ratio of the cross sections for longitudinal and transverse

photon absorption by the nucleon:

R =
(
1 + γ2

) F2

2xF1

− 1. (2.27)

2.1.2 Longitudinal double-spin asymmetry

The double-spin cross section asymmetries in longitudinally polarised lepton (→) and lon-

gitudinally/transversely polarised target (⇒ / ⇑) systems are defined as follows:

A‖ =
∆σ‖
2σ̄

=
σ
→⇐ − σ

→⇒

σ
→⇐ + σ

→⇒
, A⊥ =

∆σ⊥
2σ̄

=
σ→⇑ − σ→⇓

σ→⇑ + σ→⇓
. (2.28)

where the cross sections σ̄ and ∆σ‖, ∆σ⊥, calculated in the one–photon exchange approxi-

mation, are given by Eqs (2.17–2.19). The above formulae are exact for a spin–1/2 nucleon

target and only approximate for a spin–1 deuteron target. That is ∆σ‖ and σ̄ Eq. (2.28)

are expressed in terms of the same structure functions g1,2 and F1,2 only when the deuteron

quadrupole structure functions b1−4 are neglected. As discussed in the previous section this

approximation is justified in view of the size of experimental uncertainties.

The virtual photon-nucleon asymmetries A1 and A2 can be defined in the following way:

A1 =
σT1/2 − σT3/2
σT1/2 + σT3/2

=
σT1/2 − σT3/2

2σT
, A2 =

σTL1/2

σT1/2 + σT3/2
=
σTL1/2

2σT
. (2.29)

where the photon cross sections are given by Eqs (2.21–2.23) and Eq (2.26 ) for a spin-1/2

nucleon target. The asymmetries A1 and A2 for a deuteron (spin-1) target are as follows:

Ad1 =
3

2

σT0 − σT2
σT0 + σT1 + σT2

=
σT0 − σT2

2σT
, Ad2 =

3

2

σTL0 + σTL1

σT0 + σT1 + σT2
=
σTL0 + σTL1

2σT
. (2.30)

Here the quadrupole structure functions b1−4 are neglected and the corresponding photon

cross section formulae can be found in [57] and [59]. σTJ is the virtual photon-deuteron

absorption cross section for a total spin projection J in the photon direction. σTLJ results

from the interference between transverse and longitudinal amplitudes for J = 0, 1, and

σT = (σT0 + σT1 + σT2 )/3 is the total transverse photo-absorption cross section.
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There are bounds on the absolute values of A1 and A2 [66, 67]:

|A1| ≤ 1, |A2| ≤
√
R. (2.31)

The virtual photon asymmetries A1 and A2 are directly related to the spin-dependent struc-

ture functions g1 and g2:

A1 =
g1 − γ2g2

F1

, A2 = γ
g1 + g2

F1

. (2.32)

Conversely, the structure functions g1 and g2 can be expressed in terms of the asymmetries

A1 and A2:

g1 =
F1

(1 + γ2)
(A1 + γA2), g2 =

F1

(1 + γ2)
(−A1 +

1

γ
A2). (2.33)

The double-spin cross section asymmetries A‖ and A⊥, measured by the polarised DIS ex-

periments, are related to the virtual photon asymmetries A1 and A2 as follows:

A‖ = D(A1 + ηA2), A⊥ = d(A2 − ξA1). (2.34)

The depolarisation factor D and kinematic factors d, η and ξ, determined up to terms m2
l /E

2,

with ml the lepton mass, are given by:

D =
y [(1 + γ2y/2)(2− y)− 2y2m2

l /Q
2]

y2(1− 2m2
l /Q

2)(1 + γ2) + 2(1− y − γ2y2/4)(1 + γ2)F2/(2xF1)
, (2.35)

d =

√
1− y − γ2y2/4(1 + γ2y/2)

(1− y/2)(1 + γ2y/2)− y2m2
l /Q

2
D, (2.36)

η =
γ (1− y − γ2y2/4− y2m2

l /Q
2)

(1 + γ2y/2)(1− y/2)− y2m2
l /Q

2
, (2.37)

ξ =
γ(1− y/2− y2m2

l /Q
2)

1 + γ2y/2
. (2.38)

The neglected terms are very small. For example, m2
l /E

2 is of the order of 10−7 for the muon

beams used at SMC and COMPASS experiments. The ratio of the polarisation averaged

structure functions F1 and F2 can be replaced by the function R in the denominator of the

factor D in Eq. (2.35) according to the relation (1 + γ2)F2/(2xF1) = 1 + R, which is exact

for a spin–1/2 target. It is also a very good approximation for a deuteron spin-1 target.

Relations (2.32) and (2.34) allow one to determine the polarisation dependent structure

functions g1 and g2 from the measured longitudinal and transverse asymmetries A‖ and A⊥

if the polarisation averaged structure function F1, or equivalently F2 and R, cf Eq. (2.27),
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is known. Very precise data on the F2 structure function are available thanks to a series of

fixed-target experiments and excellent data collected by the ZEUS and H1 experiments at

HERA. The function R can be also parameterized in a good accuracy. For small x and small

Q2 regime some models are needed to parameterize R, see [65]. In the kinematic region of

the SMC and COMPASS measurements the factor γ is of the order of 10−3 and η is of order

10−4. Moreover the asymmetries A2 were measured and found to be significantly smaller

than the positivity limit
√
R both for the proton and deuteron targets [69, 70]. The small

values of A2, γ and η allow one to neglect the term ηA2 in Eq. (2.34) and γA2 in Eq. (2.33).

In this case the measurement of A‖ directly determines A1 and hence g1):

A‖ ' DA1, g1 ' A1F1. (2.39)

The above simplified equation for A‖ gives a clear interpretation of the depolarisation factor

D. The virtual photons emitted by the polarised leptons are depolarised by the factor D so

that the spin asymmetry in the virtual photon–nucleon system is D times smaller than the

asymmetry in the lepton–nucleon system. Note, that neglecting the factor γ is not justified

in most of the JLAB experiments and the full relation: g1 = F1

(1+γ2)
A1 should be used to

determine g1.

The double-spin longitudinal asymmetry A1 has been measured by many spin-dependent

DIS experiments. One of the most precise data sets has been collected by the COMPASS

experiment on deuteron and proton targets. The proton [68] and deuteron results [8] are

presented in Fig. 2.4 in comparison with previous experimental results. In Fig. 2.5 the

very precise deuteron COMPASS result for the asymmetry Ad1 for low Q2 events [65] is

presented. Since the Q2 and x kinematical variables are strongly correlated for the fixed-

target experiments, the small Q2 results are very difficult to interpret in terms of QCD or in

Regge-type approaches. The general consistency between data sets is seen from the Figs. 2.4

and 2.5.

The COMPASS Ad1 asymmetry results indicate that an ”averaged” nucleon in the

deuteron target is not polarised for small-x region. The asymmetry A1 is the basis of the

determination of the g1 structure function which is discussed in the next section.

2.1.3 The polarisation dependent structure function g1

The structure functions F1,2 and g1,2 have been considered so far as general functions needed

to parameterize the DIS hadronic tensor or equivalently the virtual photon forward Compton

amplitude. In a general Quantum Field Theory like QCD their scale dependence can be

calculated via OPE Wilson coefficients. This method in principle allows one to get full
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Figure 2.4: The asymmetry Ap1(x) (left) and Ad1(x) (right) as measured by COMPASS [68, 8] and

previous results from EMC [2, 73], SMC [7], HERMES [6, 71], SLAC E143 [70], E155 [74, 9] and

CLAS [10] at Q2 > 1 GeV2. The cut W > 2.5 GeV has been applied to select DIS events in the

CLAS data. The SLAC values of g1/F1 have been converted to A1 and the E155 data corresponding

to the same x have been averaged over Q2 Only statistical errors are shown with the data points.

Only statistical errors are shown within data points. The shadowed areas shows the size of the

COMPASS systematic errors.

x      
-410 -310 -210 -110

   
 

d 1A

-0.2

0

0.2

0.4

0.6

0.8

1
 2>1 (GeV/c)2COMPASS 2002-04, Q

 2<1 (GeV/c)2COMPASS 2002-03, Q
2>1 (GeV/c)2E143, Q
2>1 (GeV/c)2E155, Q

2HERMES, all Q
2SMC, all Q

Figure 2.5: The asymmetry Ad1(x) as a function of x at the measured value of Q2: the results

from COMPASS [65] for Q2 < 1 GeV2 are compared with previous results at different values of

Q2 from COMPASS [8], SMC [7, 72], HERMES [71], SLAC E143 [70] and E155 [9]. The E155

data corresponding to the same x have been averaged over Q2. The indicated uncertainties are

statistical.

information about the nucleon structure if all matrix elements between nucleon states of the

local operators used in the OPE are measured. The matrix elements of the local operators

used in the OPE are related to the structure functions by their moments in x. The lowest

moments determine the small-x dependence of the structure functions while the higher ones
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(due to the higher power of x in the moment definition) - large x behavior. Unfortunately

measurements of the higher moments of the structure functions are impractical.

The QPM describes the nucleon as an object composed of almost noninteracting, massless

partons identified with quarks and gluons. This model is defined in the infinite momentum

frame, where the nucleon is moving with P → ∞. The partons are moving collinear with

nucleon and their transverse momenta are bound and neglected in the first approximation.

Anti-collinear parton configurations are forbidden in the infinite momentum frame. In strict

sense the life-time of such configurations approaching to zero while the life-time of the

collinear ones is going to infinity. The so-called ”impulse approximation” is assumed: during

the virtual photon-parton interaction the partons are assumed not to interact and therefore

a ”frozen” parton configuration is seen by the photon probe. The cross section of the DIS

process can then be calculated as an incoherent sum of the cross sections for virtual photon-

parton scattering. The partons are assumed to be on shell. Under these assumptions the

calculations of the DIS cross section are straightforward. The famous Bjorken scaling results,

the structure functions depend only on one scaling variable, Bjorken x [76]. The structure

functions are interpreted in terms of PDFs - that quantifies the probabilities of finding

a parton with a given momentum fraction x in the nucleon. QCD interactions between

partons modify this simple and physically intuitive picture and lead to scaling violation.

The structure functions depend not only on x variable but also on the scale Q2. The scale

dependence is strictly predicted by QCD while the x dependence requires models or fits to

the data. The foundations of the QPM can be found in the original papers [53, 75, 76] and

in many textbooks e.g. [77, 78, 79]. The strength and beauty of the QPM is that in many

cases, however complicated, the QCD corrections can be absorbed in effective, universal

PDFs and therefore the description of hadrons as collections of weakly interacting collinear

partons is still valid. This possibility is strictly related to the factorization problem and is a

very non-trivial consequence of the QCD infrared structure. The universality of the PDFs

means that once measured in one reaction, they can be used to describe other reactions, e.g.

proton-proton scattering.

The separation into ”hard” (finite) and ”soft” (divergent) parts of the QCD interactions

is not unique and depends on the choice of a factorization scheme and factorization scale.

The universality of the PDFs holds if the same factorization scheme is used in description

of the QCD matrix elements of the considered partonic subprocess and in the procedure of

PDFs determination. The schemes differ in how the non-divergent pieces are assimilated in

the PDFs. A simple example of a factorization scheme is the choice of cut-off transverse

momenta that allow one to separate hard and soft parts. It allows then one to incorporate

the divergent part to the effective definition of the PDFs. The choice of factorization scale
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is arbitrary and can be different from the perturbative scale (Q2) in DIS.

A third scale that appears as a consequence of QCD parton interactions is the renormal-

ization scale, needed to regularize the ultra-violet singularity of the theory. This regular-

ization and the procedure to effectively remove the ultra-violet divergences is called renor-

malization scheme and also is not unique. Very often the renormalization scale is chosen to

be equal to the factorization scale for simplicity. It is also common to take renormalization

scale as Q2 in DIS. Since the all physical quantities should not depend on the renormalization

scale the so-called Renormalization Group Equation (RGE) can be formulated. The RGE

guarantees that all renormalization scale dependent coefficients evolve with the change of

this scale in such a way that all observed quantities are renormalization scale independent.

In practice it means that RGE describes the QCD scale evolution as the renormalization

scale can be chosen equal to Q2. Therefore, the RGE describes Q2 evolution as well. Dis-

cussion of different factorization schemes for the structure functions and PDFs can be found

in the original papers e.g. [81] -[86] and in e.g [15].

The DIS asymptotic regime Q2 → ∞ corresponds to the light-cone limit dominated by

local twist-2 QCD operators in the OPE. The scale dependence is calculated with the RGE for

the Wilson coefficients while the internal nucleon structure is ”hidden” in the matrix elements

of the operators related to the moments of the structure functions. In the framework of the

QCD improved QPM the all information about nucleon structure is contained in PDFs. The

DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ) set of the QCD evolution equations

for PDFs describe their scale dependence [80, 87, 88]. Both approaches (QPM and the QCD

evolution equations for PDFs and OPE with the RGE) are equivalent in describing inclusive

DIS reactions.

In the naive QPM the spin independent F1 and spin dependent g1 structure functions

are expressed in terms of the quark helicity distributions q+(x) and q−(x) as follows:

F1(x) =
1

2

∑
q

e2
q

[
q+(x) + q−(x)

]
≡ 1

2

∑
q

e2
qq(x), (2.40)

g1(x) =
1

2

∑
q

e2
q

[
q+(x)− q−(x)

]
≡ 1

2

∑
q

e2
q∆q(x). (2.41)

The (+)(−) sign in q+(x) and q−(x) refers to a quark with its spin projection parallel (antipar-

allel) to that of the target nucleon. For longitudinally polarised target the (+)(−) sign defines

the quark helicity. q(x) is the spin-averaged quark distribution (probability of finding quark

q with a nucleon momentum fraction x) in the nucleon. The electric charge of a quark of

flavour q is denoted by eq.
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The spin independent structure functions F1 and F2 for spin-1/2 satisfy the Callan-Gross

relation [89]:

F2(x) = 2xF1(x). (2.42)

In the QCD improved QPM the interactions between partons lead to scaling violations and

the decomposition of the structure function g1 is:

g1(x,Q2) =
1

2

∑
q

e2
q

∫ 1

x

dy

y

[
∆q(y,Q2) + ∆q̄(y,Q2)

]
Cq(x/y, αs(Q

2))

+
〈e2
q〉

2
nf

∫ 1

x

dy

y
∆G(y,Q2)CG(x/y, αs(Q

2)) (2.43)

=
1

2

∑
q

e2
qCq(αs(Q

2))⊗
[
∆q(Q2) + ∆q̄(Q2)

]
+
〈e2
q〉

2
nfCG(αs(Q

2))⊗∆G(Q2).

where ⊗ denotes a convolution integral. As a consequence of the QCD interactions between

partons, in particular gluon decay, a so-called ”sea” of quark pairs appears in the nucleon.

Hence anti-quarks as well as gluons are part of the decomposition of g1. Here ∆q = q+− q−

and ∆q̄ = q̄+ − q̄−. The number of flavours nf is assumed to be 3 since the contribution

of charm and heavier quarks is negligible at the energies of past and present polarised DIS

experiments [90] . The QCD evolution (scale dependence) for g1 is described by the DGLAP

equations:

Q2 d

dQ2

(
∆q

∆G

)
(x,Q2) =

αs(Q
2)

2π

∫ 1

x

dy

y

(
∆Pqq ∆PqG∑
q ∆PGq ∆PGG

)
(x/y, αs(Q

2))

(
∆q

∆G

)
(y,Q2)

=
αs(Q

2)

2π

(
∆Pqq ∆PqG∑
q ∆PGq ∆PGG

)
(αs(Q

2))⊗
(

∆q

∆G

)
(Q2), (2.44)

where αs(Q
2) is the QCD running strong coupling constant. The coefficient functions Ci in

Eq. (2.44) and splitting functions ∆Pij in Eq. (2.44), can be calculated in a QCD perturbation

series in αs. The indices i and j running over quarks (antiquarks) q and gluons G, The

procedure is analogous to the polarisation independent case (see e.g. [88, 91, 92]. The

splitting functions Pij have the nice physical interpretation that they are the probability of

finding a parton i in a parton j at a scale Q2 (at LO). The equivalence of the DIS description

in the frame of RGE and OPE and in QCD improved QPM and DGLAP equations is clear

after taking the Mellin transform of the DGLAP spliting functions. They correspond to the

anomalous dimension of the QCD operators used in OPE for DIS reactions.
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Figure 2.6: The spin dependent structure function g1(x) of the proton (left) and the deuteron

(right) measured by EMC [2, 73], SMC [7], HERMES [6, 71], SLAC E143 [70], E155 [74, 9], CLAS

[10] and COMPASS [8, 68] experiments. For comparison all points have been evolved to Q2 = 3

GeV2.

A consistent description of the structure functions requires both the coefficient functions

Ci and the splitting functions ∆Pij to be calculated up to the same order in perturbative

QCD. The calculations of Ci and ∆Pij in Next-to-Leading-Order (NLO) can be found in

[93, 94] (C1
i and ∆P 1

ij):

Ci(z, αs(Q
2)) = C0

i (z) +
αs(Q

2)

2π
C1
i (z) +O(α2

s), (2.45)

∆Pij(z, αs(Q
2)) = ∆P 0

ij(z) +
αs(Q

2)

2π
∆P 1

ij(z) +O(α2
s). (2.46)

At the LO the gluon distribution does not contribute to the spin dependent g1 structure

function directly because C0
q (z) = δ(1 − z) and C0

G(z) = 0. The simple parton model

expression for g1 given by Eq. (2.41) is then recovered. The gluons contribute indirectly to

the g1 via the evolution equation (2.44) since ∆P 0
qG(z) 6= 0 At NLO C1

i (z) 6= 0 so the gluon

helicity distribution ∆G(x) directly enters g1.

The x-dependence of the structure functions cannot be predicted by QCD The exception

is a low-x regime. Regge theory [96, 97] predicts the power-like increase of g1 at small x with

fixed Q2 scale: g1 ∼ x−α or g1 ∼ log(x). The importance of the log(x) terms has been pointed

out and the BFKL evolution equations was postulated [95]. The combinations of these two

types of the evolution (in Q2 and x) as a Double Leading Logarithm Approximation (DLLA)

was also considered [98, 84]. It has been also checked that the single log(x) summation is

not enough for polarisation dependent g1 structure functions and double logarithms (log(x))2

terms should be also summed [99, 100]. This approach is beyond the DGLAP formalism.

The Regge-type models are not applicable in the small Q2 and low x region, where Q2

and x are correlated (as in SMC and COMPASS experiments) and others approach based
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Figure 2.7: Top panel: The spin dependent structure function gn1 (x) of the neutron obtained from

HERMES data on gp1 and gd1 , compared with similar data from SMC [7, 72, 113], E143 [70] and

E155 [9, 74] in the HERMES x range. Middle panel from the top: gn1 (x) as obtained from 3He

target by JLAB [110], HERMES [111], E142 [109] and E154 [112]. (Figure from [6]).
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Figure 2.8: The spin-dependent structure function g1(x) measured in deep-inelastic scattering of

leptons off proton (left) and deuteron (right) targets. Only the statistical errors are shown. The

LSS05 parameterizations [104] have been used to align curves corresponding to a fixed x. Slight

shifts have been applied to the data. A constant c(x) = 0.28(11.6− ix) is added to g1 values, where

ix is the number of the x bin ranging from ix = 0 (x = 0.006) to ix = 11 (x = 0.74).
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experiment at Hall A at JLAB.
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on QCD re-summations and on Vector Meson Dominance (VMD) models have been used

[101, 102, 103].

There are also some theoretical constrains which can limit quark and gluon distributions

for large x [79, 105, 106]. The gluon helicity is constrained by positivity of the fragmentation

function and by the gauge theory requirements [107]. At the large x the g1 structure function

is dominated by the valence quarks and some predictions from static models, for example

those based on the SU(6) nucleon wave function, can be made . A review with references

can be found in [15]. The confrontation of these predictions with data is possible in JLAB

experiments.

The precise g1 structure function data collected by various DIS experiments are shown

in Figs 2.6 and 2.7. Very good agreement between the experimental data is seen. The Q2

dependence in x bins (scalling violation) is illustrated In Fig. 2.8.

As an example of the g2 structure function measurement the data of the ”effective neu-

tron” structure functions gn1 and gn2 performed on 3He target in JLAB by [108] are presented

in Fig. 2.9. Note that these measurements are in the resonance and small Q2 kinematic

domain, and are thus not DIS.

2.2 Decomposition of the nucleon spin

2.2.1 The Bjorken and Ellis-Jaffie sum rules

The first moment, Γ1, of the structure function, g1(x) contains information about the total

quark helicity contribution to the nucleon spin. In the naive QPM:

Γ1 =

∫ 1

0

g1(x)dx =
1

2

∑
q

e2
q

∫ 1

0

[∆q(x) + ∆q̄(x)] dx. (2.47)

By defining ∆q =
∫ 1

0
[∆q(x) + ∆q̄(x)] dx, one can rewrite Γp1 for the proton can be rewritten

as follows:

Γp1 =
1

2

(
4

9
∆u+

1

9
∆d+

1

9
∆s

)
=

1

12
(∆u−∆d) +

1

36
(∆u+ ∆d− 2∆s) +

1

9
(∆u+ ∆d+ ∆s) . (2.48)

Γn1 for neutron is obtained from isospin symmetry and the final Γ1 decomposition for the

proton (p) and the neutron (n) respectively, is thus:

Γ
p(n)
1 = ± 1

12
a3 +

1

36
a8 +

1

9
a0, (2.49)
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with:

a3 = ∆u−∆d,

a8 = ∆u+ ∆d− 2∆s,

a0 = ∆u+ ∆d+ ∆s. (2.50)

In the naive QPM, ∆Σ = ∆u + ∆d + ∆s is the total fraction of the spin of the nucleon

carried by the quark spins and ∆Σ = a0. The axial charges a3 and a8 in Eqs (2.49) are

related to the expectation values of the proton matrix elements of the SU(3)f flavour nonet

of quark axial-vector currents: 2
〈
P, S

∣∣A3
5µ

∣∣P, S〉 = a3Sµ, 2
√

3
〈
P, S

∣∣A3
5µ

∣∣P, S〉 = a8Sµ The

axial currents are defined as Aj5µ = Ψ̄γµγ5
λj
2

Ψ, where λj are the Gell-Mann matrices and Ψ

is a column vector in flavour space. The axial charge a0 corresponds to the flavour singlet

operator; A0
5µ = Ψ̄γµγ5Ψ and

〈
P, S

∣∣A0
5µ

∣∣P, S〉 = a0Sµ
2

From isospin invariance it follows that a3 = F + D = gA/gV [114] , where gA/gV is the

ratio of axial vector and vector coupling constants measured in neutron β decay. F and D

are the symmetric and antisymmetric couplings obtained from hyperon decay. If SU(3)f is

a good symmetry to describe β decay for the octet of hyperons then a8 = 3F −D. The octet

currents are conserved and therefore a3 and a8 are independent of Q2. The singlet current

a0 is not conserved and in general depends on Q2. This is consequence of the axial anomaly

[5] and will be discussed in the next section.

The values of the coupling constants F and D and consequently the values of two matrix

elements a3 and a8, can be determined from weak β decay of the neutron and spin-1/2

hyperons (e.g. Λ→ p, Σ→ n, Ξ→ Λ) in the SU3 baryon octet. Thus knowledge of a3 and

a8 allows for the extraction of a0 from the measurement of Γ1. The following values for a3

and a8 [52, 115, 116, 117]:

a3 = F +D = 1.2694± 0.0028 a8 = 3F −D = 0.585± 0.025, (2.51)

have been used in a0 determination at the COMPASS experiment.

QCD corrections (QCD improved QPM) modify also the first moment of the g1 structure

function. Eq. (2.49) for g1 integrals can be now expressed as follows:

Γ
p(n)
1 =

1

12

{(
±(a3 +

1

3
a8

)
ENS(Q2) +

4

3
a0ES(Q2)

}
, (2.52)

2The relations between ai and matrix elements are a matter of convention. Here the convention from

[4] is used. Another convention
〈
P, S

∣∣Ai5µ∣∣P, S〉 = 2MaiSµ, (i = 1 . . . 8) is often used e.g. [15] but this

convention introduces a
√

3 factor in a8. Factor M is only normalization in OPE.
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with

ENS(Q2) = 1− αs
π
− (3.5833)

(αs
π

)2

− (20.2153)
(αs
π

)3

− (130)
(αs
π

)4

. . . , (2.53)

ES(Q2) = 1− αs
π
− (1.0959)

(αs
π

)2

− (6)
(αs
π

)3

. . . , (2.54)

where ± stands for proton and neutron, respectively. The coefficients ENS(Q2) and ES(Q2)

are taken from [4, 118]. The calculations have been done in the Modified Minimal Subtrac-

tion (MS) renormalisation and factorization scheme [119]. The renormalization scale has

been chosen as µ2 = Q2. This simplifies the relation Eq.(2.52) but introduces an explicit

dependence of a0 on Q2 in3

A scale independent â0 can be defined taking a0 in the limit Q2 → ∞. The singlet

coefficient, ES(Q2), is then modified so that all scale dependence is now explicitly ”hidden”

in a modified ÊS(Q2) [120]:

Γ
p(n)
1 =

1

12

{(
±(a3 +

1

3
a8

)
ENS(Q2) +

4

3
â0ÊS(Q2)

}
, (2.55)

with

ÊS(Q2) = 1− (0.33333)
αs
π
− (0.54959)

(αs
π

)2

− (4.44725)
(αs
π

)3

. . . . (2.56)

The difference between Γ1 for the proton and neutron gives the Bjorken sum [114] :

Γp1 − Γn1 =
1

6
a3ENS ≡

1

6

∣∣∣∣gAgV
∣∣∣∣ENS. (2.57)

This is a fundamental sum rule because it relies only on isospin invariance, i.e. on the SU(2)

symmetry between up and down quarks. As discussed, beyond leading order, ENS depends

on the number of flavours and the renormalisation scheme.

COMPASS has measured Γp1 and Γn1 and finds [68]:

|gA/gV | = 1.28± 0.07(stat.)± 0.10(syst.), (2.58)

to be compared with value 1.2694± 0.0028 derived from neutron β decay[117]. The Bjorken

sum rule is confirmed by data to within 5% of its value. The result is in good agreement

with the results from the previous experiments [7, 6]. The result is insensitive to the choice

3The scale dependence appears in the coefficient functions and in an anomalous dimension term. a0

depends on the renormalization scale µ. For renormalization scale µ2 = Q2 the anomaluos dimension term

simplifies to 1 and a0 explicitly depends on Q2. The scale independent a3 and a8 do not renormalize and

their anomalous dimensions are equal to 0.



28 Longitudinal spin structure of the nucleon

x-210 -110
0

0.02

0.04

0.06

0.08

0.1

COMPASS data

(x)NS
1

xg

minx-210 -110 1
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

COMPASS data

! (x)dxNS
1

g
minx

1

Bjorken sum rule

Figure 2.10: Left: Values of gNS1 (x) at Q2 = 3 GeV2, derived from the COMPASS measurements

[68] of Ap1 and Ad1 and the result of a three parameter QCD fit at NLO to the data. The errors are

statistical only. Right:
∫ 1
xmin

gNS1 dx as a function of xmin as obtained from the COMPASS data.

The open circle at x = 0.7 is obtained from the fit. The arrow on the left side shows the value

expected for the full range 0 < x < 1 with |gA/gV | = 1.269 [117].

of Q2 [68]. In the Fig. 2.10 the Bjorken sum rule integral as a function of xmin is shown as

obtained from COMPASS data together with non-singlet spin structure function defined as:

gNS1 (x,Q2) = gp1(x,Q2)− gn1 (x,Q2). (2.59)

This function has been obtained from deuteron and proton data as follows:

gNS1 (x,Q2) = 2

[
gp1(x,Q2)− gd1(x,Q2)

1− ωD

]
, (2.60)

where ωD = 0.05±0.01 is a correction for the D-wave state probability in the deuteron [121].

The non-singlet spin structure function is of special interest because its Q2 dependence is

decoupled from the singlet and the gluon spin densities.

Predictions for the values of the first moment of gp1 and gn1 can be obtained under the

assumption ∆s + ∆s̄ = 0 taking the values of a3 and a8 from weak decays (F and D)

and relating a0 to a8. This is the Ellis-Jaffe sum rule [3]. The value of the a8 suggests

that the total fraction of spin carried by quark spins is 0.6, in good agreement with the

expectation from the QPM with relativistic corrections. ∆Σ = a0 = 1 is a naive prediction

from the QPM but but the relativistic corrections reduce this value to roughly 0.65. The

SU(6) static model with relativistic corrections or the MIT bag model, in which quarks are

confined in a sphere with the finite radius, are good examples (see e.g.[15]). The measured
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value of the first moment of g1 contradicts the Ellis-Jaffe sum rule. Eq. (2.52) allows one to

determine a0 from the measured value of Γ1, a3 and a8 used as an input. The obtained result

indicates that only 1/3 of the nucleon spin is carried by quark spins. The first results from

the EMC experiment for proton target suggested an even smaller value (even compatible

with zero) however with large uncertainty [2]. One of the most accurate measurements of

the first moment of g1 structure function has been reported by the COMPASS experiment

[8] for deuteron targets. The isoscalar deuteron target allows one to measure an ”averaged

nucleon” structure:

gN1 (x,Q2) = (gp1 + gn1 )/2 = gd1(x,Q2)/(1− 1.5ωD). (2.61)

The isoscalarity allows one to express the first moment of the gN1 only by a8 and a0 as follows:

ΓN1 =
1

36
a8ENS(Q2) +

1

9
a0ES(Q2). (2.62)

or, in terms â0 (a0 at Q2 →∞ limit) and ÊS:

ΓN1 =
1

36
a8ENS(Q2) +

1

9
â0ÊS(Q2). (2.63)

The value for a0 obtained by COMPASS is:

a0

(
Q2 = 3GeV 2

)
= 0.35± 0.03 (stat.)± 0.05 (syst.), (2.64)

in QCD NLO approximation with the value of αs evolved from the PDG value αs(m
2
Z) =

0.1187± 0.005 and assuming three active quark flavours. The data have been evolved to the

reference Q2 = 3 GeV2 and two independent QCD NLO fits have been used, see [8]. The

quoted systematic error accounts for the error from the evolution and for the experimental

systematic error, combined in quadrature. To obtain the scale independent â0 the 3-loop

results for the coefficients ENS and ÊS have been used [120] (beyond NLO ) but the experi-

mental data have been evolved to a common Q2 using NLO fit only. The choice of a value

close to the average Q2 of the data is expected to minimize the effect of the evolution on the

â0 result:

â0 = 0.33± 0.03 (stat.)± 0.05 (syst.). (2.65)

The first moment of the strange quark spin distribution in the limit Q2 →∞ is found to

be:

(∆s+ ∆s)Q2→∞ =
1

3
(â0 − a8) = −0.08± 0.01 (stat.)± 0.02 (syst.). (2.66)

As stated before, this result relies on SU(3)f flavour symmetry. Symmetry breaking, at the

level up to 20% [116], would shift the value of ∆s+ ∆s by ± 0.04.
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2.2.2 The triangle anomaly and the role of gluons

In the OPE there is no twist-2, gauge invariant, spin-1 local gluonic operator and therefore

gluons don’t contribute to the first moment of g1. On the other hand, the explicit gluon

contribution is written in the decomposition of structure function g1, Eq. (2.44), The singlet

axial vector current A0
5µ = Ψ̄γµγ5Ψ is not conserved (even for massless quarks) because of

the presence of the axial anomaly [5] :

∂µA0
5µ = 2i

f∑
i=1

miq̄iγ5qi + 2nf∂
µKµ, (2.67)

where

Kµ =
αs
4π
εµνρσ

[
Aνa

(
∂ρAσa −

1

3
gfabcA

ρ
bA

σ
c

)]
, (2.68)

is a gluonic Chern-Simons current, Aµa is a gluon field and ∂µKµ = αs

4π
GµνG

µν is a topological

charge density. The symbols fabc are SU(3)color group constants and qi stands for different

quark flavours ”i” ( Ψ field is defined in flavour space). Finally αs = g2/4π. With the help

of Eq. (2.67) the singlet axial vector current can be then re-defined to obtain a partially

conserved current:

A0,con
5µ = A0

5µ − 2nfKµ. (2.69)

As discussed in [122, 123] the problem with non-existance of the twist-2, gauge invariant, local

gluonic operators in OPE causes troubles with a definition of the gluon helicity distribution

Fortunately the QPM is formulated in the light-cone gauge (A+ = 0) where the forward

matrix elements of K+ are invariant and in addition the non-abelian part of K+ vanishes.

In this gauge the matrix elements of K+ are related to the gluon helicity distribution in the

nucleon. Therefore the gluon helicity distribution ∆G can be measured in polarised DIS

experiment if it is interpreted in the framework of the QPM and QCD. Explicit calculations

of the gluon contribution to the first moment of the g1 structure function via the PGF

process have two contributions: hard and soft ones. The soft term is a contact term with

a triangle anomaly [124, 125, 126, 127]. The procedure to manage the soft and hard parts

of the partonic cross section in the first moment of the g1 structure function is a matter of

choice of factorization scheme. In the gauge invariant MS scheme [119] the first moment of

CG in the decomposition of structure function g1, Eq. (2.44), vanishes and ∆G(x,Q2) does

not contribute directly to Γ1. Note, that this does not mean that ∆G(Q2) vanishes. In other

words the axial anomaly contact term in this scheme is a soft part of the partonic process

(PGF) and therefore it is not present explicitly in Γ1. In the Adler-Bardeen (AB) scheme

[84] which conserves chirality, the first moment of CG is non zero and Γ1 depends directly
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on ∆G(x,Q2). The axial anomaly term is a part of the hard process. The first moments of

the singlet quark distribution ∆Σ(Q2) in these two schemes are related by

∆ΣMS(Q2) = ∆ΣAB − nf
αs(Q

2)

2π
∆G(Q2), (2.70)

where ∆G is the first moment of the gluons helicty distribution. In the MS scheme ∆Σ = a0

depends on Q2 while in the AB scheme:

a0 = ∆Σ− nf
αs
2π

∆G. (2.71)

The scale independent ∆Σ (related to the matrix element of the conserved singlet axial

vector A0,con
5µ current) and the anomaly term nf

αs

2π
∆G (related to the K+ operator matrix

element ) appears in AB scheme in the Eq.(2.71). The AB scheme simplifies the discussion

of the quark helicity content of the nucleon. In the (MS) scheme the g1 structure function

is composed only of quark helicity distributions.

Eq.(2.71) relates gluon helicity ∆G and a0. According to Eq.(2.71), a sufficiently large

gluon contribution could restore Ellis-Jaffe sum rule prediction for ∆Σ. The measured a0

around 1/3 can be in agreement with the Ellis-Jaffe sum rule prediction (∆Σ ' 0.65) if

the αs∆G ' 0.7 what corresponds ∆G > 2 at the several GeV scale. The expectation

that the gluon polarisation is large was a ”driving force” for generation of the polarised DIS

experiments, that aim to precisely measure the gluon polarisation. The restoration of the

Ellis-Jaffe sum rule prediction does not mean that the nucleon’s spin structure is again a

simple consequence of the naive QPM, with or without relativistic corrections, where spin

of the nucleon is carried by the valence quarks only. First of all the existence of a confining

space for the quarks (as in e.g. the MIT bag model) implies the existence of OAM of the

confined quarks. The large gluon polarisation needed to restore the Ellis-Jaffe sum rule

implies that the OAM contribution should be large so as to obey:

1

2
=

1

2
∆Σ + ∆G+ L, (2.72)

where L refers to the OAM of the quarks and gluons. The decomposition of the total angular

momentum for helicity and orbital momentum part is a complicated matter and depends

on the definition of the total/orbital angular momentum [14]. Therefore the above spin

decomposition for the longitudinally polarised nucleon should be considered ”qualitative”.

The problem of the precise definition of the OAM will be discussed in the chapter 7. Here

∆Σ and ∆G are well defined helicity distributions in the framework of the QCD improved

QPM an L simple carries the remainder of the nucleon spin.

The contribution of the gluon helicity to the nucleon spin can be estimated by using the

DGLAP evolution equations in QCD fits to the measured g1. The procedure is analogues
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to the QCD fits made for the polarisation averaged structure functions. Perturbative QCD

predicts the change of the parton distribution functions with the scale Q2, given a functional

form in x for the quark and gluon helicities at a given reference Q2
0. It is then possible to

evaluate ∆q and ∆G at any value of Q2. For each measured value of g1(x,Q2) the corre-

sponding predicted g1(x,Q2) is evaluated and a χ2 minimization is performed using the body

of measurements. The parameters of the assumed x-dependence of ∆q(x,Q2
0) and ∆G(x,Q2

0)

are fitted by χ2 minimisation. Several QCD fits have been made by different groups using

inclusive as well as semi-inclusive data available. The LSS05 fit [104] is shown in Fig. 2.8.

Another QCD analysis applied to the polarised data can be found in [128]. The functional

form of the parton distributions in x, not predicted by QCD, is chosen to be smooth and

flexible enough to ensure that the fit converges with a reasonable χ2. The functional form is

rarely motivated by rigorous Physics principles. Instead standard polynomial type parame-

terizations in terms of Regge inspired low-x behavior connected to high-x counting rules by

ad-hoc ansatz for intermediate x behaviour is used. An interesting exception is the quan-

tum statistical approach proposed in [129] where parton helicity distribution functions for

quarks are given by Fermi-Dirac functions while the gluon helicity distribution is described

by a black body inspired Bose-Einstein function. This approach allows one to consider si-

multaneously the polarisation dependent and polarisation independent PDFs with Physics

motivated functional forms. The agreement with present data is also good.

Another example is given in Fig. 2.11 which shows the QCD fits for quark and gluon

helicitiy distribution from the global analysis fit from DSSV group [46, 47]. In this fit not

only inclusive DIS process but also semi-inclusive (SIDIS process) data and RHIC collider

hadroproduction data are taken into account. The most important problem in the procedure

is the treatment of uncertainties. For details the reader is referred to [47]. The value of the

first moment of the gluon helicity distribution was found to be ∆G(Q2 = 4 GeV2) = −0.096,

Since the uncertainties due to extrapolation over the unmeasured x range are hard to be

estimated the error on this value is not quoted but the error bands seen in Fig. 2.11 are

large. The truncated first moment of ∆G(x,Q2) in the range 0.001 < x < 1 was found to

be ∆G[0.001→1] = 0.13± 0.18.

The COMPASS collaboration has also performed a QCD analysis of all available data

on g1 structure function, including new COMPASS measurements [8]. Two solutions for

∆G(x,Q2) have been found: one with a positive and and one with a negative value for ∆G.

The absolute value of the first moment of the gluon helicity distribution was found to be in

both cases |∆G| ≈ 0.2–0.3. The stability of these results with respect to a change in αs(m
2
Z):

when αs(m
2
Z) is varied by ±0.005 was checked and the results are not changed by more than

half a standard deviation. The first moment of the singlet quark distribution derived from
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Figure 2.11: The polarised PDFs of the proton at Q2 = 10 GeV2 in the (MS) scheme along with

their ∆χ2 = 1 uncertainty bands computed with Lagrange multipliers and the improved Hessian

approach [47].
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the fits to the g1 data was found to be:

∆Σ(Q2 = 3 GeV2) = 0.30± 0.01(stat.)± 0.02(evol.). (2.73)

From these two examples one can conclude that the central value of ∆G is likely small

and that the uncertainty remains sizable.

To achieve better precision of the polarised gluon distribution, the g1 structure function

has to be measured over in a wider kinematic range. At present this range is rather limited

compared to the range covered by measurements of the unpolarised structure function F2.

Such an increase will be possible only at a future polarised electron-ion collider [42]

Since the gluon polarisation determined from QCD fits has large uncertainties even if

all data (including SIDIS and RHIC ones) are used, additional direct measurements of the

gluon polarisation are needed. This is a one of the main goals of the COMPASS experiment

and this is the main topic of this thesis.

2.3 The Gerasimov-Drell-Hearn sum rule

The very interesting sum rule has been obtained by Gerasimov [130], Drell and Hearn [131],

the GDH sum rule: ∫ ∞
threshold

dν

ν

(
σ1/2 − σ3/2

)
=

2π2α

M2
κ2, (2.74)

where κ is an anomalous magnetic moment of the target nucleon, σ1/2,3/2 are the cross

sections for the absorption of the real photons with energy ν and with spin anti-parallel and

parallel, respectively. M is a mass of the target particle. This sum rule was obtained from

the very general principles like causalities, unitarity, Lorentz invariance, gauge invariance.

The unsubracted dispersion relation is only assumed for g1 structure function. The GDH

sum rule can be rewritten defining first the integral I(Q2) in the following way:

I(Q2) =
2M2

Q2

∫ 1

0

dxg1(x,Q2) =
2M2

Q2
Γ1(Q2). (2.75)

Then the GDH sum rule corresponds to the relation I(0) = −1
4
κ2. Investigating Q2 depen-

dence of the integral I(Q2) gives a chance to understand the ”bridge” between the perturba-

tive regime dominated by QCD and QPM and the non-perturbative effective models (chiral

approximation, vector-meson dominance etc.) In this intermediate region the important role

plays ∆ resonance. The very accurate data of the GDH sum rule measurement have been

collected by experiments at ELSA and MAMI accelerators [132, 133]. The interesting gen-

eralization of the GDH sum rule for parity violation case (parity violation GDH sum rule)

have been discussed in [134, 135].
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Figure 2.12: Hadron asymmetries Ah+
d (left) and Ah−d (right) measured by COMPASS [140] SMC

[141] and HERMES [71] experiments. The bands at the bottom of the figures show the systematic

errors of the COMPASS measurements.

2.4 Semi-inclusive asymmetries and the flavour sepa-

ration

The asymmetry measured in the inclusive DIS process requires observation of the scattered

lepton only. Additional information about the nucleon structure can be obtained if in addi-

tion to the lepton one or more hadrons in the final state are measured. The interpretation

of such data in general requires knowledge of the fragmentation functions (FF). There is

however a special combination of the semi-inclusive asymmetries (SIDIS) called difference

asymmetry which is independent of the fragmentation functions in the first approximation

(LO QCD). The difference asymmetry approach for the extraction of helicity distributions

was introduced in [136]. It has been used in the SMC analysis [137] and has been discussed

further in [138, 139]. The COMPASS result has been reported in[140]. The semi-inclusive

spin asymmetries for positive and negative hadrons h+ and h− are defined similarly to the

inclusive cross section asymmetry by:

Ah
+

=
σ
→⇐,h+ − σ

→⇒,h+

σ
→⇐,h+ + σ

→⇒,h+
, Ah

−
=
σ
→⇐,h− − σ

→⇒,h−

σ
→⇐,h− + σ

→⇒,h−
, (2.76)

where the arrows indicate the relative beam and target spin orientations. Data on these

asymmetries from COMPASS [140], HERMES [71] and SMC [141] are shown in Fig. 2.12.

Under the assumption that hadrons in the current fragmentation region are produced

by independent quark fragmentation, the semi-inclusive asymmetries Ah
+

and Ah
−

can be
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written:

Ah(x, z,Q2) =

∑
q e

2
q∆q(x,Q

2)Dh
q (z,Q2)∑

q e
2
qq(x,Q

2)Dh
q (z,Q2)

, (2.77)

in LO QCD. Here ∆q(x,Q2) and q(x,Q2) are the polarisation dependent and polarised

independent parton PDFs, respectively, and Dh
q (z,Q2) is the fragmentation function of a

parton q into a hadron h.4

The difference asymmetry is defined as the spin asymmetry for the difference of the cross

sections for positive and negative hadrons:

Ah
+−h− =

(σ
→⇐,h+ − σ

→⇐,h−)− (σ
→⇒,h+ − σ

→⇒,h−)

(σ
→⇐,h+ − σ→⇐,h−) + (σ

→⇒,h+ − σ→⇒,h−)
. (2.78)

In LO QCD and under the assumption that isospin and charge conjugation are good sym-

metries, the fragmentation functions Dh
q cancel in Aπ

+−π− . In addition, in the case of an

isoscalar target (deuteron) and with the assumption ∆s = ∆s, the difference asymmetries

for pions and kaons are both equal to the valence quark polarisation

Aπ
+−π−
N = AK

+−K−
N =

∆uv + ∆dv
uv + dv

. (2.79)

The valence quark distributions qv are defined here as qv = q − q̄. Since kaons contribute to

the asymmetry in the same way as pions, their identification is not needed, allowing one to

improve the statistical errors of the measurements. At higher order in QCD the difference

asymmetries still determine the valence quark polarisation without any assumption on the

sea and gluon densities [138] but the fragmentation functions no longer cancel out. Their

effect is expected to be small [139] compared to LO expression.

The relation between the difference asymmetries of Eq. (2.78) and the single hadron

asymmetries of Eq. (2.76) is:

Ah
+−h− =

1

1− r
(Ah

+ − rAh−) , with r =
σh−

σh+
, (2.80)

where ratio r is a subject to acceptance corrections because positive and negative hadrons,

produced at identical angles, normally transverse different regions of the spectrometer. The

polarised valence quark distribution ∆uv + ∆dv can be obtained by multiplying Ah
+−h−
d

by the unpolarised valence distribution. The sea contribution to the unpolarised structure

4The above formula does not account for the full complexity of the hadronisation process like described

in e.g. Lund string fragmentation model [142] and its validity in low energy fixed target experiments has

been questioned [143]. It has nevertheless been shown to hold as a good approximation at the energy of

COMPASS [144].
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function F2 decreases rapidly with increasing x and becomes smaller than 0.1 for x > 0.3.

Due to the positivity conditions |∆q| ≤ q and |∆q| ≤ q, the polarised sea contribution to

the nucleon spin also becomes negligible in this region. In view of this, the evaluation of the

valence spin distribution for large x can be replaced by a more accurate one obtained from

the inclusive interactions (LO):

∆uv + ∆dv =
36

5

gd1
(1− 1.5ωD)

−
[
2(∆ū+ ∆d̄) +

2

5
(∆s+ ∆s̄)

]
. (2.81)

The first moment of the polarised valence distribution, Γv has been estimated at the reference

Q2 = 10 GeV2 point as [140]:

Γv(0 < x < 1) = 0.41± 0.07 (stat.)± 0.06 (syst.). (2.82)

The assumption of a fully flavour symmetric sea ∆u = ∆d = ∆s = ∆s leads to Γv(0 < x <

1) = a8. As shown in Fig. 2.13 (right), the experimental value is two standard deviations

below the value of a8 = 0.58± 0.03 derived from neutron and hyperon β decays. It has been

suggested that a value of the valence contribution Γv smaller than a8 (as expected from the

constituent quark models) could be a hint that a so far unmeasured part of the nucleon’s

spin resides at x = 0 [145].

An estimate of the light sea quark contribution to the nucleon spin can be obtained by

combining the values of Γv, ΓN1 and a8:

∆u+ ∆d = 3ΓN1 −
1

2
Γv +

1

12
a8. (2.83)

The result is found to be zero in contrast to the non-zero result for ∆s+ ∆s. At LO in QCD

the strange quark polarisation is given by

∆s+ ∆s = 3ΓN1 −
5

12
a8 = −0.09± 0.01 (stat.)± 0.02 (syst.) (2.84)

at Q2 = 10 GeV2 [140]. The zero result for the sea ∆u+ ∆d suggests that if ∆u and ∆d are

different from zero, they must be of opposite sign. Opposite signs of ∆u and ∆d are predicted

in several models, among them in the quantum statistical approach of Refs [129, 146] (see

also [147] and references therein).

Semi-inclusive DIS cross-section asymmetries, where in addition to the scattered lepton,

identified pions and kaons are detected, are sensitive to the individual quark and antiquark

flavours. With Inclusive A1 measurements and the knowledge of unpolarised PDFs and

fragmentation functions the flavour separation can be performed into the helicity distribu-

tions for every quark flavours. To do the complete decomposition data from the proton and
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Figure 2.13: Left: Polarised valence quark distribution x(∆uv(x)+∆dv(x)) from COMPASS [140]

evolved to Q2 = 10 GeV2 according to the DNS fit at LO [148] (line). Three additional points at

high x are obtained from gd1 [8]. The two shaded bands show the systematic errors for the two sets

of values. Right: The integral of ∆uv(x)+∆dv(x) over the range 0.006 < x < 0.7 as the function

of the low x limit, evaluated at Q2 = 10 (GeV/c)2.

deuteron/neutron targets are needed. The first measurements of SIDIS asymmetries were

performed by the EMC Collaboration [73]. More recently, the SMC Collaboration has mea-

sured SIDIS asymmetries for unidentified charged hadrons [141] as presented in Fig. 2.12.

The HERMES Collaboration has reported SIDIS asymmetries for charged pion production

on a proton target and for charged pion and kaon production on a deuteron target [71]. These

asymmetries were used for a flavour decomposition into five helicity distributions. However

these data do not permit the extraction of ∆s. The LO QCD evaluation of the isoscalar

polarised valence, sea and strange distributions, ∆uv + ∆dv, ∆u + ∆d and (∆s + ∆s)/2,

all derived from DIS and SIDIS asymmetries on a polarised deuteron target only, have been

presented in [149]. New semi-inclusive asymmetries for scattering of high-energy muons off a

polarised proton target for production of identified charged pions (Aπ+
1,p , Aπ−1,p ) and of identi-

fied charged kaons (AK+
1,p , AK−1,p ) measured by COMPASS have been published in [150]. These

measurements include the previous COMPASS results on (Aπ+
1,d , Aπ−1,d) and (AK+

1,d , AK−1,d ) SIDIS

deuteron data as well as inclusive double-spin asymmetries A1,p [68] and A1,d[149]. Using

these measurements a full flavour decomposition in LO has been performed, thus accessing

all up, down and strange quark and antiquark helicity distributions separately.

The inclusive and SIDIS asymmetries obtained by COMPASS [68, 149, 150] and HER-

MES [6, 71] are shown in Figs. 2.14 and 2.15.

Based on the measured SIDIS asymmetries, there is no evidence for a significant difference
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Figure 2.15: The inclusive asymmetry A1,p [68] and the semi-inclusive asymmetries Aπ+
1,p , AK+

1,p ,

Aπ−1,p , AK−1,p [150] measurements by COMPASS (closed circles). The bands at the bottom of each

plot show the size of the systematic errors. The A1,p, A
π+
1,p and Aπ−1,p data by HERMES [6, 71] (open

circles) are shown for comparison. The curves show the predictions of the DSSV fit [46, 47].
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(EMC value). The horizontal band represents the full moment of ∆s derived from the COMPASS
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and KRE[158] parameterisations of FFs are indicated by the arrows.
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Figure 2.18: The quark helicity distributions x∆u, x∆d, x∆u, x∆d and x∆s at Q2
0 = 3 GeV2

as a function of x. The values for x < 0.3 (black dots) are derived at LO from the COMPASS spin

asymmetries using the DSS fragmentation functions [155]. Those at x > 0.3 (open squares) are

derived from the values of the polarised structure function g1(x) quoted in [8, 68] assuming ∆q = 0.

The bands at the bottom of each plot show the systematic errors. The curves show the predictions

of the DSSV fit calculated at NLO[46, 47].

between ∆s(x) and ∆s(x) in the x-range covered by the COMPASS data, see Fig. 2.16. This

remains valid when instead of the DSS fragmentation functions the older fragmentation

functions by the EMC [151] are used. The results on ∆s(x) and ∆s(x) are at variance

with the SU(3) Chiral Quark-Soliton model prediction that |∆s(x)| � |∆s(x)| [153] and are

compatible with quantum statistical models prediction that ∆s(x) −∆s(x) is zero [152] or

small [129].

Under the assumption that the distributions of ∆s and ∆s are equal (at least in the

measured region) better precision can be obtained for the other helicity distributions. The

results for the quark helicity distributions ∆u, ∆d, ∆u, ∆d and ∆s with the assumption

that ∆s = ∆s, are shown in Fig. 2.18.

The COMPASS helicity distributions are in good qualitative agreement with the results

from HERMES [6]5. As the DSSV fit results, shown in Fig. 2.18), have been obtained at

5A quantitative comparison has not be made in since the HERMES helicity distributions are extracted

under different assumptions for the fragmentation functions and for the unpolarised flavour distributions.
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NLO approximation, the comparison with the experimental results derived at LO is thus only

qualitative. Nevertheless, the curves reproduce fairly well the shape of the data, confirming

a previous observation that a direct extraction at LO forms a reasonable estimate of the

shape of the helicity distributions [156].

The values of the strange quark helicity distribution confirm the results obtained by

COMPASS from the deuteron data alone [149] . This distribution is of particular interest in

view of the apparent contradiction between the SIDIS results and the negative first moment

obtained from the spin structure function g1(x) [8]. The evaluation of the first moment of

∆s(x) from inclusive measurements relies on the value of the octet axial charge a8, which

is derived from hyperon weak decays under the assumption of SU(3)f symmetry. Recent

model calculations suggest that a8 may be substantially smaller than the SU(3)f value and

become close to the singlet axial charge a0 extracted from the polarised DIS data [157]. If

confirmed in experiment, the inclusive data would no longer imply a negative value of ∆s.

On the other hand the semi-inclusive results on the quark helicity distribution ∆q(x)

strongly depend on the choice of fragmentation functions and ∆s(x) is particularly sensitive.

The relation between the semi-inclusive asymmetries and the quark helicity distributions

depends on the ratios of fragmentation functions, integrated over the range of z that is

measured by the experiment. In the case of COMPASS this is (0.2 < z < 0.85) [150].

Relevant for the kaon asymmetries and hence(∆s(x) are the unfavoured-to-favoured FF

ratio, RUF , and strange-to-favoured FF ratio, RSF :

RUF =

∫
DK+

d (z)dz∫
DK+

u (z)dz
, RSF =

∫
DK+

s (z)dz∫
DK+

u (z)dz
. (2.85)

The Fig. 2.17 shows the variation of the integral of ∆s(x) over the measured region as

a function of RSF with RUF fixed at DSS value of 0.13 [155]. The resulting values for ∆s

are close to zero and are larger than the negative full moment derived from the inclusive

analysis.

Due to the crucial dependence on the FF ratios in the determination of ∆s, the precise

determination of these ratios is important. Although of key interest from a flavour symmetry

and model calculation point of view, the values of the strange quark distribution ∆s(x) and

the value of its first moment appear small. Therefore, the strange quark spin contribution

to the nucleon spin budget is less important.

The sum of all quark and antiquark contributions ∆Σ = 0.32±0.03(stat.), obtained from

the SIDIS asymmetries [150] is nearly identical to the value of a0 = 0.33±0.03(stat.) derived

from the first moment of gd1(x) using the value for the octet axial charge a8 [8] . The sum

of the valence quark contributions ∆uv + ∆dv = 0.39 ± 0.03(stat.) is also consistent with
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Figure 2.19: The flavour asymmetry of the helicity distribution of the sea x (∆u −∆d) at Q2
0 =

3 GeV2. The shaded area displays the size of the systematic error. The dashed curve is the result of

the DSSV fit at NLO. The other curves are model predictions by Wakamatsu[153] (long dash-dotted

line), Kumano and Miyama [160] (short dash-dotted line) and Bourrely, Soffer and Buccella [159]

(dotted line). The solid curve shows the MRST parameterisation for the unpolarised difference

x (d− u) at NLO.

the determination based on the difference asymmetry of positive and negative hadrons in a

subsample of the deuteron data (0.41± 0.07(stat.) at Q2 = 10 GeV2).

The flavour asymmetry of the helicity distribution of the sea, ∆u − ∆d, is shown in

Fig. 2.19. Although compatible with zero, the values indicate a slightly positive distri-

bution. The DSSV fit at NLO [46] and the unpolarised asymmetry d − u are shown

for comparison. The first moment ∆u − ∆d truncated to the range 0.004 < x < 0.3

is 0.06 ± 0.04(stat.) ± 0.02(syst.). It is worth noting that the polarised first moment is

about one standard deviation smaller than the unpolarised one truncated to the same range

(≈ 0.10 for the MRST parameterisation[154]). The data thus disfavour models predicting

∆u−∆d� d− u (see [147, 49] and references therein). Three model predictions are shown

in Fig. 2.19. The quantum statistical approach model [159] and the SU(3) version of the

Chiral Quark–Soliton model of [153] both predict positive distributions, while the Meson

Cloud model of [160] predicts a slightly negative distribution. Very recently [161] the predic-

tions for antiquarks polarisation have been obtained combining information from COMPASS

Γv result, integrated magnetic moments distributions of quarks, β decays of baryons and fi-

nally taking into account the orbital angular momenta of valence quarks from Lattice QCD

calculations (see chapter 7). The approach is based on the model for magnetic moments of

SU(6) octet baryons [162]. The obtained results for difference between u and d antiquarks

polarisations are consistent with COMPASS and HERMES measurement.
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Figure 2.20: Production of the W+ boson in p→p collision (lowest order). (a) ∆u is probed in

polarised proton, (b) ∆d is probed (Fig. from [163]).

Within statistical errors, the COMPASS data are compatible with all three predictions

shown in Fig. 2.19. The sum of the light quark helicity distributions, ∆u + ∆d, is mainly

constrained by the deuteron data and nearly identical to the result published in [149]. The

first moment truncated to the range of the data is found to be−0.03±0.03(stat.)±0.01(syst.).

An interesting possibility to study the flavour decomposition is being pursued with W

boson production in polarised proton-proton interactions of RHIC [163]) Within the Stan-

dard Model the W boson is produced via pure V − A weak interactions and the helicity

combination of the quarks is fixed in the reaction. In addition the W couples to a weak

charge that correlates directly to flavours. Therefore the W boson production seems to be

an ideal tool to study spin structure of the proton.

The limitations are: an energy, high enough in Tevatron [164, 165, 166] and RHIC,

and small cross section which limits the precision of the measurements. The production

of W bosons in proton-proton collision is dominated by u, d, u and d, as shown in Fig.

2.20.6. At RHIC different spin configurations are probed in successive beam bunches. The

parity violation single-spin asymmetry is the difference of left-handed and right-handed W

production divided by the sum and normalized by the beam polarisation and luminosity

6there is a small contamination of s, c, s and c due to quark mixing.
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Figure 2.21: Left: Longitudinal single-spin asymmetry, AL for W± events from STAR [169] as

a function of the leptonic pseudorapidity, ηe, for 25 < EeT < 50 GeV in comparison to theory

prediction. Right: Longitudinal single-spin asymmetry for electrons and positrons for AL for W±

and Z decays measured by PHENIX [170]. The error bars represent 65% CL. The theoretical curves

are from [171].

[163]. The observed asymmetry is expressed in terms of the helity distributions of quarks as

folows:

AW
+

L =
∆u(x1)d(x2)−∆d(x1)u(x2)

u(x1)d(x2) + d(x1)u(x2)
, (2.86)

and the similar expression for AW
−

L can be obtained by interchanging u and d. For large

x1 (rapidity yW � 0) the AW
+

L → ∆u/u while for large x2 (yW � 0) the AW
−

L → ∆d/d

and the flavour can be separated. The effect survives the higher order corrections to the W

production [167, 168] and the predicted asymmetry is large . The experimental difficulty is

that the W is observed via its leptonic decay and only charged lepton is observed. Therefore

it is not known if quark or antiquark is provided by polarised proton. The first results of

the measurement of the singe-spin parity violation asymmetry AWL have been reported very

recently by the STAR [169] and PHENIX [170] collaborations. The measured large asym-

metries probe the polarised PDFs at much larger scales than in polarised DIS experiments.

The results shown in Fig. 2.21 agree well with NLO and resumed calculations [46, 47, 171].

The reported results have poor precision so far and more data are needed.
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2.5 Summary of the nucleon’s longitudinal spin struc-

ture

The results presented in this chapter can be summarized as follows:

• It is confirmed that quark spin content of the nucleon spin is only around 1/3. This

is a direct conclusion from the Ellis-Jaffe sum rule, which relates the first moment of

the polarisation dependent g1 structure function to β decay of the spin 1/2 hyperons

octet. This result is also confirmed by SIDIS data which make it possible to determine

the helicity distributions of quarks using additional information in the form of FFs.

The different QCD fits obtain similar results. A global analysis QCD fit that takes

into account SIDIS and RHIC data suggests even smaller value of about 1/4.for the

quark spin contribution to the nucleon spin [46].

• The original Ellis-Jaffe sum rule is violated unless the gluon polarisation is large.

A large value of the gluon polarisation would require a large, compensating angular

momentum contribution so as to satisfy the total value of 1/2 in the nucleon spin sum

rule. Present data provide no evidence for such a large ∆G. The Bjorken sum rule is

confirmed.

• Inclusive measurements allow one to conclude that the strange (anti)quark polarisation

is compatible with zero while ∆u and ∆d, if different from zero, must be of opposite

sign. The SIDIS flavour decomposition confirms that the polarisation of the ”sea”

quarks is very small and that the ”asymetric” scenario, ∆u = −∆d, is preferred.

• The valence u and d quarks are highly polarised with opposite signs (u along the

nucleon spin orientation) while the gluon polarisation determined indirectly from the

QCD fits seems to be small. Present data don’t allow to constrain polarised gluons

and the uncertainties of these results are large. Therefore the scenario, where gluons

are enough polarised to satisfy the 1/2 nucleon sum rule is still not excluded. The

large polarised or the unpolarised gluons require the important extension of the QPM:

the contribution from the angular momentum of quarks and gluons.

The precise data show that there is the deficit between the spin of the nucleon and the

total spin carried by quark spins. Various theories have been put forward to explain this

observation. One of them proposes that the spin dependent structure function g1 is divergent

for very small x [97]. The SMC and COMPASS precision data on g1 for small x provide

no evidence for this hypothesis. Nevertheless, one of the uncertainties in the determination
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of the moment of g1 remains the small x behavior in the unmeasured region at small x.

Another possibility could be that the strange quarks are polarised. An experiment at MIT-

Bates [172] reported a non-zero strange quark magnetic form factor for the proton. However

the measured effect is opposite to what would be expected from DIS measurements. Again

DIS and SIDIS data provide no evidence for this possibility as the measured ∆s is close to

zero. Therefore the interpretation of the results is still unclear.

A large value for the gluon polarisation and the role of the anomaly is a natural solution in

the QCD improved QPM. Indirect gluon polarisation measurements based on QCD evolution

suggest a rather small value of ∆G. Direct gluon polarisation measurements lead to the

conclusion that gluons are not largely polarised, as will be discussed in the next chapters in

this thesis.

Skyrme based models, e.g. [173] in the chiral limit and in leading order 1/N expansion

predict that a large fraction of the nucleon spin should originate from OAM. This possibility

seems to be a most interesting and - in the light of the present data - probable scenario. The

decomposition of the nucleon spin into angular momentum part is a non trivial issue and it

remains an open question if OAM is Skyrme-like.

The OAM contribution to the spin of the nucleon complicates the simple picture of the

nucleon in the QPM and even in QCD improved QPM. The first step is to go beyond the

collinear approximation used in the naive QPM.

In the next chapter the transverse spin structure of the nucleon is briefly discussed.



Chapter 3

Transverse spin structure of the

nucleon

Collins and Sivers asymmetries, measured by the COMPASS and HERMES experiments, are

presented in this chapter. The transversity distribution of quarks is briefly discussed. The

leading Transverse Momentum Dependent PDFs (TMDs) are defined. Their complementar-

ity to the Generalized Parton Distribution functions (GPDs) is discussed in the context of

the three-dimensional description of the nucleon structure. The basic features of the leading

TMDs are presented.

3.1 Transversity PDF, Collins and Sivers asymmetries

There are three types of twist-2 parton distributions which describe nucleon internal struc-

ture in the QPM and perturbative QCD in the collinear approximation: the polarisation

averaged quark (anti-quark) and gluon distributions q(x,Q2) and G(x,Q2), determined from

the measured spin averaged structure functions F2(x,Q2) and F1(x,Q2) (or R(x,Q2)), the

helicity distributions of the quarks (anti-quarks) and gluons, ∆q(x,Q2) and ∆G(x,Q2), de-

termined in the polarisation dependent longitudinal structure function g1(x,Q2) and in the

longitudinal double spin asymmetries for semi-inclusive processes and the transversity quark

distribution, ∆q⊥(x,Q2). The transversity distribution describes the transversely polarised

quarks inside the transversely polarised nucleon [174, 175, 176, 177]. Transversity probes the

relativistic nature of the quarks inside the nucleon ( for non-relativistic quarks the transver-

sity is equivalent to the helicity distribution). In the helicity basis it corresponds to a spin-flip

object. It is C-odd and chiral-odd and therefore transversity cannot be measured in inclu-

sive polarisation dependent DIS processes. Transversity would not decouple from DIS if
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some electro-weak vertex would flip chirality but γ, W± and Z0 couplings preserve chirality.

Mass effects leads to chirality flip but the light quark masses are too small to came an ob-

servable effect. Therefore a ”quark polarimeter” is needed. The ”golden” observable is the

transverse double-spin asymmetry for both polarised (anti)proton-proton collision produc-

ing lepton pair e.g. via production of J/Ψ: p̄↑p↑ → l+l−X, p↑p↑ → l+l−X. These processes

could be measured in future experiments at RHIC, GSI, JINR (Dubna) and J-Parc (Tokai).

The asymmetry predicted for the GSI-HESR future experiment (PAX Collaboration) has

been estimated to be up to 30% [178, 179, 180]. Factorization also holds for lepton pair

production.

The non-zero Collins fragmentation function [16] allows one to measure the transver-

sity in semi-inclusive DIS processes, where at least one hadron is observed in addition to

the scattered lepton. The Collins fragmentation function is not the only twist-2 chiral-odd

fragmentation function; there are several others including two-pion interference fragmenta-

tion functions [181]. Other possibilities are to study exclusive processes with vector mesons

produced in the final state as discussed in [182, 183] and to exploit hyperon polarisation

(Λ production). There is no gluon transversity distribution because of angular momentum

conservation 1. Therefore the QCD evolution of the transversity PDFs is more similar to

the evolution of the non-singlet longitudinal structure function - there is no mixing with the

gluons. From this point of view transversity should be more sensitive to the quark model

than to QCD effects. However, the integral of the transversity (tensor charge) as well as the

axial charge is scale dependent. The spin sum rule in the transversity case is the following:

1

2
=

1

2

∫ 1

0

∆q⊥(x)dx+ L, (3.1)

where the sum is over all quarks (antiquarks) and L stands for the OAM of quarks and gluons,

projected on the direction transverse to the nucleon momentum in the infinite momentum

frame. In leading order QCD the transversity distribution is upper bound by Soffers’s in-

equality [185]:

|∆q⊥(x,Q2)| ≤ 1

2

(
q(x,Q2) + ∆q(x,Q2)

)
. (3.2)

In SIDIS reactions off transversely polarised nucleons the transversity distribution can

be accessed by measuring transverse single spin asymmetries; for proton-proton collision the

double transverse spin asymmetry is measured in Drell-Yan production. Another possibility

is to study azimuthal distributions within jets produced in singly polarised reactions. STAR

1There is no chirality-flip object for gluons because chirality is defined only for fermions. Instead of the

2 units helicity-flip of structure function F γ3 can be defined and related to gluons, see [184].
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experiment is performing such an anlysis. The measured asymmetries are input to global

fits [186, 187] and allow one to determine the transversity PDFs from the data.

The Collins fragmentation function leads to a left-right asymmetry in the distribution

of the hadron produced in the fragmentation of the transversely polarised quarks. Thus a

transverse spin dependence in the azimuthal distributions of the final state hadrons can be

generated in SIDIS off transversely polarised nucleons. This so-called Collins asymmetry,

AColl, is proportional to the convolution of the transversity PDF and Collins FF, defined as

part of the ~phT -dependent fragmentation function. The general ~phT -dependent fragmentation

function is expected to be of the form

D h
T q (z, ~p

h
T ) = Dh

q (z, phT ) + ∆0
TD

h
q (z, phT ) · sin(ΦC), (3.3)

where ∆0
TD

h
q (z, phT ) is the T -odd Collins fragmentation function, responsible for the left-right

asymmetry in the fragmentation of a transversely polarised quark. The “Collins angle” ΦC

was originally defined in [16] as the angle between the transverse momentum of the outgoing

hadron and the transverse spin vector of the fragmenting quark, i.e.,

sin ΦC =
(~phT × ~q)·~s′

|~phT × ~q| |~s′|
, (3.4)

or

ΦC = φh − φs′ . (3.5)

Since the directions of the final and initial quark spins are related to each other by φs′ =

π − φs, equation (3.5) becomes

ΦC = φh + φS − π . (3.6)

As shown in Fig. 3.1, φh and φs′ are the azimuthal angles of the hadron and of the struck

quark spin in the coordinate system in which the z-axis is the virtual photon direction, and

the x-z plane is the lepton scattering plane with positive x-direction along the scattered

lepton transverse momentum. ~S⊥ is the target spin normal to the virtual photon direction

and φS is its azimuthal angle with respect to the lepton scattering plane.

Beyond the collinear approximation and with a finite transverse momentum of the partons

inside the nucleon, ~k⊥, eight transverse momentum dependent PDFs are needed to fully

describe the cross section at leading twist and order in αS [188]-[190]. They will be discussed

in the next section in detail. All these functions lead to azimuthal asymmetries in the

distribution of hadrons produced in SIDIS processes and can be disentangled measuring the

different angular modulations.

The T -odd Sivers function is of particular interest. This function arises from a correlation

between the transverse momentum ~k⊥ of an unpolarised quark in a transversely polarised



3.1 Transversity PDF, Collins and Sivers asymmetries 51

s
s'

µ

µ'

z

y

h
γ∗

x
pT
h

φh φsΦC
ΦS φs'

Figure 3.1: Definition of the Collins and Sivers angles. The vectors ~phT , ~s and ~s′ are the hadron

transverse momentum and spin of the initial and struck quarks respectively.

nucleon and the nucleon spin vector, ~ST . That is,

q⊥(x,~k⊥) = q(x,~k⊥) + |~ST | ·∆⊥0 q(x, k⊥) · sinϕ′, (3.7)

where ϕ′ is the difference of the azimuthal angle of the transverse spin of the nucleon ~S⊥

and of the quark transverse momentum relative to the nucleon direction, ~kT . In SIDIS off

transversely polarised nucleons the Sivers mechanism results in a modulation in the azimuthal

distribution of the produced hadrons with the so-called “Sivers angle”

ΦS = φh − φS, (3.8)

The Sivers angle is the relative azimuthal angle between the transverse momentum of the

hadron phT and the nucleon target spin in the photon-nucleon reference system. Under

the assumption that the hadron produced in the fragmentation and the fragmenting quark

are collinear, i.e. that all the hadron transverse momentum originates from the intrinsic

transverse momentum of the quark in the nucleon, the Sivers angle is equal to ϕ′ in Eq. (3.7).

A more detailed discussion of the Sivers effect and its relation to the OAM will be presented

in Chapter 7.

Transverse spin effects in SIDIS have been measured at different beam energies, by the

HERMES [24] and COMPASS [25, 26, 191] experiments An experiment to measure transver-

sity using a transversely polarised 3He target has recently been performed also at JLab

(Experiment E-06-10/E-06-11 in HALL A).

The transverse single spin SIDIS asymmetry is given by

AhT ∼ dσ(~S⊥)− dσ(−~S⊥)

dσ(~S⊥) + dσ(−~S⊥)

= |~S⊥| ·DNN AColl · sin ΦC + |~S⊥| · ASiv · sin ΦS, (3.9)

where the Collins asymmetry is defined as follows:
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Figure 3.2: The Collins asymmetry (top) and the Sivers asymmetry (bottom) versus x, z and phT
for positive (filled circles) and negative hadrons (open circles) from 2002-2004 COMPASS deuteron

data. (Fig. from [25]). The bars indicate the size of the statistical uncertainties. The open circles

are slightly shifted along the horizontal axis for clarity.

AColl =

∑
q e

2
q ·∆⊥q(x)⊗∆0

TD
h
q (z, phT )∑

q e
2
q · q(x)⊗Dh

q (z, phT )
, (3.10)

and

DNN =
1− y

1− y + y2/2
, (3.11)

is the transverse spin transfer coefficient from the initial to the struck quark 2. The Sivers

asymmetry

ASiv =

∑
q e

2
q ·∆⊥0 q(x, phT /z)⊗Dh

q (z)∑
q e

2
q · q(x, phT /z)⊗Dh

q (z)
, (3.12)

could be revealed as a sin ΦS modulations in the number of produced hadrons. here

∆⊥0 q(x, p
h
T /z) is the Sivers function.

Since the Collins and Sivers terms in the transverse spin asymmetry depend on the two

independent angles ΦC and ΦS, SIDIS measurement with a transversely polarised target

allow one to disentangle the Collins and the Sivers effects and asymmetries.

The SIDIS cross-section at leading order QCD contains other terms related to different

single and double spin azimuthal asymmetries. They will be considered in the next section.

The size of the effects is illustrated with the COMPASS data for the Collins and Sivers

asymmetries in Figs 3.2, 3.3,3.4 and 3.5 The corresponding results for identified hadrons

2The γ kinematical factor γ = 2Mx/Q and lepton mass corrections are neglected.
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Figure 3.3: The Collins asymmetry (top) and the Sivers asymmetry (bottom) as a function of

x, z, and phT , for positive (filled points) and negative (open points) hadrons for 2007 COMPASS

proton data. (Fig. from [26]). The bars show the statistical errors. The point to point systematic

uncertainties have been estimated to be 0.5 σstat for positive and 0.6 σstat for negative hadrons and

are given by the bands.
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Figure 3.4: The Collins asymmetry as a function of x, z, and phT , for positive (top) and negative

(bottom) hadrons for 2007 and 2010 COMPASS proton data. The comparison illustrates a very

good consistency between 2007 and 2010 COMPASS data sets. The bars show the statistical errors.
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(bottom) hadrons for 2007 and 2010 COMPASS proton data. The comparison illustrates a very

good consistency between 2007 and 2010 COMPASS data sets. The bars show the statistical errors.
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Figure 3.6: COMPASS results for the Collins asymmetry versus x, z and phT for the charged

pions and kaons samples from the 2003–2004 deuteron data, and K0
S ’s sample from the 2002-2004

deuteron data. (Fig. from [191]).



3.1 Transversity PDF, Collins and Sivers asymmetries 55

Si
v

d
A

-0.1

0

0.1

0.2
+!
-!

Si
v

d
A

-0.2

0

0.2

0.4 +K-K

x
-210 -110

Si
v

d
A

-0.2

0

0.2

0K 

z
0.2 0.4 0.6 0.8

 (GeV/c)h
T

p
0.5 1 1.5

Figure 3.7: COMPASS results for Sivers asymmetry versus x, z and phT for the charged pions and

kaons samples from the 2003–2004 deuteron data, and K0
S ’s sample from the 2002-2004 deuteron

data. (Fig. from [191]).

are shown In Figs.3.6 and 3.7 All deuteron asymmetries are measured to be small. The

trend which was already observed in the data for the non-identified hadrons is confirmed by

identified hadron data. The smallness of the asymmetries is not a surprise, in view of the

predicted cancellations between the u- and d-quark distributions in the isoscalar deuteron,

as in the helicity case.

The COMPASS proton data show that the Collins asymmetry has a strong x dependence.

It is compatible with zero at small x within the small statistical errors and increases in

absolute value up to about 0.1 for x > 0.1. The values agree in the region of kinematic overlap

both in magnitude and in sign with the measurements of HERMES [24] and [193],(Figs 3.8

and 3.9) which were performed at the considerably lower electron beam energy of 27.5 GeV,

compared to the 160 GeV muon beam energy used at COMPASS.

The COMPASS results agree with evaluations based on the global analysis of ref. [186,

187] (which does not include COMPASS data). The underlying interpretation of the Collins

asymmetry in terms of a convolution of the twist-2 transversity PDF and FF of a transversely

polarised quark is used in the global analysis. An important issue is the Q2 dependence of

these functions. The COMPASS results are compatible with the HERMES data in the x

region of overlap despite the 2 to 3 times higher Q2 values [26]. The Q2 dependence is then

presumably not dramatic in the present energy ranges.

The COMPASS proton results for the Sivers asymmetry for negative hadrons exhibit

values compatible with zero to within the statistical precision of the measurement. For
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Figure 3.9: Comparison between COMPASS (2010 data) and HERMES [193] proton Collins asym-

metry data versus x, z and phT .
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asymmetry data versus x, z and phT .
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Figure 3.12: COMPASS and HERMES proton data for the Collins asymmetry versus x, z and phT .

The data are reproduced from [205]. The error bars indicate the size of the statistical uncertainties.

Notice a different sign convention used at HERMES.

positive hadrons, the data are positive and reach up to about 3% in the valence region.

These values tend to be somewhat smaller than the ones measured by HERMES [192] at

smaller Q2 (Figs 3.10 and 3.11 ), but still compatible. A difference may originate from a

possible W dependence. However definite conclusions will be possible only when new more

precise data at high energy will become available.

Very recently new detailed data comparison separately for positive and negative pions

and positive kaons for Collins asymmetry (Fig 3.12) and for positive pions and kaons for

Sivers asymmetry (Fig 3.13) has been showed by HERMES [205].

In addition the difference between positive and negative pions observed for Sivers effect

are shown in the lower row of Fig. 3.13. Note that the sign convention used in HERMES

analysis of Collins effect is opposite to the COMPASS one. The ”UT” notation used in

description of the axis in Figs 3.12 and 3.13 is discussed in the next section.

The very preliminary results of the Sivers asymmetry from JLAB HALL A Collaboration

measured on the neutron target have been recently reported [194]. New precise data are

anticipated from JLAB also after the 12 GeV upgrade, see e.g. [195].
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Figure 3.13: COMPASS and HERMES proton data for the Sivers asymmetry versus x, z and phT .

The plot are taken from [205]. The error bars indicate the size of the statistical uncertainties.

3.2 Catalogue of twist-2 parton distribution functions

The description of the nucleon structure in terms of number, helicity and transversity PDFs

gives a one-dimensional characteristic of the nucleon - the longitudinal motion of the partons

or equivalent - the parton’s momentum distributions along the light-cone direction singled

out by hard scale momentum flow in the process, e.g. the virtual photon in DIS. A fast

moving nucleon is Lorentz-contracted but its transverse size is still large ( 1 fm) compared

with the strong interaction scale. The questions how quarks/gluons are spatially distributed

or more importantly for the study of nucleon spin study - do they orbit and carry orbital

momentum cannot be answered within an one-dimensional description. Nucleon tomography

or 3D-imaging of the nucleon is possible beyond the collinear approximation. The spatial

distributions of the partons in the transverse plane are included in GPDs (Generalized Par-

ton Distributions) while TMD PDFs (Transverse Momentum Dependent PDFs) incorporate

the momentum distributions in the transverse plane in the description. Complementary

information from TMDs and GPDs leads to a full 3D description of the nucleon internal

structure. The GPDs precise measurement is still a question of future (see e.g. [42, 40]

however first results from study Deeply Virtual Compton Scattering (DVCS) have been al-

ready published, e.g.[33]-[39]. The Sivers function, presented in the previous section, is an

example of a TMD distribution. To situate the TMDs in a general scheme which allows to
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describe nucleon internal structure it is convenient to come back to the so-called Wigner

function, originally introduced by E. Wigner in 1933 on the ground of Quantum Mechanics.

The Wigner function defined as follows:

W (x, p) =

∫
Ψ∗(x− η/2)Ψ(x+ η/2)eipηdη, (3.13)

when integrated over x(p) describes the momentum (probability) distribution. The Wigner

function contains all information and any dynamical variable can be calculated as follows

〈O(x, p)〉 =

∫
O(x, p)W (x, p)dxdp. (3.14)

The Wigner function is in general not necessarily positive, although it is well-defined in the

classical limit. A similar concept has been introduced in [196] where the Wigner distribution

operator for quarks is defined in QCD as:

ŴΓ(~r, k) =

∫
Ψ̄(r − η/2)ΓΨ(r + η/2)eikηd4η, (3.15)

where ~r is the quark phase-space position and k the phase-space four-momentum. Γ is the

Dirac matrix defining the types of quark densities and Ψ is a gauge-invariant quark field

(with gauge link, see [196]). The ŴΓ is a gauge invariant but depends on the choice of gauge

vector η. The Wigner distribution can then be defined as the expectation value of ŴΓ in the

hadron states. Wigner distribution following this definition leads to TMDs after integrating

over r. After integrating over k one gets the Fourier transform of GPDs.

A more general Wigner-type distribution, obeying also off-diagonal (non-forward) ma-

trix elements has been considered recently in [27]. The Generalized Parton Correlation

Function (GPCF) parameterizes the fully unintegrated off-diagonal quark-quark correlator.

The GPCF depends on the four-momentum k of the quark and on the four-momentum ∆

(skeweness parameter) which is transferred by the probe to the hadron. The classification of

Wigner-type distributions is also discussed in [197, 198]. After integrating the GPCF over

light-cone energy of the quark one obtains the Generalized Transverse Momentum Parton

Distributions (GTMDs) which contain the most general one-body information of partons,

corresponding to the full one-quark density matrix in momentum space [27]. As presented

in Fig. 3.14 the GTMDs reduce to different parton distributions and form factors. The dif-

ferent arrows in this figure represent particular projections in hadron and quark momentum

space and give the links between the matrix elements of different reduced density matrices.

At leading twist there are sixteen complex GTMDs. In the forward limit ∆ = 0 they re-

duce to the eight TMDs depending on the longitudinal momentum fraction ~k⊥ of quarks.

They therefore give access to the three-dimensional picture of the nucleon in momentum
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Figure 3.14: Representation of the projections of the GTMDs into parton distributions and form

factors. The arrows correspond to different reductions in hadron and quark momentum space: the

solid (red) arrows give the forward limit in the hadron momentum; the dotted (black) arrows corre-

spond to the integration over the quark transverse momenta and the dashed (blue) arrows project

out the longitudinal momentum of quarks. The figure is reproduced from [27]. Here FF denotes

form factors, TMFF - transverse momentum dependent form factor, TMSD - transverse momentum

spin densities, PDF - parton distribution functions, GPD - generalized parton distributions.
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space. Integration of the GTMDs over ~k⊥ leads to eight GPDs taken at zero limit in the

skewness parameter. After Fourier Transformation of ~∆⊥ to impact parameter space they

provide a three-dimensional picture of the nucleon in the mixed coordinate-momentum space

[199, 30, 200]. There is also another reduction of GTMDs which leads to the third three-

dimesional distribution defined in the mixed coordinate-momentum space. It depends on

e.g. the longitudinal momentum in z, transverse momentum in x and impact parameter in

y directions, respectively. Since x and y coordinates commutes the measurement of these

coordinates is not restricted by the Heisenberg principle. Due to the Wilson gauge links

in the gauge-independent definitions of the TMDs and GPDs there is no direct connection

(e.g.via Fourier transforms) between TMDs and GPDS [27].

The eight leading-twist TMDs for the nucleon can be defined in terms of the unintegrated

quark-quark correlator, similar to the Wigner distribution Eq. (3.15):

Ŵ (x,~k⊥, ~S)η =

∫
eikz < ~P , ~S|Ψ̄(0)Wη(0, z)Ψ(z)[~P , ~S| > |z+=0

dz−d2z⊥
(2π)3

. (3.16)

The gauge link operator Wη(0, z) (”hidden” in definition of Ψ in Eq. (3.15) ensures color

gauge-invariance of the matrix element and depends on the path. The factorization theorem

gives the prescription along which path the position of 0 and z of the quark field have to

be connected and the η dependence reflects the dependence on the process. The light-cone

coordinates are defined by aµ = (a−, a+,~a⊥) with a± = 1√
2
(a0 ± a3). The leading-twist

TMDs are related to the large + component of the nucleon momentum and parameterize

the following Dirac structures:

1

2
Tr(γ+Ŵ (x,~k⊥, ~S) = f1(x,~k⊥)− εjkkj⊥S

k
T

M
f⊥1T (x,~k⊥), (3.17)

1

2
Tr(γ+γ5Ŵ (x,~k⊥, ~S) = SLg1L(x,~k⊥) +

~k⊥~ST
M

g1T (x,~k⊥), (3.18)

1

2
Tr(iσj+γ5Ŵ (x,~k⊥, ~S) = SjTh1(x,~k⊥) + SL

kj⊥
M
h⊥1L(x,~k⊥) (3.19)

+
(kj⊥k

k
⊥ − 1

2
~k2
⊥)SkT

M2
h⊥1T (x,~k⊥) +

εjkkk⊥
M

h⊥1 (x,~k⊥). (3.20)

Here, the η dependence is omitted for notational simplicity. The TMDs of antiquarks and

gluons are defined analogously and the notation used follows so-called ”Amsterdam” notation

[189, 201]. This notation is slightly different from the notation used in the previous section

and in the COMPASS publications [25, 26, 191]. The Sivers function ∆⊥0 q(x, p
h
T /z) discussed

in Eqs 3.12 and 3.7 is equal to:

∆⊥0 q(x, p
h
T /z) = −2

k⊥
M
f⊥1T (x,~k⊥). (3.21)
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Also q(x,~k⊥) introduced for quarks is here replaced by more general notation for parton dis-

tribution f1(x,~k⊥). A detailed review of the different notations can be found in [202]. The

Dirac γ+ structure describes unpolarised quarks inside an unpolarised nucleon (f1(x,~k⊥)) and

unpolarised quarks inside a transversely polarised nucleon (Sivers function f⊥1T ). The Dirac

γ+γ+ structure singles out longitudinally polarised quarks in a longitudinally polarised nu-

cleon (g1L(x,~k⊥) or in a transversely polarised nucleon (g1T (x,~k⊥), first worm-gear function).

The structure σj+γ5 selects transversely polarised quarks inside a transversely polarised nu-

cleon (h1(x,~k⊥) and h⊥1T pretzelosity function), or in a longitudinally polarised nucleon (h⊥1L,

second worm gear function) and inside an unpolarised nucleon (h⊥1 , Boer-Mulders function).

Integration of f1(x,~k⊥) over ~k⊥ leads to the usual unpolarised PDF measured in DIS for

quarks and gluons. The unintegrated helicity distribution g1L(x,~k⊥) of quarks and gluons

after integrating over ~k⊥ leads to the helicty distributions ∆q(∆G) determined from the

measurement of double spin longitudinal asymmetry. The analog of the helicity distribution

for transversely polarised target is denoted as h1(x,~k⊥). After integration over ~k⊥ one gets

transversity ∆q⊥. The only three independent PDFs, f1, g1L and h1, survive in the collinear

limit, ~k⊥ → 0 and transverse momentum integration.

The Sivers asymmetry has been discussed in the previous section. Since the Sivers func-

tion f⊥1T plays a crucial role in the understanding of the nucleon structure and its non-zero

value is a clear indication of parton orbital motion it will be again discussed in chapter 7,

where OAM is discussed. The Sivers function together with the Boer-Mulders function h⊥1
can be related to the deformation of the parton (quark) distribution in the transverse plane

as predicted by some models and Lattice QCD calculations. This very interesting concept

and its consequences in the nucleon description is also discussed in the chapter 7. Both func-

tions are not strictly universal - they depend on the process. The Sivers and Boer-Mulders

functions measured in SIDIS should change sign if they are measured in Drell-Yann (DY)

process [201]. QCD interactions play a very nontrivial role in both effects (chromodynamic

lensing) and they differ in different processes (final state interactions in SIDIS and initial

state interactions in DY case). The concept of chromodynamic lensing is also presented

in chapter 7. Future DY experiments aim to the QCD prediction of a sign change for the

Sivers and Boer-Mulders function [40, 42, 203]. This test requires also better precision of

the corresponding measurements in SIDIS.

The remaining TMDs: g1T (x,~k⊥),h⊥1L(x,~k⊥) and h⊥1T (x,~k⊥) are related to double spin

correlations in the PDFs. Neglecting higher-twist terms approximate relationships with

other TMDs can be obtained [204]. A similar correlation between spin and transverse motion

can appear in the fragmentation process of a transversely polarised quark. The Collins

fragmentation function was shortly discussed in the previous section. The effect is well-
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Figure 3.15: Azimuthal angles for SIDIS in the target rest frame [190].

establish and its chiral-odd nature allows one to measure the transversity distribution and

the Boer-Mulders function in SIDIS processes.

The main source of information about TMDs are SIDIS experiments where at least one

hadron is registered in addition to the scattered lepton. In this case the observed hadron

preserves part of the original motion of scattered quark, including the transverse one. In the

one-photon exchange approximation the unintegrated SIDIS cross section for unpolarised

hadron production can be decomposed as follows:

dσ

dxdyddφSdφhdzhdP 2
hT

=
e4

32π2xQ2

y

1− ε

(
1 +

γ2

2x

){
FUU,T + ε FUU,L + ε cos(2φh)F

cos2φh
UU

+
√

2ε(1− ε)
(
cosφhF

cosφh
UU + hlsinφhF

sinφh
LU

)
+ S‖

[√
2ε(1 + ε)sinφhF

sinφh
UL + ε sin(2φh)F

sin2φh
UL

]
+ S‖hl

[√
1− ε2FLL +

√
2ε(1− ε)cosφhF cosφh

LL

]
+ |S⊥|

[
sin(φh − φS)

(
F
sin(φh−φS)
UT,T + ε F

sin(φh−φS)
UT,L

)
+ ε sin(3φh − φS)F

sin(3φh−φS)
UT + ε sin(φh + φS)F

sin(φh+φS)
UT

+
√

2ε(1 + ε)
(
sinφSF

sinφS
UT + sin(2φh − φS)F

sin(2φh−φS)
UT

) ]
+ |S⊥|hl

[√
1− ε2cos(φh − φS)F

cos(φh−φS)
LT

+
√

2ε(1− ε)
(
cosφSF

cosφS
LT + cos(2φh − φS)F

cos(2φh−φS)
LT

)]}
,

(3.22)

following the notation of Ref. [190], where ε is a ratio of longitudinal and transverse photon
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flux:

ε = DNN =
1− y − 1

4
y2γ2

1− y − 1
2
y2 + 1

4
y2γ2

, (3.23)

with γ = 2Mx
Q

and
√

1− ε2 is equal to the longitudinal depolarization factor D (up to

correction for FL, and R)), c.f. Eq. (2.35). All lepton mass corrections are neglected in

Eqs (3.22) and (3.23). The first and second subscripts of the above structure functions F

indicate the respective polarisation of beam and target, whereas the third subscript in FUU,T ,

FUU,L,F
sin(φh−φS)
UT,T and F

sin(φh−φS)
UT,L specifies the polarisation of the virtual photon. S‖ denotes

longitudinal target polarisation and hl is the lepton helicity. Definitions of angles are given

in Fig. 3.15. It is a matter of simple algebra to obtain the Collins and Sivers asymmetries

given in Eq. (3.9), from the Eq. (3.22) by selecting transverse polarisation and neglecting all

terms except FUU,T , F
sin(φh−φS)
UT,T and F

sin(φh+φS)
UT .

Measuring the structure functions F ’s in Eq. (3.22) allows one to obtain the information

on all eight leading TMDs:

FUU,T ∼
∑
q

e2
q · f

q
1 ⊗Dh

q , F
cos(φh−φS)
LT ∼

∑
q

e2
q · g

q
1T ⊗D

h
q , (3.24)

FLL ∼
∑
q

e2
q · g

q
1L ⊗D

h
q , F

sin(φh−φS)
UT,T ∼

∑
q

e2
q · f

⊥q
1T ⊗D

h
q , (3.25)

F cos2φh
UU ∼

∑
q

e2
q · h

⊥q
1 ⊗H

⊥q
1 , F

sin(φh+φS)
UT ∼

∑
q

e2
q · h

q
1 ⊗H

⊥q
1 , (3.26)

F sin2φh
UL ∼

∑
q

e2
q · h

⊥q
1L ⊗H

⊥q
1 , F

sin(3φh−φS)
UT ∼

∑
q

e2
q · h

⊥q
1T ⊗H

⊥q
1 . (3.27)

H⊥q1 denotes Collins T -odd fragmentation function. 3. Integration of Eq. (3.22) over the

transverse momentum ~PhT of the outgoing hadron gives the SIDIS cross section in terms

of kinematic factors and five structure functions: FUU,T , FUU,L, FLL, F cosφS
LT and F sinφS

UT

now integrated over ~PhT . The next integration over the energy of the hadron zh leads -

after the summation over all hadrons in the final state - to the inclusive DIS cross section,

parameterized by four structure functions: FUU,T , FUU,L, FLL and F cosφSLT [190]:

dσ

dxdydφS
=

e4

32π2xQ2

y

1− ε

{
FUU,T + ε FUU,L|

+ S‖hl
√

1− ε2FLL + |S⊥|hl
√

2ε(1− ε)cosφSF cosφSLT ,
}
,

(3.28)

3Collins T -odd fragmentation function was previously denoted as ∆0
TD

h
q (z, phT ) in Eq. (3.3), where the

notation from COMPASS publications are used.
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The functions FUU,T , FUU,L, FLL and F cosφSLT are expressed in terms of the standard inclusive

structure functions F1, F2, g1 and g2, (c.f. chapter 2 ):

FUU,T =
∑
h

∫
dzhdP

2
hT zFUU,T = 2xF1(x,Q2),

FUU,L =
∑
h

∫
dzhdP

2
hT zFUU,L = (1 + γ2)F2(x,Q2)− 2xF1(x,Q2) ≡ FL(x,Q2),

FLL =
∑
h

∫
dzhdP

2
hT zFLL = 2x(g1(x,Q2)− γ2g2(x,Q2),

F cosφSLT =
∑
h

∫
dzhdP

2
hT zF

cosφS
LT = −2xγ(g1(x,Q2) + g2(x,Q2)),

∑
h

∫
dzhdP

2
hT zF

sinφS
UT = 0.

(3.29)

Eq. (3.28) corresponds to Eq. (2.16) and Eqs (2.18) and (2.19) (up to lepton mass corrections,

φS ≈ φ) however the g1 and g2 structure functions used to parameterize FLL and F cosφSLT in

Eq. (3.29) (following [190]) differ from the ones introduced in Eq (2.14). In the DIS limit,

γ → 0, g1 is the same while g2 is differently defined. The function F sinφS
UT vanishes when

integrated because of time-reversal invariance, c.f. Eq. (3.29).

3.3 Summary of the TMDs and transverse spin struc-

ture of the nucleon

The eight leading TMD parton distribution functions are given in Table 3.1. U ,L and T

correspond to Unpolarised, Longitudinaly polarised and Transversely polarised quarks (rows)

and nucleons (columns). As it was mentioned earlier to have a gauge invariant definition

Table 3.1: Leading twist TMDs.

Uq Lq Tq

UN f1 h⊥1
LN g1L h⊥1L
TN f⊥1T g1T h1, h⊥1T

of TMD the gauge link (Wilson line) has to be inserted between quark fields. This is not

specific for TMDs only but two features are unique in the case of TMDs: some of the TMDs
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are non-zero only because of the presence of the Wilson line (e.g. Sivers and Boer-Mulders)

and the Wilson line depends on the process which leads to non-trivial universality (Sivers

versus Boer-Mulders TMDs). TMDs are potentially related to the OAM, Lz, which may play

an important role in the nucleon spin decomposition. Model calculations have shown that

the leading TMDs f⊥q1T , gq1T , h⊥q1 , h⊥q1L , h⊥q1T and many sub-leading ones would vanish if they

were not different components in the nucleon wave function with ∆Lz 6= 0. Unfortunately a

rigorous connection between TMDs and the OAM contribution to the nucleon spin has not

been established so far.

Factorization is an important aspect of the TMDs ([205] and references therein). For

SIDIS (with one hadron observed in the final state) and for DY processes as well as back-

to-back hadron or jet production in e+e− annihilation the factorization seems to be hold.

For hadro-production of back-to-back hadrons or jets factorization has been shown to fail

[206]-[210]. Since for many TMDs the leading part is small or zero and the sub-leading

terms can potentially be important measurement of TMDs gives an opportunity to test

factorization and very non-trivial QCD predictions. From an experimental point of view

their measurement is still a challenge.

The experimental results presented in section 3.1 can be summarize as follows:

• The Collins asymmetry measured on proton targets is sizable for both positive and

negative hadrons. The COMPASS and HERMES results agree well.

• A non-zero Sivers asymmetry is seen for positive hadrons, which persists to rather

small x values.

• A possible W dependence of this asymmetry might be suggested by data, but the

present statistical and systematic uncertainties do not allow definite conclusions.

• The Collins and Sivers results on deuteron targets are compatible with zero. This

combined with non-zero proton results suggests a cancellation between u and d quarks.

The observation of the non-zero Sivers asymmetry suggests the presence of the OAM. As the

non-zero OAM is generated by QCD evolution the important role of the OAM is expected

in the nucleon spin decomposition.

Most of the transverse polarisation dependent asymmetries and TMDs are very small or

compatible with zero. Therefore the understanding of the large (up to 40%) transverse Single-

Spin Asymmetry (SSA) for polarised (anti)proton - proton collision observed by Fermilab

experiment [18] and confirmed by RHIC experiments STAR [19], PHENIX [20] and BRAHMS

[21] is still difficult on the QCD ground [211].



Chapter 4

COMPASS experimental set-up

The next two chapters of this thesis are dedicated to the direct measurement of the gluon

polarisation at COMPASS experiment. Therefore a short description of the COMPASS

beam line, spectrometer and polarised target is given in the present chapter.

The COMPASS spectrometer is a fixed target set-up situated at the M2 beam line of

the CERN SPS using muon or hadron beams. For the measurements discussed in this thesis

a longitudinally polarised positive muons of 160 GeV momentum were scattered off a large

polarised solid state target. A detailed description of the set-up can be found in Ref. [56].

The muons originate from the weak decay of 175 GeV pions and kaons produced by the

400 GeV SPS proton beam impinging on a primary beryllium target and are thus naturally

polarised. The beam polarisation, Pµ, is about 0.8 at 160 GeV with a relative uncertainty of

5% [212]. In Fig. 4.1 the muon beam polarisation is presented as a function of its momentum.

A beam intensity of about 4 · 107 muons/s was used, with the spill length between 4.8 s and

9.6 s for SPS cycles between 16.8 s and 48 s, respectively. The beam is focused onto the

target centre with a spread of 7 mm (r.m.s.) and a momentum spread of 5% for the Gaussian

core. The momentum of each incoming muon is measured with a precision better than 1%

upstream of the experimental hall using a beam momentum station. Before the target the

trajectory of each beam particle is determined using a set of scintillating fibres and silicon

detectors with an angular precision of 30 µrad. The solid state target is housed in a large

superconducting solenoid providing a field of 2.5 Tm with a field uniformity, δB/B, better

than 10−4. From 2002 to 2004 the angular acceptance was ±69 mrad at the upstream edge

and ±170 mrad at the downstream edge of the target material. From 2006 onwards an

upgraded target magnet with a new large aperture solenoid was used. It yields an angular

acceptance of ±180 mrad for the upstream target edge resulting in a much improved hadron

acceptance and matching the ±180 mrad acceptance of the spectrometer.
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Figure 4.1: The muon beam polarisation (absolute value) as a function of the central muon

momentum, assuming a central pion momentum 172 GeV.

The target material consisted of 6LiD beads in 2002 to 2006 and NH3 beads in 2007,

in a bath of 3He/4He. The target was cooled down to a temperature below 100 mK by a
3He–4He dilution refrigerator. The target polarisation was accomplished using the method of

dynamical nuclear polarisation (DNP) and was measured continuously by a set of NMR coils

surrounding the target material. The achieved polarisation, Pt, was about 0.5 for deuterons

(6LiD) and 0.9 for protons (NH3) with a relative uncertainty of 5% and 2%, respectively.

Corrections are applied to account for the polarisation of the 6Linucleus in 6LiD and of the
14N nucleus in NH3.

In 2002 to 2004 the target material was contained into two 60 cm long cells and polarised

in opposite directions. The polarisation was reversed 3 times a day by rotating the field of

the target magnet. From 2006 onwards a three cell target set-up was used with a central

60 cm long cell placed between two 30 cm long ones. The central cell was polarised oppositely

to the outer ones. The use of this new target arrangement allows a further reduction of the

systematic uncertainty due to the variation of the spectrometer acceptance along the target;

thus only one field rotation per day had to be performed. In order to minimise possible

acceptance effects related to the orientation of the solenoid field, the sign of the polarisation

in each target cell was also reversed several times per year by changing the DNP microwave

frequencies.

As not all nucleons in the target material are polarised the so-called dilution factor, f , is

introduced. It is expressed in terms of the number nA of nuclei with mass number A and the

corresponding total (i.e. including radiative effects) spin–independent cross sections, σtot
A ,
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per nucleon for all the elements involved:

fH,D =
nH,D · σtot

H,D

ΣAnA · σtot
A

. (4.1)

The dilution factor is modified by a correction factor ρ = σ1γ
p,d/σ

tot
p,d accounting for the dilution

due to radiative events on unpolarised protons (deuterons) [213]. Two more corrections are

applied for the 6LiD target: first accounting for the relative polarisation of deuterons bound

in 6Li compared to free deuterons, second a correction factor (1 − 3/2ωD) where ωD is the

probability for a deuteron to be in a D–state (ωD = 0.05 ± 0.01) [121] are applied. For the
14NH3 material the dilution factor contains a correction for the polarisation of the admixture

of 15N to 14N.

The dilution factor depends on Bjorken x. At low x it is higher for events containing

hadrons in the final state due to the absence of radiative elastic tails. Its values at medium

x for 6LiD and NH3 are about 0.37 and 0.14, respectively, with relative uncertainties of 2%

and 1% for those two materials.

The two stages of the COMPASS set–up are open dipole spectrometers for large and

small angle tracks, respectively. The schematic view of the COMPASS spectrometers is

shown in Fig. 4.2 for 2004 configuration. Each dipole is surrounded by tracking detectors.

COMPASS uses various types of them in order to match the expected particle flux at various

locations in the spectrometer. In high-flux regions close to the beam, tracking is provided by

arrays of scintillating fibers, silicon detectors, micromesh gaseous chambers and gas electron

multiplier chambers. Further away from the beam, larger-area tracking devices as multiwire

proportional chambers, drift chambers and straw detectors are used. In 2006 the tracking

system in the first stage of the spectrometer was adapted to match the increased aperture

of the superconducting solenoid. Muons are identified in large area tracking detectors and

scintillators downstream of concrete or iron muon filters. Hadrons are detected by two

scintillator–iron sandwich calorimeters installed in front of the muon filters. Electromagnetic

lead glass calorimeters are placed in front of the hadron ones. The data recording system is

activated by triggers indicating the presence of a scattered muon and/or energy deposited

by hadrons in the calorimeters. Both inclusive and semi–inclusive triggers were used. In the

former the scattered muon is identified by coincident signals in the trigger hodoscopes and

in the latter, the energy deposited in calorimeters was demanded in addition. Moreover a

calorimetric trigger with a high energy threshold is implemented to extend the acceptance.

To suppress triggers due to halo muons, veto counters upstream of the target are used.

COMPASS trigger system covers a wide range of Q2, from quasi-real photoproduction to

deep inelastic region.
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For charged particle identification in the first stage of the set–up a Ring Imaging

Cherenkov detector (RICH) is installed [214]. It is a gas RICH with a 3 m long C4F10

radiator. Two spherical mirror surfaces reflect and focus the Cherenkov photons on two

sets of detectors above and below the acceptance of the tracking detectors respectively. The

photon detection utilises MWPCs with segmented CsI photocathodes which detect photons

in the UV region. In 2006 the central part of the RICH was upgraded replacing the MWPCs

by multianode photomultiplier tubes yielding a considerably higher number of detected pho-

tons and a much faster response. For the outer parts the readout electronics was refurbished

allowing a significant reduction of the background.

The particle identification procedure relies on a likelihood function constructed with

the photons detected in the RICH and associated with a charged particle trajectory. The

likelihood function uses the photons of the signal and a theoretical expectation of their

distribution, taking into account possible signal losses due to dead zones in the detector. The

description of the background photons, is taken from the photon detectors occupancy in the

data. For each track the likelihood value is computed for different mass and the background

hypotheses. Identification of a pion (kaon) is possible for their momenta between 2.5 GeV

(9 GeV) and 50 GeV.

The performance of the detectors as well as the stability of the reconstructed data was

carefully monitored and all spills not fulfilling stability requirements were excluded from the

further analysis. Time intervals used for asymmetry measurements correspond to periods of

stable spectrometer performance. The data taking amounted in total to 48 weeks in 2002 to

2007.



Chapter 5

Open-charm analysis with an

Artificial Neural Network

Precision DIS data show that there is the deficit between the spin of the nucleon and the total

spin carried by quark spins. By now, the contribution of the quark helicities to the nucleon

spin is known to be about 30%, significantly smaller than the value of 60% expected from the

Ellis–Jaffe sum rule. A large value for the gluon polarisation and the role of the anomaly is

a natural solution of this problem in the QCD improved QPM. As discussed in [122, 123] the

lack of twist-2, gauge invariant, local gluonic operators in OPE causes problem in defining

the gluon helicity distribution. This problem was discussed in chapter 2 in section 2.2.2

in detail. In spite of the ongoing theoretical debate on how to correctly decompose of the

nucleon spin in gauge-invariant way [64], agreement exists that besides the quark helicities

also the gluon helicity contribution ∆G is a measurable, gauge-invariant observable.

Indirect gluon polarisation measurements based on QCD evolution suggest a rather small

value of ∆G [46]. Direct determinations of the average gluon polarisation in a limited range

of x, were performed in a model-dependent way using the PGF process by SMC [215],

HERMES [216, 217] and COMPASS [218]. These analyses used events containing hadrons

or hadron pairs with high transverse momenta, pT (typically 1 to 2 GeV), defined with

respect to the virtual photon direction. This method provides good statistical precision but

strongly relies on Monte Carlo generators simulating QCD processes.

Chapter 6 details the COMPASS high-pT analysis for Q2 > 1 GeV2 events to determine

the gluon polarisation. All these measurements indicate a small value of the gluon polari-

sation at x ≈ 0.1. This is consistent with recent results from PHENIX [12] and STAR [11]

at RHIC where the production of inclusive π0 or high transverse momentum jets constrain

∆G (e.g. in QCD fits [46].
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In this chapter a new result on ∆G obtained from charm production, tagged by D meson

decays in 160 GeV polarised muon-nucleon scattering is presented. The data were collected

by the COMPASS Collaboration at CERN in the 2002–2004 and 2006–2007 running periods.

This result supersedes the one given in [219] since it is based on the full data sample and

an improved analysis method that make use of Artificial Neural Network (ANN). Compared

to the data sample used in [219], additional final state channels have been used. The gluon

polarisation is determined assuming that open-charm production is dominated by the PGF

mechanism, γ∗g → cc̄, shown in Fig. 5.1. The subsequent fragmentation of the cc̄ pair,

mainly into D mesons, is assumed to be spin-independent1.

The dominance of the PGF mechanism in the COMPASS kinematic region is supported

by the EMC results on F cc̄
2 [220], further discussed in [221], and by a COMPASS study of

charm meson production [222]. The gluon polarisation determined with this assumption

has the advantage that, in lowest order of the strong coupling constant, there are no other

contributions to the cross-section. However, it is statistically limited. Next-to-leading order

QCD calculations for determination of the gluon polarisation have been employed for the

first time in this analysis.

The corrections to the PGF processes account at NLO precision. There is also a new class

of the processes originating from light quarks. These processes contribute to the observed

signal (D meson production) but they do not probe gluons. Therefore the determination

of the gluon polarisation in NLO analysis requires to correct for these unwanted processes.

Fortunately, the contribution from light-quark production processes is small. The PGF-like

mechanism of open-charm production dominates in in the COMPASS kinematic region, even

in NLO approximation.

Since the PGF process is dominated by quasi-real photoproduction (Q2 → 0), the per-

turbative scale for the selected events, µ2, cannot be taken to be Q2, as is done in the QCD

analyses of the inclusive data. It is chosen to be the transverse mass of the charmed quarks,

µ2 ≡ 4M2
T = 4(m2

c + p2
T), where pT, the D meson transverse momentum, is defined with

respect to the virtual photon.

In the present analysis only one charmed meson is required in every event. This meson

is selected through its decay into one of the following channels: D∗(2010)+ → D0π+
slow →

(K−π+/K−π+π0/K−π+π+π−)π+
slow and D0 → K−π+ as well as their charge conjugates. The

former sample is called the tagged one while the latter is the untagged. Virtual photon cross

section asymmetries, Aγ
∗N→D0X, and the average gluon polarisation ∆G/G are extracted

from these open charm events.

1The potential dependence on spin in the fragmentation process is discussed in section 5.5 in the context

of the observed asymmetry between D0 and D̄0 meson production.
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Figure 5.1: Photon–Gluon Fusion into a pair of charm quarks, cc̄. Symbols in parentheses are

four–vectors.

This chapter is organized as follows. In section 5.1 the double-spin asymmetry for D

meson production events is defined and expressed in terms of the gluon polarisation and

analysing power in LO QCD approximation. In section 5.2 the data selection is reported in

detail. This is followed by the description of the analysis method, section 5.3. In this section

the experimental asymmetry determination, the ANN method of the parameterization of

the signal purity and the calculations and parameterization with ANN of the analysing

power are discussed. Results for the gluon polarisation at LO accuracy and the asymmetry

measurement are presented in sections: 5.4.1 and 5.4.2. The NLO corrections and their

application to the COMPASS analysis and the result of the gluon polarisation at NLO

accuracy are discussed in section 5.4.3. The potential influence of the observed asymmetry

between D0 and D̄0 meson production on the gluon polarisation determination is discussed

in section 5.5.

5.1 Spin cross section asymmetry for D meson

production

The longitudinal double-spin cross section asymmetry for D0 (D̄0) meson production events

is defined as:

AµN→µ
′D0X ≡ ∆dσ

2dσ̄
=
dσ
→⇐ − dσ

→⇒

dσ
→⇐ + dσ

→⇒
, (5.1)
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where the arrows indicate the relative beam (→) and target (⇒) spin orientations. As shown

below, information on the gluon polarisation, ∆G/G is contained in this asymmetry.

The differential cross section for D0 meson production, dσ, can be decomposed (see

appendix 9.1) as 2:

dσ = G⊗ dσ̂ ⊗H, (5.2)

and similarly for the spin-dependent part of the cross section, d∆σ:

d∆σ = ∆G⊗ d∆σ̂ ⊗H, (5.3)

where for simplicity all kinematic variable dependencies are omitted in the notation and ⊗
denotes the convolution integrals as in Eq. (2.44).

In LO dσ̂ and d∆σ̂ are spin averaged and spin dependent partonic cross sections for µg →
µ′cc̄ reaction. The polarisation averaged and polarisation dependent gluon PDFs are denoted

as G and ∆G, respectively. The cc̄ quark pair produced in the PGF process fragments into

charmed hadrons (mainly D mesons). The fragmentation function H is assumed to be spin-

independent. The assumption of single-hadron independent fragmentation is not needed.

H describes fragmentation of one of the charm quarks into a D meson and any number

of unobserved hadrons (including second charmed meson). In particular the Lund string

hadronization model [223], used in many Monte-Carlo generators, is described by H.

The spin-dependent cross section d∆σ is equal to:

d∆σ =
∆G

G
G⊗ aLLdσ̂ ⊗H. (5.4)

The analysing power, aLL, is defined as a partonic level asymmetry of the differential cross

sections (polarisation dependent and polarisation averaged) for the µg → µ′cc̄ reaction is

given:

aLL =
d∆σ̂

dσ̂
. (5.5)

With the help of Eqs (5.2) and (5.4) the asymmetry AµN→µ
′D0X can be decomposed as:

AµN→µ
′D0X =

〈
∆G

G
aLL

〉
=

〈
∆G

G

〉
aLL

〈aLL〉 , (5.6)

where the averaging procedure is defined as follows:

〈aLL〉 ≡
aLL G⊗ dσ̂ ⊗H
G⊗ dσ̂ ⊗H

,

〈
∆G

G

〉
aLL

=
∆G/G aLLG⊗ dσ̂ ⊗H

aLLG⊗ dσ̂ ⊗H
. (5.7)

2The cross sections for D0 and D̄0 meson production are identical since PGF processes are symmetric in

c and c̄.
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The formulae for LO cross sections corresponding to µg → µ′cc̄ process can be found

in [224] and [225]. These cross sections, dσ̂ and d∆σ̂, expressed in terms of Mandelstam

kinematical variables ŝ, t̂ and û are 3.

dσ̂ =
α2e2

qαs

xQ2(ŝ+Q2)2

{[
2(1− y) + y2

(
1− 2m2

l

Q2

)] [
Q4 + ŝ2

(ŝ+Q2)2

ũ2 + t̃2

2 ũ t̃
+ (5.8)

2m2

ũ t̃

(
ŝ−Q2 +

Q2(ŝ+Q2)2

2 ũ t̃

)
− 2m4(ŝ+Q2)2

ũ2t̃2

]
+ 8(1− y)Q2

[
ŝ

(ŝ+Q2)2
− m2

ũ t̃

]}
,

and

d∆σ̂ =
α2e2

qαs

xQ2(ŝ+Q2)2
y

(
2− y − 2y2m2

l

Q2

)
ũ2 + t̃2

2 ũ t̃

[
Q2 − ŝ
ŝ+Q2

+
2m2(ŝ+Q2)

ũ t̃

]
, (5.9)

where: t̃ = m2 − t̂, ũ = m2 − û, m is a mass of charm quark, ml stands for the lepton

(muon) mass, α and αs are electromagnetic and strong coupling constants, and eq is the

quark charge (2/3 for charm quarks). Terms proportional to the muon mass and the ratio

of Q and the incident muon beam energy were neglected in Eqs (5.9) and (5.9) in view of

their size.

The analysing power of the µg → µ′cc̄ process includes the depolarisation factor D,(comp.

Eq. (2.35)), accounting for the polarisation transfer from the lepton to the virtual photon:

D =
y
(

2− y − 2y2m2
l

Q2

)
y2
(

1− 2m2
l

Q2

)
+ 2(1− y)

, (5.10)

Strictly speaking the factorization of the D from aLL is possible only in the photo-production

limit, Q2 = 0. The analysing power for virtual PGF, γ∗g → cc̄, can be defined as âLL = aLL

D
.

The muon-gluon analysing power aLL, depends on the partonic kinematics ŝ and t̂. This

partonic asymmetry is not accessible experimentally on an event by event basis 4. It is

obtained using a Monte Carlo generator. In order to use the generated values of aLL in

real data, an ANN is used to parameterise it in terms of measured kinematic variables, here

3The partonic cross sections presented here are integrated over azimuthal angles of the quarks; the non-

integrated formulae can be found in [225]. In the open-charm analysis the azimuthal angle dependent parts

of the cross section are small and they are averaged to zero thanks to the symmetric acceptance.
4The only one D meson is reconstructed in COMPASS data analysis. The reconstruction of both charmed

particles in the final state could help to reconstruct the partonic kinematics, but even in this case this

reconstruction is only approximate.
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denotes with X. The resulting average aLL(X) is evaluated even-by-event for real data. For

small Q2 (the COMPASS kinematic domain, as discussed in the next section), âLL is very

weakly y-dependent. Therefore it is more convenient to parameterize âLL while D can be

determined directly from data. It is discussed in section 5.3.2. With the help of analysing

power the gluon polarisation can be determined from the D meson cross section asymmetry,

observed in the data. The result depends on the QCD approximation used in the calculations

of aLL.

The signal asymmetry AµN→µ
′D0

discussed in this section is determined from data after

the subtraction of large combinatorial background. The experimentally measured asymmetry

Ameas is a combination of two asymmetries: the signal asymmetry AµN→µ
′D0

and background

asymmetry AB. The statistical weight technique which allows one to extract the signal and

the background asymmetry from data is described in section 5.3.

5.2 Data selection

In order to extract information about the gluon polarisation, events with D mesons have to

be selected from the data. To this aim, events containing an incoming and outgoing muon,

together with at least two outgoing charged tracks were considered. Further, only events

with a beam track potentially crossing the entire target and with an interaction point (or

‘vertex’) within the target were retained.

The direction of the tracks reconstructed at the vertex is determined with a precision

better than 0.2 mrad and the momentum resolution for charged tracks detected in the first

stage of the spectrometer is about 1.2% whereas it is about 0.5% in the second stage. The

longitudinal vertex resolution varies from 5 mm to 25 mm along the target and permits the as-

signment of each event to either target spin direction. The distributions of the reconstructed

vertex position zvtx along the beam axis for events remaining after the aforementioned se-

lection criteria are shown in Fig. 5.2. The relative increase of the number of events in the

upstream target cell in 2006 compare to 2004 is due to the upgrade of the target magnet.

The spatial resolution of the vertex reconstruction is not sufficient to separate the pro-

duction and decay points of charmed mesons, especially due to multiple Coulomb scattering

in the solid state target, As a result, these mesons can only be reconstructed using the in-

variant mass of their decay products. The decay modes considered in this analysis are listed

in Table 5.1. The D0 decays that involve the same set of final state particles cannot be

distinguished event by event. Therefore five independent data samples with different final

states are defined for this analysis, see Table 5.2. In the four tagged samples, i.e. D∗Kπ,

D∗Ksubπ
, D∗Kππ0 and D∗Kπππ, the D0 meson originates from a D∗ decay into a D0 meson and a
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Figure 5.2: Distribution of the reconstructed vertex positions zvtx along the beam axis for target

with two (left) and three (right) cells. Dark horizontal bars at the bottom mark the target cells,

arrows denote the target polarisation directions.

Category D0 decay mode

1 D0 3.89%−→ K−π+ + c.c.

2 D0 13.9%−→ K−π+π0 + c.c.

3 D0 10.8%−→ K−ρ+ ≈100%−→ K− (π+π0) + c.c.

4 D0 2.22%−→ K∗−π+ ≈100%−→ (K−π0) π+ + c.c.

5 D0 1.88%−→ K∗0π0 ≈100%−→ (K−π+) π0 + c.c.

6 D0 8.09%−→ K−π+π+π− + c.c.

7 D0 6.76%−→ K−π+ρ0 ≈100%−→ K−π+ (π+π−) + c.c.

Table 5.1: The charmed D0 meson decay modes, together with their branching ratios, considered

in this analysis. The charge conjugate (c.c.) final states from the D0 decays were also included.

slow pion, D∗
67.7%−→ D0πs. The kinematic selection criteria, tuned to reduce the combinatorial

background without affecting the D0 meson signal are listed in Table 5.3.

Particles are identified using the RICH detector. Using the measured momentum of a

charged particle and the distributions of Cherenkov photons, likelihood values for different
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Untagged sample Tagged samples

Sample D0
Kπ D∗Kπ D∗Ksubπ

D∗Kππ0 D∗Kπππ
Category 1 1 1 2, 3, 4, 5 6, 7

Table 5.2: Samples in the analysis. For the tagged events, the D0 originates from the decay of D∗.

The final state of the D0 decay is indicated by the subscripts.

Kinematic cut intervals

D0
Kπ D∗Kπ D∗Kππ0 D∗Ksubπ

D∗Kπππ

(M rec
Kπ −MD0) [MeV] [−400, +400] [−600, +600] [−400, +400]

| cos θ∗| < 0.65 < 0.90 < 0.85

zD0 [0.20, 0.85] [0.20, 0.85] [0.25, 0.85] [0.30, 0.85]

pK [GeV] [9.5, 50] [9.5, 50] [2.5, 9.5] [9.5, 50]

pπ [GeV] [7, 50] [2.5, 50]

∆M [MeV] —– [3.2, 8.9] [4.0, 7.5]

pπs [GeV] —– < 8

Table 5.3: List of all kinematic cuts used in this analysis. For every sample, a D0 candidate is

accepted if it fullfils all the conditions. Here ∆M = M rec
Kππs

−M rec
Kπ −Mπ, where the superscript

‘rec’ denotes the reconstructed mass.

mass hypotheses and for a background hypothesis are computed. A particle is identified as

a kaon or a pion if the likelihood value is larger than that for any other hypothesis. This

procedure is very efficient in reducing the combinatorial background of two particles other

than π and K. A full description of the identification procedure is given in [226].

The following selection criteria have been applied to obtain the final event samples.

The untagged D0
Kπ sample contains events with Kπ pairs that do not stem from decays

of reconstructed D∗ mesons and have the reconstructed invariant mass given in Table 5.3.

Due to it’s large combinatorial background this sample requires more restrictive cuts for

the identification of pion and kaon: a pion momentum above 7 GeV is required to suppress

contamination from electrons. For the four tagged samples, a D∗ meson is selected by

requiring the presence of a slow pion, pπs < 8 GeV, in addition to a D0 candidate. The

presence of the slow pions permits the application of two additional cuts. The first one

uses the RICH detector to reject electrons that mimic slow pion candidates and reduces the

combinatorial background by a factor of two. The second one is a cut on the mass difference,
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Figure 5.3: Invariant mass spectra for the D0
Kπ and D∗Kπ samples. The approximate number of D0

mesons above background is given.
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Figure 5.4: Invariant mass spectra for the D∗Kππ0 , D∗Kπππ and D∗Ksubπ
samples. The purity of the

samples was optimized using the ANN. The approximate number of D0 mesons above background

is given.
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∆M = M rec
Kππs
−M rec

Kπ −Mπ, where M rec
Kππs

and M rec
Kπ are the reconstructed masses of the D∗

and the D0 candidates, respectively. This mass difference can be measured with very good

precision and thus the cut on ∆M results in a significant reduction of the combinatorial

background in the tagged samples.

Other kinematic cuts were applied to all samples in addition to the cuts described above.

It was demanded that |cosθ∗| < 0.9 for the tagged samples, |cosθ∗| < 0.65 for the sample of

D0
Kπ and |cosθ∗| < 0.85 for the remaining samples. This cut supresses mainly background

events and improves the figure of merit. Finally, all events were required to satisfy a cut

on zD0 = ED0/Eγ∗ . Since a pair of charmed quarks is produced in the c.m. of the γ∗g

system, each one of them receives on average a half of the virtual photon energy. Indeed, the

measured zD0 distribution and the one simulated assuming a pure PGF are very similar and

have a most probable value close to 0.5, Fig. 5.5. This strongly supports the assumption of

PGF dominance in charm production.

The final mass spectra for the untagged sample selected according to Table 5.3 are shown

in Fig. 5.3(top). For tagged events selected according to the D∗Kπ cuts the resulting mass

spectrum is shown in Fig. 5.3(bottom) and the D0 mass resolution of about 27 MeV was

obtained.

In this mass spectrum also a second structure at about –250 MeV/c2 is visible. It it due

to events with D0 −→ K−π+π0 decays where the neutral pion is not reconstructed in the

analysis. Thus the Kπ spectrum is shifted to a lower mass with respect to the D0 −→ K−π+

decays. The purity of this signal is much worse due to the not observed neutral pion.

Further improvement of the significance of the signal is accomplished by applying the

ANN method described in section 5.3.3. The resulting mass spectrum for D∗Kππ0 is shown in

Fig. 5.4(top) with a clear improvement of the signal to background ratio for D∗Kππ0 . For the

D0 −→ K−π+ , the signal and the background are reduced in a similar way so that the figure

of merit stays unchanged. Therefore the selection criteria from Table 5.3 are only used for

the final D∗Kπ sample (Fig. 5.3(bottom)).

The considerable reduction of the combinatorial background in the tagged samples per-

mits us also to study other channels with a weaker D0 signal like D∗Ksubπ
and D∗Kπππ, shown

in Fig. 5.4(middle and bottom). The sample D∗Ksubπ
contains events where the momentum

of the kaon candidate is below the limit of 9 GeV for kaon identification with the RICH de-

tector. Simulations using the AROMA [227] Monte Carlo generator for heavy flavours, and

a full spectrometer description based on GEANT, show that about 30% of kaons originating

from D0 decays have their momenta below this RICH threshold. Therefore, the analysis

required that those particles, Ksub, were not identified as pions or electrons.

Finally, in case of two D0 candidates in the same event, only one of them, chosen ran-
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domly, is considered in the analysis. In case of two channels contributing with a D0 candi-

date to the same event, only one of them is accepted according to the following priority rule:

D∗Kπππ, D∗Kπ or D∗Kππ0 , D0
Kπ, D∗Ksubπ

, see [226].
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Figure 5.5: Distribution of the zD0 for the D∗Kπ data sample after background subtraction and

corresponding Monte Carlo events. The signal was selected by requiring for the ±80 MeV mass

window around the nominal D0 mass.

Distributions of Bjorken x, Q2 and y variables for the D∗Kπ candidates from 2006, and

from the D0 signal region, are presented in Fig. 5.6. The x values range from about 10−5

to 0.1 with 〈x〉 = 0.004, the Q2 values from 10−3 to 30 GeV2 with 〈Q2〉 = 0.6 GeV2, and the

y values range from 0.1 to 1 with 〈y〉 = 0.63.
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Figure 5.6: Distributions of x and y for the 2006 D∗Kπ sample selected as in Fig. 5.5 before

background subtraction.

5.3 The weighted analysis

In this section we describe the determination of the gluon polarisation from the event samples

defined in Table 5.2.

5.3.1 Asymmetry determination

The number of events collected in a given target cell and time interval is given by:

dN

dm dX
= aφn(s+ b)

[
1 + PtPµf

(
s

s+ b
AµN→µ′D0X +

b

s+ b
AB

)]
. (5.11)

Here AµN→µ′D0X is the longitudinal double spin differential cross-section asymmetry of events

with a D0 or D0 in the final state and AB is the corresponding asymmetry originating

from the background events in the mass spectra. Furthermore, m ≡ MKπ, and X denotes

a set of kinematic variables describing an event (Q2, y, z...) while a, φ and n are the

spectrometer acceptance, the incident muon flux integrated over the time interval and the

number of target nucleons, respectively. The differential unpolarised cross-sections for signal

and background folded with the experimental resolution as a function of m and X are

represented by s = s(m,X) and b = b(m,X), respectively. The ratio s/(s+ b) defines signal

purity. The background asymmetry AB = DAγ
∗N

B can be written as the product of the

virtual photon asymmetry and the depolarisation factor and is assumed to be independent

of m.
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A straightforward way to extract the gluon polarisation is the following: First, Eq. (5.11)

is integrated over the variables X to obtain the number of events in both spin configurations

as a function of the invariant mass m. Next the event rate asymmetry in the D0 signal

region is extracted and a possible background asymmetry, determined from the asymmetries

in side-bands to the left and right from the signal region, is subtracted. The asymmetry

obtained in this way is proportional to the weighted average value of gluon polarisation,

〈∆G/G〉β, where the averaged value of the weight β = PtPµfaLL, 〈β〉, is a proportionality

coefficient, compare Eqs (5.6, 5.7).

There are however more efficient ways to analyse the data in terms of statistical precision.

One possibility would be to perform the analysis in bins of β, but this method causes

problems in the asymmetry extraction due to low number of events in some bins. Therefore

the method of event weighting is applied.

Every event gets a weight factor which is β/Pt. The target polarisation is not included in

the weight, because its time dependence would lead to an increase in systematic error. One

can show [228] that the statistical error in this method is smaller by a factor
√
〈β2〉 / 〈β〉2

compared to the method where simply the event rates are used. In this analysis the gain

is particularly large since β includes aLL, which can be positive or negative, depending on

the event kinematics. Close to the threshold aLL is positive while at higher ŝ it becomes

negative [225]. This is in contrast to the aLL for light quarks The distribution of β for the

sample D∗Kπ is given in Fig. 5.7.

The weighting procedure can even be extended to determine the background asymmetry

AB simultaneously with the weighted averaged gluon polarisation, [229]. Every event is

weighted once with a signal weight, wS, and once with a background weight, wB:

wS = PµfaLL
s

s+ b
, (5.12)

wB = PµfD
b

s+ b
. (5.13)

Thus the signal purity, s/(s + b), and the ‘background purity’, b/(s + b), are both included

in the weight. This procedure leads to the lowest possible statistical error which would also

be obtained in an unbinned maximum likelihood method [229]. Note however that the latter

cannot be applied here because the acceptance and flux factors aφn(s + b) in Eq. (5.11)

are not known with sufficient precision. Only their ratios between different spin states and

target cells are known. These ratios will be used for the extraction of 〈∆G/G〉 and
〈
Aγ∗NB

〉
.

Eq. (5.11) can be rewritten as follows:

dN

dm dX
= aφn(s+ b)

(
1 + βS

∆G

G
+ βBA

γ∗N
B

)
, (5.14)
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Figure 5.7: Distribution of the weighting factors, PµfaLL, for the D∗Kπ

sample.

where:

βS = PtwS βB = PtwB (5.15)

Note, that Eqs (5.11) and (5.14) are not integrated yet over X. This integration corresponds

to convolution integrals, symbolically denoted as ⊗ in section 5.1. Therefore the D meson

asymmetry, AµN→µ′D0X, has been substituted by the product of aLL and ∆G/G instead of

the averaged values as present in Eq. (5.6).

The expectation value of the sum of weights

〈
Nt∑
i=1

wS,i

〉
can be obtaind by multiplying

Eq. (5.14) by wS and integrating over X and m:

〈
Nt∑
i=1

wS,i

〉
=

∫
wS(X,m)

dkNt

dm dX
dXdm

= α̃S,t

[
1 + 〈βS〉wS

〈
∆G

G

〉
βSwS

+ 〈βB〉wS

〈
Aγ
∗N

B

〉
βBwS

]
(5.16)

with the following definitions:
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αt = atφtnt(s+ b), (5.17)

α̃S,t =

∫
wSαtdmdX , (5.18)

〈η〉w =

∫
ηwαtdmdX∫
wαtdmdX

, (5.19)

where η = βS, βB,
∆G
G

and Aγ
∗N

B , and w = wS, wB, wSβS, wSβB. The index t denotes the target

cell before (t = u, d) and after (t = u′, d′) the spin rotation. Nt is the number of events

observed in one target cell5. An equation analogous to Eq. (5.16) holds for the sum of

background weights,

〈
Nt∑
i=1

wB,i

〉
:

〈
Nt∑
i=1

wB,i

〉
=

∫
wB(X,m)

dkNt

dm dX
dXdm

= α̃B,t

[
1 + 〈βS〉wB

〈
∆G

G

〉
βSwB

+ 〈βB〉wB

〈
Aγ
∗N

B

〉
βBwB

]
(5.20)

In total 8 equations similar to Eq. (5.16) and Eq. (5.20) are obtained for the signal and back-

ground weights in the two target cells and for the two spin configurations. These equations

contain 12 unknowns:
〈

∆G
G

〉
βSwS

,
〈

∆G
G

〉
βSwB

,
〈
Aγ
∗N

B

〉
βBwS

,
〈
Aγ
∗N

B

〉
βBwB

and eight acceptance

factors: α̃S,t and α̃B,t.

The expectation values of the sum of weights on the left hand side of Eq. (5.16) are

equated with the measured sums of weights. In order to extract ∆G/G and AγN
B from the

measured sums of weights one proceeds as follows. The factors 〈βS,B〉wS,B
are evaluated from

the data. For example for 〈βS〉wS
:

〈βS〉wS
≈
∑Nt

i=1 βSwS∑Nt

i=1wS

. (5.21)

The expectation values appearing in Eqs (5.19) should be evaluated from an unpolarised

sample. The sum of events concerns a polarised sample. This has a negligible effect on the

results, because the raw asymmetry, PtPµfaLL∆G/G, is very small.

The acceptance factors α̃S,t and α̃B,t cannot be determined with sufficient precision to be

able to extract ∆G/G and Aγ∗NB directly from Eq. (5.16) and Eq. (5.20).

5In 2002–2004 the target consisted of two cells: upstream u and downstream d, with opposite polarisation.

In 2006–2007, it consisted of three volumes, with the central piece being in one polarisation state and the

pair of outer pieces being in the opposite state. For the sake of simplicity, these two sets of volumes (central

one and two outer ones), are named by term ”cell” and are denoted by u and d.
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Assuming that the background asymmetry, Aγ
∗N

B , and the gluon polarisation, ∆G/G, are

constant in the kinematic domain covered by the measurement:〈
∆G

G

〉
βSwS

=

〈
∆G

G

〉
βSwB

≡
〈

∆G

G

〉
, (5.22)

〈
Aγ
∗N

B

〉
βBwS

=
〈
Aγ
∗N

B

〉
βBwB

≡
〈
Aγ
∗N

B

〉
, (5.23)

and assuming that possible acceptance variations affect the upstream and downstream cells

in the same way, i.e. α̃uC/α̃
d
C = α̃u

′
C /α̃

d′
C , (C = S,B). This reduces the number of unknowns to

eight. With an extra assumption that signal and background events from the same target

cell are affected in the same way by the acceptance variations, one arrives at a system of

eight equations with seven unknowns. Possible deviations from the above assumptions may

generate false asymmetries which are included in the systematic uncertainty and will be

discussed in section 5.4.1. Using the set of eight equations, the gluon polarisation ∆G/G

at LO accuracy, and the background asymmetry AB are determined simultanously with a

standard least square minimisation procedure taking into account the statistical correlation

between
∑
wS and

∑
wB in the same target cell. The correlation factor cov (

∑
wS,
∑
wB)

is given in ref. [228]. The analysis is performed independently for all the D meson decay

channels.

The weighted analysis discussed in this section allows one to obtain a result with the

highest precision allowed by the data. However the assumption that ∆G/G is constant

is a strong assumption. It is in general justified only if the range of xG covered by the

measurement is very narrow. It is much more reasonable to assume a linear dependence in

xG, ∆G/G(xG) = a(xG − 〈xG〉) + ∆G/G(〈xG〉). Under this assumption, Eq. (5.22) holds if

〈xG〉βSwS
≈ 〈xG〉βSwB

≡ 〈xG〉 and ∆G/G ≡ ∆G/G(〈xG〉).
The linear dependence in xG is assumed in the determination of the gluon polarisation

from the weighted asymmetry for signal and background measured in several kinematic bins,

as discussed in section 5.4.2. In this case it is sufficient to assume that the asymmetries are

constant in small bins. The approximation 〈xG〉βSwS
≈ 〈xG〉βSwB

is not needed but the

uncertainty in the gluon polarisation determined from the asymmetries in bins is about 5%

larger than in the fully weighted method.

5.3.2 Parameterization of the analysing power

The muon-gluon analysing power aLL for charm production depends on the partonic kine-

matics. The partonic asymmetry is not accessible experimentally on an event-by-event basis.
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Figure 5.8: Example of the correlation between the generated analysing power and the analysing

power parameterised by a Neural Network for the D∗Kπ channel and for the 2006 experimental

acceptance.

It is obtained from the Monte Carlo generator AROMA [227] in LO QCD approximation,

i.e. with parton showers switched off. The generated events are passed through a GEANT

package [230] to simulate the full response of the COMPASS spectrometer. They are then

reconstructed with the same analysis chain as real data. In order to use the values of aLL

obtained from generated MC events for the real data, an Artificial Neural Networks, (ANN),

[231] is used to parameterise obtained aLL in terms of measured kinematic variables, X. The

resulting aLL(X) is evaluated for real data on an event-by-event basis. The Neural Network

used in the analysis is briefly described in appendix 9.2.

The input layer of neurons contains the following set of kinematic observables: Q2, y, zD,

pD0

T and x. There are two hidden layers in the Network and the number of neurons in them

varies during the training process (dynamic Network). The supervised training technique is

used in this work [231]. For each generated event, the Network tunes the strength of each

variable-neuron and neuron-neuron connection. The strengths are obtained by minimising

the squared deviation between the expected output and the actual Neural Network predic-

tion, i.e. between the generated aLL and the parameterised aLL(X). This training process is

stopped when the deviation reaches a stable minimum [231]. A unipolar sigmoid activation
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function (see appendix 9.2) was used in this analysis except for the output layer where a

linear neuron activation function of is used to ensure that the output is proportional to the

input signal. 6

The correlation achieved between the generated and the parametrised analysing powers

is 77% for the D∗Kππ0 channel and 82% for the remaining channels (see Fig. 5.8 ). Six

separate aLL(X) parameterisations were built: one of each of the three D meson decay

channels (Kπ, Kππ0, Kπππ) and each of the two experimental setups (2002–2004 and 2006–

2007). The trained networks is applied to real data. The results from the ANN, corresponds

to the analysing power aLL, which was subsequently used for the extraction of the gluon

polarisation.

5.3.3 The signal purity

The signal purity s/(s+b) can be extracted from a fit to the invariant mass distribution of D0

candidates. It depends on the kinematical parameters of the event. In order to implement

the kinematic dependence of the signal purity on the kinematics in the weights given by

Eqs (5.12,5.13), one would naively proceed by performing fits to the corresponding invariant

mass distributions in bins of the kinematical variables. This procedure is not feasible in

COMPASS case because of two conflicting constraints present in the data. Firstly, the

statistics is limited, which restricts the number of bins one can consider. Secondly anti-

correlations exist between the signal purity and the parameterized analysing power, aLL(X).

In kinematical domains where the signal purity is high, the analysing power is low and vice

versa as shown in Fig. 5.9.

The observed anticorrelation between signal purity and analysing power parameterized

by aLL(X) at LO describes the hidden correlation between the signal purity and the event

characteristic described by the kinematic vectorX. To avoid bias in the result this correlation

should be taken into account in s/(s+ b).

The method presented here employs a parameterization based on an ANN. For that pur-

pose the same network model and adjustment algorithm was used as described in section 5.3.2

and appendix 9.2.

The aim of the ANN is to distinguish signal from background events using only data. For

each analysed sample (see Table 5.2) two data sets are used as inputs to the Neural Network.

The first one contains the D0 signal These events are called ”good” charge combination, gcc,

referring to the charges of particles from theD0 decays and are selected as described in section

5.2. The second set, the ”wrong” charge combination events, wcc, is selected in a similar

6Note, that aLL changes sign while the sigmoid function is always positive.
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Figure 5.9: The signal strength versus analysing power from the fit (blue open symbols) and from

Ref. [219] (red star) for different bins in fPµaLL. The signal strength and analysing power are

visibly anti-correlated. Fig. taken from [232].

way except that the sum of charges of the corresponding particles should be different from

zero. It contains only background events as seen in Fig. 5.10 and it is used as a background

model. The ANN performs a multi-dimensional comparison of events in a ±40 MeV/c2 mass

window around the D0 mass 7. Within the gcc set, the signal events are distinguished from

combinatorial background by exploiting differences between gcc and wcc sets in the shapes of

distributions of kinematic variables as well as multi-dimensional correlations between them.

An example of a properly chosen variable is cos θ∗, whose distributions are shown in Fig. 5.11.

The reconstructed mass cannot be used because it would artificially enhance the probability

that a background event is a true D meson event in the signal region.

The ANN classifies all the gcc events according to their dissimilarity in kinematics with

respect to the wcc ones, and to each event it assigns a probability of being a signal. A

probability 0.5 is assigned to undistinguished events. If the ANN is trained with proper

input samples (i.e. a correct background model and a sufficiently strong signal), the Network

output, [s/(s+ b)]NN, could be directly interpreted as the signal purity in the corresponding

mass window. This is the so called “pure” Neural Network method, applicable for the D∗Kππ0 ,

D∗Kπ and D∗Kπππ samples, collected in 2004–2007 where event statistics and purities are large.

The mass dependence of signal and background, s(m) and b(m), which cannot be obtained

from ANN, is determined from a fit to the mass spectra in bins of [s/(s+b)]NN. In order to to

7A mass window ±30 MeV/c2 is used for the sample D0
Kπ and ±40 MeV/c2 around -250 MeV/c2 for the

sample D∗
Kππ0 .
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Figure 5.10: The Kπ invariant mass spectrum for the D∗Kπ sample with the good (gcc) and wrong

(wcc) combination of pion and kaon charge signs. The data were collected in 2007 with the proton

target.

describe the signal a Gaussian distribution is used for all samples while for the background the

following fitting functions are employed: two exponential distributions for the D0
Kπ channel

and one exponential for the remaining D∗ tagged channels. An exception is the D∗Kπππ sample

for which a second degree polynomial is used to properly fit the combinatorial background.

From those fits corrections λ to the signal purity are obtained in the mass windows defined

above:

λ =
1

〈[s/(s+ b)]NN〉

∫
s(m)dm∫

[s(m) + b(m)] dm
. (5.24)

The signal purity, s/(s+ b) is:

s

s+ b
=

s(m)

s(m) + λb(m)
. (5.25)

The fit of the invariant mass spectra in bins of the ANN signal purity can also be used to

validate the classification obtained by the ANN. For each bin, the signal purity is determined

from an integration of the signal and background fits over the used mass windows. Good

agreement between the signal purities from ANN and the fit is found for all samples. This
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Figure 5.11: Example of the distribution of | cos θ∗| in the D0 meson rest frame for the gcc and wcc

events (D∗Kπ sample, 2006 data). Top: region of D0 signal (events from the mass window around

D0 ) bottom: outside the D0 signal.
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confirms that the ANN does not introduce bias in the analysis. As an illustration the mass

spectra in bins of the ANN signal purity together with a comparison of the two signal

purities are shown for the D∗Kπ sample in Fig. 5.12. The signal purity clearly increases with

the increasing [s/(s+ b)]NN.
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Figure 5.12: The Kπ invariant mass spectra in bins of [s/(s + b)]NN for the D∗Kπ sample. The

signal purity is seen to increases with increasing probability, [s/(s+ b)]NN. The last panel shows a

comparison of purities determined from the fit and from the Neural Network approach.

The signal purity can be parameterized in various ways provided it correctly reproduces

the data. Several possible parameterizations were used to check that indeed yield asym-

metries and gluon polarisation consistent within statistical uncertainties. To achieve the

statistically most precise and unbiased result on the gluon polarisation a parameterization

of aLL was additionally included in the training of ANN to take into account the anticorre-
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lation between aLL(X) and [s/(s+ b)]NN.

For the low purity sample of D0
Kπ collected in 2002–2007, and for all samples collected in

2002 and 2003, the extraction of D0 probabilities from the ANN output is more complicated

since the weak signals preclude accounting for anti-correlation. Therefore a ‘hybrid’ method

was employed. Similar to the method used in [219, 233], this approach uses fits to the mass

spectra which are sampled in bins of two variables: The ANN signal purity and fPµaLL.

The former sorts the events according to their similar kinematic dependencies, while the

latter is used to ensure the anticorrelation between aLL(X) and [s/(s + b)]NN. The signal

and background distributions belonging to the mass spectra sampled in those bins are fit-

ted by the same functions as defined above to describe the mass dependence of signal and

background. Integrating the fits within the same mass windows used for the ANN training

procedure yields the signal purities extracted from the fit. For each of the two variables, a

function is built using linear interpolation between the fit results. An iterative procedure

is used to obtain a stable result on these two functions simultaneously. Finally the cor-

rection λ, Eq.(5.24), is applied. Due to the statistical limitations of the analysis, only one

parameterisation was built for each decay channel and year.

Since the hybrid method can be used for both, the low purity and the high purity channels

it was decided to use it for all channel parametrisations of the signal purities.

5.4 Results

In this section the results of the measurement of gluon polarisation from the open-charm D

meson production are presented.

First, in the section 5.4.1, the results from the weighted method of 〈∆G/G〉 extraction

at LO accuracy are presented for all five event samples. Also, the average values of the cor-

responding background asymmetries 〈Aγ
∗N

B 〉 are given. Next, in the section 5.4.2, the virtual

photon asymmetries for D0 production, Aγ∗N→D0X, are presented in bins of D0 transverse

momentum and energy for each D0 decay channel, together with average values of the kine-

matic variables. Finally the QCD calculations at NLO accuracy for the signal asymmetry

and the gluon polarisation are discussed in section 5.4.3. A value of 1.5 GeV2 for the mass of

the charm quark has been used in the analysis. The uncertainty related to the charm quark

mass is taken into account in the systematics. This analysis neglects possible contribution

from ‘intrinsic charm’, nonperturbative charm quark or charmed hadron components of the

nucleon wave function. Such components, estimated to be ≈ 1%, [234, 235], are different

from the perturbative splitting of a gluon into a cc̄ pair; the latter decrease strongly with

Bjorken x, xBjk. In the EMC measurement of the charm component in the nucleon structure
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function F cc̄
2 [220], a possible intrinsic charm contribution of about 1% at xBjk ∼ 0.4 could

not be excluded [220, 221]. Up to now, the estimates of refs [234, 235] cannot be experi-

mentally verified due to the poor statistics of the EMC measurement at large xBjk, the low

values of xBjk in HERA F cc̄
2 measurements [236] and because the COMPASS kinematic ac-

ceptance is limited to the region xBjk ≈ 0.1 for open charm production. Finally, it should be

mentioned that the contribution from resolved photon interactions was estimated using the

RAPGAP generator [237] and found to be negligible in the COMPASS kinematic domain.

5.4.1 Leading Order results for the gluon polarisation

Values for 〈∆G/G〉 and the background asymmetry 〈Aγ
∗N

B 〉 are obtained for each of the 48

weeks of data taking and separately for each of the five event samples. The results shown

in Table 5.4 are the weighted means of the weekly values. The background asymmetries are

consistent with zero.

Table 5.4: Results for 〈∆G/G〉 and 〈Aγ
∗N

B 〉 for each data sample. The uncertainties are statistical.

D∗Kπ D∗Kππ0 D∗Kπππ D∗Ksubπ
D0

Kπ

〈∆G/G〉 −0.192± 0.305 −0.414± 0.575 0.628± 0.833 0.497± 0.995 0.020± 0.415

〈Aγ
∗N
B 〉 +0.019± 0.029 +0.051± 0.035 +0.002± 0.037 +0.004± 0.047 −0.005± 0.004

The final value of the gluon polarisation was obtained as the weighted mean of the

five results shown in Table 5.4 and amounts to 〈∆G/G〉 = −0.08 ± 0.21. Assuming that

∆G/G(xG) is approximately a linear function of xG in the range covered by the present data,

the above result is the gluon polarisation ∆G/G at 〈xG〉, where 〈xG〉 is the weighted average

calculated using the signal weights.

The major sources of systematic uncertainty in the ∆G/G measurement are listed in

Table 5.4.1. The contributions from Pµ, Pt and f , which have uncertainties of 5%, 5% and

2%, respectively, are discussed in [68] while the remaining ones are reviewed below. The

signal purity s/(s+ b) and the partonic asymmetry aLL relate the muon-nucleon asymmetry

and ∆G/G. Their uncertainties will not result in false asymmetries, which are additive

terms, but in an error which is a fraction of ∆G/G. The uncertainty of ∆G/G is obtained

from the spread of weighting factors w, Eq. (5.12). To this aim the default analysis with

weight w0 is compared to other analyses with different weights, w. The spread of 〈ww0〉/〈w2
0〉

was then propagated to a relative systematic uncertainty of ∆G/G.
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Source δ
(
〈∆G
G
〉
)

Source δ
(
〈∆G
G
〉
)

Beam polarisation Pµ 0.015 s/(s+ b) 0.022

Target polarisation Pt 0.015 aLL 0.025

Dilution factor f 0.006 False asymmetry 0.080

Reduction of number of unknowns 0.025

Total uncertainty 0.094

Table 5.5: Contributions to the systematic uncertainty in 〈∆G/G〉.

In order to study the contribution of s/(s + b) to the systematic error, three different

effects were considered. The alternative fitting functions were used, different mass windows

were considered for the ANN parameterisation and the impact of a different binning in the

mass spectra was analysed. The resulting spread of weights was computed for every of these

effects for each sample and each year of data taking. The three averages of all spreads was

determined. The final error is a fraction of the 〈∆G/G〉 value, obtained from those three

averages added in quadrature. A final systematic error of 7% was obtained for s/(s + b).

More details can be found in [226].

To estimate the influence of the simulation parameters, Monte Carlo samples with dif-

ferent parameter sets were generated and aLL was recalculated. The parameter set included

the mass of the charm quark (varied from 1.3 GeV2 to 1.6 GeV2), the parton distribution

functions (MRST, GRV and CTEQ groups) and the factorisation scales (defined via charm

quark mass). The results are shown in Fig. 5.13. The resulting uncertainty of aLL is 9%.

The uncertainty introduced by the assumption of 〈Aγ∗N〉wSβB = 〈Aγ∗N〉wBβS = Aγ
∗N and

〈Aγ
∗N
B 〉wSβB = 〈Aγ

∗N
B 〉wBβS = Aγ

∗N
B (reduction of 9 to 7 unknowns) is estimated as follows.

Values of ∆G/G are taken from the COMPASS fit [8] with ∆G > 0 at 1σ of the measured

xG. This fit is chosen to maximize the potential bias of the above assumption. The difference

between the two values obtained from the fit is added as a bias to the system of equations.

The resulting ∆G/G gives the relative systematic uncertainty for this contribution. Possible

variations of Aγ
∗N
B are studied in a similar way through the use of a parameterisation of A1.

To study the influence of false asymmetries, the final D∗Kπ sample was subdivided into

two samples using criteria related to the experimental apparatus, e.g. the slow pion going to

the left or to the right side of the incoming muon. The resulting asymmetries were found to

be compatible within their statistical accuracy. An upper limit of the contribution of time

dependent acceptance effects to the systematic uncertainty was derived from the dispersion

of 〈∆G/G〉 and 〈Aγ
∗N

B 〉 in the 48 weeks of data taking. The study was performed using
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Figure 5.13: The spreads introduced in the signal weights by all the systematic studies considered

for aLL. All data is included. The default analysis is given by the first point (blue). An average

spread of 9% is obtained. The PDFs sets are taken from HEPDATA [238].

the background asymmetry due to the high statistics. Therafter the obtained results were

translated to 〈∆G/G〉 using the method described in [226]. A systematic error of 0.024 was

obtained assuming that possible detector instabilities are similar for background and signal

events. To avoid this assumption a second, more conservative approach has been taken: the

double ratio of acceptances, α̃uC · α̃d
′

C/α̃
d
C · α̃u

′
C (C = S, B), for the signal is considered to be

uncorrelated with the one for the background events. The combination of these two cases

leads to an upper limit of 0.081 for the false asymmetries.

The final value of the gluon polarisation amounts to〈
∆G

G

〉
= −0.08± 0.21 (stat.)± 0.09 (syst.) (5.26)

in the range of 0.06 < xG < 0.22 with 〈xG〉 ≈ 0.11, and a scale 〈µ2〉 ≈ 13 (GeV/c)2. As

discussed in section 5.3 the fully weighted method allows one to obtain the best statistical

precision from the data but the method requires the assumption that ∆G/G is constant

in the measured domain. The more realistic assumption of a linear xG dependence of the

gluon polarisation can be used if the condition 〈xG〉βSwS
≈ 〈xG〉βSwB

is satisfied. The values

0.08 and 0.11 have been estimated for 〈xG〉βSwB
and 〈xG〉βSwS

, respectively. The differences

in 〈xG〉: between 〈xG〉βSwB
and 〈xG〉βSwS

, is small compared to the xG range covered by

the measurement and hence it can be concluded that the approximation about the linear
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Figure 5.14: Compilation of the ∆G/G measurements from open charm and high-pT hadron pair

production by COMPASS [218, 239, 240], SMC [215] and HERMES [217] as a function of xG. The

horizontal bars mark the range in xG for each measurement, the vertical ones give the statistical

precision and the total errors (if available). The open charm measurement is at a scale of about

13 GeV2 and the other measurements at about 3 GeV2.
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xG dependence in the gluon polarisation can be justified and the measured averaged gluon

polarisation can be interpreted as 〈
∆G

G

〉
=

∆G

G
(〈xG〉), (5.27)

with 〈xG〉 ≡ 〈xG〉βSwS
.

In Fig. 5.14 the above result is displayed together with other results. The obtained result

is consistent with these measurements favouring small values of ∆G/G. Note that scales

of the measurements differ. The scales are defined as proportional to p2
T of the observed

hadrons for COMPASS low Q2 high-pT hadron pairs analysis, Q2 is the scale for the high-pT

hadron pairs analysis of the SMC [215] measurement and for COMPASS high-pT hadron

pairs analysis for Q2 > 1 GeV2. The latter is discussed in detail in the next chapter. The

scale of the present open-charm result is given by the transverse mass of the charmed quarks

µ2 = 4M2
T ≈ 13 GeV2. The other experimental points in Fig. 5.14 are given at µ2 ≈ 3 GeV2.

5.4.2 Open-charm asymmetry in kinematic bins

The data analysis described in section 5.2 also allows for the determination of the virtual

photon asymmetry for D0 meson production, Aγ
∗N→D0X = AµN→µ′D0X/D. It can be used in

global NLO QCD fits to constrain the values of ∆G. In contrast to ∆G/G this asymmetry

should not depend on any QCD approximations. Averaging over the full kinematic range

would largely dilute the asymmetry due to the large dispersion of aLL, see Fig. 5.8. However

calculated at LO accuracy, the dispersion of aLL reflects the possible effect on an asymmetry.

Therefore the asymmetry Aγ
∗N→D0X is extracted in bins of the transverse momentum of the

D0 with respect to the virtual photon, pD0

T , and the energy of the D0 in the laboratory

system, ED0 . The bins were chosen such that the variation of aLL/D within each bin is small

compared to the variation over the whole sample and also such that the dependence on the

acceptance is minimized.

The asymmetry Aγ
∗N→D0X is obtained in every kinematic bin in exactly the same way as

∆G/G, with the weighting method, except that the factor aLL is replaced by the factor D

in the definition of the signal weight in Eq. (5.12). This provides Aγ
∗N→D0X(〈pD0

T 〉, 〈ED0〉).
As is shown below, the above binning allows to reproduce the LO 〈∆G/G〉 obtained with

the method described in section 5.3 with at most 5% loss of precision. The asymmetry

obtained in bins are weighted with w2
S according to Eqs (5.19). This asymmetry is equivalent

to a counting rate asymmetry between upstream and downstream target cells: (
∑
wS −∑′wS)/(

∑
w2

S +
∑′w2

S), for every bin:
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〈
Aγ
∗N→D0X

〉
βSwS

=
〈
Aγ
∗N→D0X

〉
w2

S

≡
∑
wS −

∑′wS∑
w2

S +
∑′w2

S

(5.28)

with the weight wS = PµfDs/(s+ b).

The asymmetry Aγ
∗N→D0X was extracted simultaneously with the background asymmetry,

Aγ
∗N

B for each bin, channel and year of data taking except for low purity channels where some

data taking periods with identical target setups were merged. The final results for every D0

decay mode are given in Tables 5.6 - 5.8 where Aγ
∗N→D0X in each (pD0

T , ED0) bin, together

with the averages of kinematic variables. All averages are calculated with the weight w2
S.

The systematic uncertainties in the measurement of AγN are discussed below. Again the

contribution from Pµ, Pt and f , which amounts to 5%, 5% and 2% respectively are taken

from [68]. In order to study the contribution from s/(s + b) to the systematic uncertainty,

different fitting functions were used for the functional form of the background, different mass

windows were investigated for the ANN parameterization and the impact introduced in the

analysis by the choice of the binning used in the reconstruction of the D0 meson spectra were

investigated. These tests lead new s/(s+ b) and, consequently, new weights were obtained.

The resulting spread of weights was computed for each year of data taking, each sample and

each bin to estimate the error. The obtained value is 7% of the measured asymmetries. Note

that the later corresponds to an average value over all bins.

The contribution of a depolarisation factor D to the uncertainty ofAγ
∗N→D0X was obtained

as follows.

A relative experimental uncertainty of 1% was assigned to the momentum measurement of

the scattered muon. Then y was re-evaluated for every event and new values of D were

computed to obtain new weight. Again the resulting spread of the weights is taken to be

the systematic uncertainty of depolarisation factor D. The obtained value is 1.6%. The false

asymmetries were estimated as before in the fully weighted method and then translated to

Aγ
∗N→D0X. The absolute value of this contribution averaged over all bins is 0.022. The

maximum value is 0.061.

Finally, the reduction of number of unknowns from 8 to 7, which is the assumption of

〈Aγ∗N〉wSβB = 〈Aγ∗N〉wBβS = Aγ
∗N and 〈Aγ

∗N
B 〉wSβB = 〈Aγ

∗N
B 〉wBβS = Aγ

∗N
B introduces an

uncertainty in the measured asymmetries of 0.007. This absolute value corresponds to the

weighted average over all bins. The maximum value for this contribution is 0.016. As for the

study of false asymmetries, this contribution is determined for ∆G/G and then translated

to Aγ
∗N in bins of pD

0

T and ED0 .



5.4 Results 103

Bin limits
Aγ
∗N→D0X 〈y〉

〈Q2〉 〈pD0

T 〉 〈ED0〉
〈D〉

pD0

T (GeV) ED0 (GeV) (GeV)2 (GeV) (GeV)

0–0.3 0–30 −0.90± 0.63± 0.20 0.50 0.46 0.19 24.3 0.62

0–0.3 30–50 −0.19± 0.48± 0.10 0.60 0.69 0.20 39.1 0.74

0–0.3 > 50 +0.07± 0.68± 011 0.69 1.17 0.20 59.2 0.84

0.3–0.7 0–30 −0.18± 0.37± 0.13 0.51 0.47 0.51 24.6 0.63

0.3–0.7 30–50 +0.10± 0.26± 0.06 0.60 0.62 0.51 39.5 0.75

0.3–0.7 > 50 −0.04± 0.36± 0.07 0.69 0.73 0.51 59.0 0.83

0.7–1 0–30 −0.42± 0.44± 0.11 0.50 0.45 0.85 24.7 0.62

0.7–1 30–50 −0.36± 0.29± 0.07 0.61 0.60 0.85 39.2 0.75

0.7–1 > 50 +1.49± 0.42± 0.22 0.69 0.76 0.84 58.6 0.83

1–1.5 0–30 −0.30± 0.35± 0.06 0.54 0.41 1.23 25.3 0.66

1–1.5 30–50 +0.13± 0.23± 0.03 0.64 0.55 1.24 39.2 0.77

1–1.5 > 50 −0.20± 0.33± 0.04. 0.71 0.73 1.24 58.3 0.85

> 1.5 0–30 +0.38± 0.49± 0.08 0.56 0.47 1.84 25.6 0.69

> 1.5 30–50 0.00± 0.25± 0.03 0.65 0.70 1.92 39.9 0.79

> 1.5 > 50 +0.36± 0.33± 0.06 0.69 0.60 1.95 59.9 0.86

Table 5.6: Combined asymmetries Aγ
∗N→D0X for the D0

Kπ, D∗Kπ and D∗Ksubπ
samples in bins of

(pD0

T , ED0), together with the w2
S - wejghted averages of several kinematic variables.
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Bin limits
Aγ
∗N→D0X 〈y〉

〈Q2〉 〈pD0

T 〉 〈ED0〉
〈D〉

pD0

T (GeV) ED0 (GeV) (GeV)2 (GeV) (GeV)

0–0.3 0–30 −0.63± 1.29± 0.17 0.52 0.75 0.19 24.4 0.65

0–0.3 30–50 +0.27± 1.17± 0.15 0.67 0.65 0.20 38.8 0.81

0–0.3 > 50 −2.55± 2.00± 0.73 0.72 1.12 0.19 59.3 0.86

0.3–0.7 0–30 −0.24± 0.80± 0.10 0.53 0.51 0.52 24.3 0.65

0.3–0.7 30–50 +0.49± 0.69± 0.10 0.65 0.65 0.51 39.0 0.79

0.3–0.7 > 50 −1.28± 1.03± 0.20 0.72 0.77 0.51 59.1 0.86

0.7–1 0–30 +0.55± 0.95± 0.15 0.53 0.41 0.84 24.6 0.65

0.7–1 30–50 −0.53± 0.76± 0.11 0.63 0.53 0.86 39.4 0.77

0.7–1 > 50 −0.17± 1.00± 0.09 0.73 0.80 0.85 58.2 0.88

1–1.5 0–30 +1.35± 0.86± 0.22 0.54 0.38 1.24 25.4 0.67

1–1.5 30–50 −0.11± 0.51± 0.06 0.64 0.59 1.25 39.6 0.78

1–1.5 > 50 −0.05± 0.78± 0.07 0.74 0.62 1.25 58.3 0.88

> 1.5 0–30 −0.19± 1.14± 0.13 0.56 0.52 1.80 25.7 0.70

> 1.5 30–50 −0.23± 0.51± 0.07 0.66 0.66 1.88 40.0 0.80

> 1.5 > 50 +0.26± 0.90± 0.10 0.74 0.88 1.92 57.3 0.88

Table 5.7: Asymmetries Aγ
∗N→D0X for the D∗Kππ0 sample in bins of (pD0

T , ED0) together with the

w2
S - weighted averages of several kinematic variables.
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Bin limits
Aγ
∗N→D0X 〈y〉

〈Q2〉 〈pD0

T 〉 〈ED0〉
〈D〉

pD0

T (GeV) ED0 (GeV) (GeV)2 (GeV) (GeV)

0–0.3 0–30 +7.03± 4.74± 2.65 0.46 0.38 0.22 27.7 0.58

0–0.3 30–50 −2.05± 1.10± 0.66 0.60 0.72 0.20 40.6 0.74

0–0.3 > 50 +0.17± 1.83± 0.65 0.69 0.88 0.20 59.1 0.84

0.3–0.7 0–30 −0.59± 1.74± 0.63 0.52 0.31 0.53 27.8 0.71

0.3–0.7 30–50 +1.00± 0.54± 0.32 0.61 0.44 0.52 39.7 0.80

0.3–0.7 > 50 −1.75± 0.84± 0.50 0.68 0.70 0.51 60.2 0.84

0.7–1 0–30 +2.91± 2.61± 0.78 0.45 0.26 0.84 27.7 0.61

0.7–1 30–50 +1.42± 0.57± 0.36 0.64 0.57 0.85 40.9 0.81

0.7–1 > 50 +1.69± 0.81± 0.39 0.69 0.58 0.86 60.9 0.84

1–1.5 0–30 −1.89± 2.64± 0.68 0.46 0.31 1.22 27.7 0.64

1–1.5 30–50 −0.45± 0.51± 0.14 0.63 0.58 1.23 41.1 0.79

1–1.5 > 50 +1.06± 0.66± 0.20 0.71 0.77 1.24 61.8 0.86

> 1.5 0–30 +1.64± 3.52± 0.91 0.46 0.40 1.84 28.1 0.72

> 1.5 30–50 +0.44± 0.68± 0.15 0.65 0.75 1.95 42.2 0.78

> 1.5 > 50 +0.08± 0.63± 0.08 0.74 0.77 2.03 64.4 0.88

Table 5.8: Asymmetries Aγ
∗N→D0X for the D∗Kπππ sample in bins of (pD0

T , ED0) together with the

w2
S - weighted averages of several kinematic variables.

Source δ
(
〈∆G
G
〉
)

Source δ
(
〈∆G
G
〉
)

Beam polarisation Pµ 0.017 s/(s+ b) 0.024

Target polarisation Pt 0.017 D 0.005

Dilution factor f 0.007 False asymmetry 0.001

Reduction of number of unknowns 0.025 aLL/D 0.050

Total uncertainty 0.103

Table 5.9: Contributions to the systematic uncertainty of 〈∆G/G〉 from asymmetries Aγ
∗N→D0X.
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Bin limits Photon-gluon asymmetry

D0
Kπ, D∗Kπ and D∗Ksubπ

D∗Kππ0 sample D∗Kπππ sample

samples combined

pD0

T ED0 LO NLO LO NLO LO NLO

(GeV) (GeV)
〈aLL

D

〉 〈aLL

D

〉
〈Acorr〉

〈aLL

D

〉 〈aLL

D

〉
〈Acorr〉

〈aLL

D

〉 〈aLL

D

〉
〈Acorr〉

0–0.3 0–30 0.65 0.00 0.01 0.62 -0.11 0.01 0.37 -0.09 0.01

0–0.3 30–50 0.68 - 0.06 0.01 0.65 –0.08 0.01 0.47 -0.08 0.01

0–0.3 > 50 0.76 -0.12 0.02 0.74 -0.11 0.02 0.62 -0.09 0.01

0.3–0.7 0–30 0.46 -0.08 0.01 0.42 –0.17 0.01 0.27 –0.10 0.02

0.3–0.7 30–50 0.50 -0.19 0.02 0.46 –0.23 0.02 0.33 –0.20 0.02

0.3–0.7 > 50 0.56 -0.22 0.02 0.53 –0.18 0.02 0.44 –0.21 0.02

0.7–1 0–30 0.26 -0.26 0.01 0.19 –0.29 0.02 0.15 –0.19 0.02

0.7–1 30–50 0.26 - 0.29 0.01 0.21 –0.32 0.02 0.20 –0.31 0.02

0.7–1 > 50 0.29 -0.33 0.03 0.26 –0.36 0.03 0.25 –0.32 0.03

1–1.5 0–30 0.00 -0.35 0.01 -0.06 –0.40 0.02 0.01 –0.36 0.02

1–1.5 30–50 0.01 -0.40 0.02 –0.05 –0.44 0.03 0.03 –0.41 0.02

1–1.5 > 50 0.05 -0.43 0.03 –0.02 –0.42 0.04 0.07 –0.45 0.03

> 1.5 0–30 -0.23 -0.49 0.02 –0.29 –0.52 0.02 –0.19 –0.49 0.03

> 1.5 30− 50 -0.26 -0.53 0.03 –0.31 –0.50 0.04 –0.18 –0.54 0.03

> 1.5 > 50 -0.27 -0.53 0.04 -0.31 –0.49 0.05 –0.19 –0.54 0.05

Table 5.10: The photon-gluon asymmetries, aLL/D, in bins of (pD0

T , ED0) for each D0 decay mode

studied in the analysis. The LO averages use aLO
LL /D from data events, obtained from the Neural

Network parameterisation; they are weighted with w2
S. The NLO averages are obtained from the

full Monte Carlo simulation of the pure signal and therefore they are weighted only with the factor

D2. The NLO asymmetries, aLL and Acorr, are discussed in section 5.4.3.

The ratio ∆G/G is related to the asymmetry by:〈
Aγ
∗N→D0X

〉
w2

S

=

〈
aLL

D

∆G

G

〉
w2

S

=

〈
∆G

G

〉
aLL
D
w2

S

〈aLL

D

〉
w2

S

, (5.29)

in every kinematical bin. The results in bins can be combined to give the final result on

∆G/G. As discussed in section 5.3, the weighted method requires that the asymmetry is

constant in a given kinematic bin. This is not necessarily the case for the combined result, in

particular for combined result on gluon polarisation ∆G/G. Instead, a linear dependence on

the gluon polarisation ∆G/G(xG) = a(xG−〈xG〉)+∆G/G(〈xG〉) can be assumed. Under this
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assumption the averaged value of the gluon polarisation, 〈∆G/G〉aLL
D
w2

S
can be interpreted

as the gluon polarisation taken at averaged 〈xG〉:〈
∆G

G

〉
≡
〈

∆G

G

〉
aLL
D
w2

S

=
∆G

G
(〈xG〉), (5.30)

where 〈xG〉 = 〈xG〉aLL
D
w2

S
.

The gluon polarisation at LO accuracy, obtained from Aγ
∗N→D0X amounts to〈

∆G

G

〉
= −0.11± 0.23 (stat.)± 0.1 (syst.) (5.31)

The major sources of systematic uncertainties in the determination of ∆G/G from

Aγ
∗N→D0X are listed in Table 5.9

The muon-nucleon asymmetry AµN→µ′D0X can be obtained from Aγ
∗N→D0X by multiplying

it by 〈D〉 which depends on average values of all the kinematic variables.

The signal asymmetry obtained in kinematic bins contains experimental information

that does not rely on the QCD approximation. To obtain the gluon polarisation from this

asymmetry the weighted analysing power
〈
aLL

D

〉
w2

S
(c.f. Eq. (5.29)) has to be calculated in a

specific order of QCD. The calculation of aLL at NLO is discussed in the next section. The

weight w2
S contains the signal purity, s/(s + b), which is available only for real COMPASS

data. The correlation between the calculated and parameterized aLL at NLO is significantly

smaller than in LO because the same information (event vector X) is used in ANN to

parameterize the more complex NLO kinematics. Therefore the averaged aLL in kinematic

bins evaluated on MC events is used instead of parameterization of aLL on real data (aLL(X))

in the gluon polarisation determination at NLO accuracy.

5.4.3 NLO QCD corrections for spin-dependent charm

muoproduction

The gluon polarisation extraction described in section 5.3 has been performed at LO accuracy

where the only process leading to open-charm production is PGF. Extraction of the gluon

polarisation requires knowledge of the analysing power aLL and of the signal purity on an

event-by-event basis. Only combinatorial background has been considered in the LO analysis

as described in section 5.3.

Apart from the NLO corrections to the PGF mechanism, there exists yet another NLO

contribution to muoproduction of open-charm, where a gluon originating from light quark

processes produces the cc̄ pair. Such processes do not probe the gluons inside the nucleon,

however they contribute to the D meson signal. Hence the signal asymmetry extracted at
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NLO contains a correction term. Examples of NLO processes that produce charm are shown

in Fig.5.15.

Figure 5.15: NLO contributions to charm production: a) virtual correction b), c) gluon

bremsstrahlung d) light quark background process. The complete set of NLO diagrams can be

found in [241, 242].

The differential cross section for D meson production in NLO accuracy can be decom-

posed as:

dσ = (G⊗ dσ̂PGF +
∑
q

e2
qq ⊗ dσ̂q +

∑
q

q ⊗ dσ̂c)⊗H. (5.32)

Here, gluon and light quark PDFs are denoted G and q, respectively. As in LO case all

kinematic variable dependencies are omitted in the notation and ⊗ denotes convolution

integrals. dσ̂PGF is the PGF cross section with NLO corrections as illustrated in Fig.5.15,

a) -c). The light quark cross section contains two types of contributions: dσ̂q, where the

photon couples to light quarks (e.g. diagram d) in Fig. 5.15) and dσ̂c, where the photon

couples to a heavy (charm) quark, (not shown in Fig. 5.15). After integration over one charm

quark from the cc̄ pair the interference term between these two contributions vanishes. The

fragmentation process from charm quarks to observed D mesons is noted as H. The spin-

dependent part of the cross section can be decomposed in a similar way.

COMPASS data have been collected on an isoscalar deuteron target and on a proton

target. Taking this into account the cross section from Eq. (5.32) is:

dσ = (G⊗ dσ̂PGF + βd
∑
q

q ⊗ dσ̂d + βp
∑
q

e2
qq ⊗ dσ̂q)⊗H, (5.33)

where:

dσ̂d = dσ̂c + βd
5

18
dσ̂q (5.34)

and the weights βp,d are fractions of data collected on proton and deuteron, respectively.8.

8Strictly speaking the weights are defined as a figure of merit, s2/(s+ b).
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The signal asymmetry AµN→µ′D0X in NLO approximation is equal to:

AµN→µ′D0X =

〈
∆G

G

〉
aLL

〈aLL〉+ 〈Acorr〉 , (5.35)

where:

Acorr ≡ Ad1a
d
LL + Ap1a

p
LL, aLL =

Gd∆σ̂PGF

dσ̂
, adLL =

∑
q qd∆σ̂d

dσ̂
, apLL =

∑
q e

2
qqd∆σ̂q

dσ̂
,

(5.36)

and

dσ̂ = (Gdσ̂PGF + βd
∑
q

qσ̂d + βp
∑
q

e2
qqdσ̂

q (5.37)

The Ap,d1 asymmetries are parameterized directly from the measured data and contain

information about light quark polarisation in the proton and the deuteron, respectively.

The weights βp,d used in the computations were 0.225 and 0.775, respectively. The analysing

powers, aLL, for the PGF process as well as for the light quark corrections Acorr, depend on

the gluon and quark spin independent PDFs, G and q. The light quark corrections, Acorr,

are very small (c.f. in Tables 5.10) and the dependence on the polarisation averaged PDFs is

very weak. Therefore, the main difference between the NLO and LO analysis is aLL, which

now contains NLO corrections to the PGF process. The light quark NLO corrections have

been included in the COMPASS analysis according to the formula Eq. (5.35) even though

these corrections are very small. QCD calculations at NLO accuracy for spin averaged [241]

as well as polarisation dependent cross–sections for open charm production [242] are available

only in the photoproduction limit 9. These calculations were used in the analysis to estimate

the value of the NLO corrections to aLL and in the light quark contribution. The average

value of Q2 in the kinematic region of the COMPASS measurement is about 0.6 GeV2. It

was confirmed by a direct check at the LO accuracy that the Q2 → 0 limit used in the

calculation is a very good approximation in the COMPASS kinematic domain. The NLO

calculations for aLL and the light quark background are performed in the photoproduction

limit. To obtain event-by-event the aLL in NLO accuracy the same MC generator was used

as at LO. The phase space needed for the NLO real gluon emission processes, γ∗g → cc̄g, was

simulated through parton showers included in the standard AROMA generator. In Fig.5.16

the comparison of the differential cross sections between COMPASS data and AROMA

simulated data with parton showers simulations are shown. As at LO analysis the acceptance

9The unpublished, finite part of the NLO partonic cross sections can be obtained directly from authors

of [242]. The Mathematica code for calculating the polarised and polarisation averaged partonic NLO cross

sections is also available on the request from author of this thesis.
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effects can be simulated with GEANT package. Good agreement between simulations and

data is found.
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Figure 5.16: Semi-inclusive differential cross sections for D∗+ (red squares) and D∗− (blue trian-

gles) production as a function of D0 energy, virtual photon energy ν, p2
T and energy fraction z.

The data are from the year 2004 only and concerns the D∗ sample. The green circles are from the

EMC experiment [243]. The solid red and dashed blue curves are AROMA predictions (with PS

switched on, normalization is not absolute).

Note that only one D meson is observed in the COMPASS data. The second charmed

particle is not reconstructed. The NLO calculations from [241] and [242] also represent

integrated cross sections for only one charmed quark/meson observed in the final state.

The second charm quark as well as emitted gluon (present in a hard gluon emission NLO

processes) are integrated out. In any finite bin of pT and ED the observed D mesons can

be produced by LO process and by NLO processes with different energy emitted due to

radiated gluons. These gluons are also not observed and therefore the summation over all

configurations is applied. The limits of the integrations over an energy of the non-observed

particles are defined by the available phase space.
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The MC event contains partonic kinematic information. The observed D meson together

with the photon and initial gluon allow one to define the partonic kinematics at LO. The

second charmed particle is unambiguously ”fixed” at LO due to energy-momentum conser-

vation. For PS events the available energy is shared between unobserved final gluons and

unobserved second charm particle. Therefore different configurations lead to the same ob-

served D meson produced from the same initial photon and gluon. For every pT and ED

bin all corresponding MC events differ only in the energy of the emitted hard gluon and in

the energy of second charm particle, both unobserved. Therefore the partonic cross section

in the bin can be approximated by the sum of the LO cross section (no emission), virtual

and soft part of the NLO cross section and hard part of the NLO cross section, integrated

over emitted gluon energy from zero to the maximum gluon energy simulated in MC events

within the bin. Note that the distribution of the events inside the bin are not essential

because all events in the bin lead to the same observed D meson and the distributions of D

mesons nicely agree with the data as shown in Fig.5.16.

The procedure of calculating analysing power aLL at NLO is then the following. For

every simulated PS event, the energy of PS defines the upper limit of the integration over

the energy of the unobserved gluon in the hard NLO emission process. This integration

reduces the differential cross section for a three-body final state (cc̄g) (hard NLO part) into

a two-body one (cc̄) which can be combined with the LO cross-section (cc̄, PGF) and the

two-body virtual and soft NLO corrections. The latter part is due to the interference between

LO and higher order virtual loop corrections amplitudes. The procedure ensures cancellation

of infra-red divergencies [242]. In this way the total partonic cross-section at NLO accuracy

is calculated on an event-by-event basis for the spin averaged as well as spin dependent case.

Consequently the aLL at NLO QCD precision is obtained. The same procedure is applied

for the correction originating from light quarks.

The procedure uses MC events as a phase space simulation for theoretical NLO calcula-

tions. The part of information (e.g. distributions of the unobserved particles) is not used.

The similar situation exists with the azimuthal angle dependence. The LO partonic cross

section formulas, Eqs (5.9) and (5.9), used in the LO aLL calculation, are integrated over az-

imuthal angles while the MC events explicitly depend on them. The obtained results for LO

aLL coincide with the ones calculated with the help of the fully azimuthal angle dependent

formulas, see [225] 10.

In addition, the MC with PS is an effective model for simulating higher-order QCD

effects at the tree-level approximation. The virtual loops are not simulated and the PS are

10Strictly speaking it is true if the spectrometer acceptance is symmetric in the azimuthal angle; this has

been carefully checked at COMPASS analysis.
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regularized by the cut-offs MC parameters. Therefore MC with PS is not equivalent to the

MC in the NLO QCD approximation. There is still a big discussion how to use LO MC with

PS to simulate NLO processes but the subject is difficult and the satisfactory solutions exist

only in some cases [245] 11.
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Figure 5.17: Distributions of the analysing power aLL in LO and NLO QCD approximations. Note

the different normalisations of the LO and NLO samples.

The analysing power aLL at NLO calculated for every AROMA event may be param-

eterised by the ANN as was done for the LO extraction of the gluon polarisation. The

correlation between generated and parameterized aLL in NLO turned out to be smaller than

in the LO case. This is obvious since the partonic kinematics is more complicated in NLO

(e.g. there are 3 particles in the final state for real gluon emissions) while the input vec-

tor used for the Neural Network training is the same as in LO. The expected gain in the

precision of the gluon polarisation determination for the weighted method is thus lower at

NLO as compared to the LO analysis. The approach of section 5.4.2 is then followed and

the asymmetries in bins of pT and ED are used. In each (pD0

T , ED0) bin, the weighted aver-

ages of aLL/D: 〈aLL/D〉w2
S

and the weighted Acorr: 〈Acorr〉w2
S

are calculated and the gluon

polarisation is eveluated from the asymmetries given in Tables 5.6 – 5.8. The NLO light

quark contribution to the D meson asymmetry Acorr is very small compared to the measured

asymmetries as seen from the results in Table 5.10. The aLL distributions calculated in LO

and NLO QCD approximation are presented in Fig. 5.17.

Two-dimensional distributions of aLL and of AROMA events as a function of pD0

T and

11Recently a full NLO MC tool for heavy flavour photoproduction, based on HERWIG MC generator has

been developed [246].
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Figure 5.18: Distributions of aLL in bins of pD0

T and ED0 (left column) and of the corresponding

AROMA events (right column) in the LO (upper) and the NLO (lower) analysis. The lines indicate

bin boundaries.

ED0 for both LO and NLO are shown in Fig. 5.18. Clearly the pD0

T distribution is wider at

NLO than at LO.

As it was mentioned LO Monte Carlo generator AROMA with parton showers cannot

properly describe the full phase space for NLO processes due to the approximations used

when simulating the parton showers. In particular a very hard gluon emissions are not

generated in parton showers. This is a reason why integration over energy emitted due to

gluon radiation is limited to energy present in the PS event instead of maximum energy

allowed by phase space. Also, the normalisation of the generated event distributions is

based on the LO cross section. In order to estimate the potential effect on aLL related to the

approximations used in the parton shower concept, a second ”toy” Monte Carlo generator was

employed. The events with and without real gluon emissions are generated using uniformly

distributed partonic kinematic variables. Afterwards the events are reweighted according to

the correct unpolarised NLO cross-section, containing all the corrections: virtual, soft, and

hard gluon emissions. Such a procedure ensured proper NLO normalisation. This Monte

Carlo uses an independent fragmentation model and the D meson fragmentation function

is taken from the world most precise BELLE e+e− annihilation measurement [244]. The
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gluon polarisation determined from the asymmetries in bins of pD0

T and ED0 with aLL/D

calculated in AROMA with parton showers is well approximated by that using the ”toy”

Monte Carlo 12.

The final result on the gluon polarisation is obtained from all bins and is equal to〈
∆G

G

〉NLO

= −0.20± 0.21 (stat.), (5.38)

in the interval 0.18 < xG < 0.47 with 〈xG〉 ≈ 0.28 and at a scale 〈µ2〉 ≈ 13 GeV2.

The systematic uncertainties are still under investigation. The experimental systematic

error is similar to LO analysis. Theoretical uncertainties related to the scale dependence are

discussed in [242]. This uncertainty is smaller than in LO analysis. The uncertainties related

to the method used in the NLO analysis are not estimated yet. The total errors of the LO

as well as NLO results are dominated by large statistical errors. The NLO result on the
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Figure 5.19: The present NLO measurement of the gluon polarisation 〈∆G/G〉 at µ2 = 13 GeV2,

compared to the NLO QCD fits of COMPASS with ∆G > 0 (continuous line) and ∆G < 0 (long–

dashed), of LSS [247] (dashed and dotted curves respectively) and of DSSV [47] (dashed–dotted

curve), all at the same value of Q2 = 13 GeV2. The measurement error and the error bands are

statistical, horizontal bar marks an interval of xG in which 〈∆G/G〉 is determined.

gluon polarisation is shown in Fig. 5.19. The results of two global fits, DSSV [47] and LSS

12Here the comparison was made without simulating the detector acceptance. This simplification is not

crucial for the test because the asymmetry bins were chosen to minimize acceptance effect.
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[247], which employ both DIS and SIDIS asymmetries are also shown together with the new

COMPASS NLO QCD fits of polarised parton distributions. The latter include the result

on 〈∆G/G〉NLO, Eq.(5.38), obtained at a scale 〈µ2〉 ≈ 13 GeV2. A more detailed discussion

of the effect of open-charm NLO result on QCD NLO fits of PDFs is presented in Appendix

9.3.

The range of xG is determined by fitting a gaussian distribution in Log10(xG) and using

it’s RMS wide, c.f. [226] for details. The weighted average value of xG: 〈xG〉aLL
D
w2

S
, at which

the gluon polarisation is probed, depends on the analysing power and consequently, on the

QCD approximation used in the analysis. Moreover, due to the real gluon emissions in NLO

processes, the energy in the photon-gluon centre-of-mass system required to produce a given

D0 meson is higher than in LO where only the two-body PGF subprocess contributes. These

two effects lead to a higher average value of xG at which the gluon polarisation is determined

at NLO, 〈xG〉 ≈ 0.28, in contrast to 〈xG〉 ≈ 0.11 in the LO approximation.

The gluon helicity, ∆G, can be obtained by multiplying the gluon polarisation by the

G(xG, Q
2) value corresponding to the xG of the ∆G/G measurement. Using MRST 98 PDF

set [248] for the gluon parameterisation (which was used in MC for the estimation of aLL),

it was found that 〈∆G〉 are:

〈∆G〉LO = −0.83± 2.30 xG = 0.110.11
−0.05, (5.39)

〈∆G〉NLO = −0.20± 0.23 xG = 0.280.19
−0.10. (5.40)

The uncertainties contain the statistical and systematic errors added in quadrature and

multiplied by G(xG, Q
2). An additional error related to the choice of gluon PDF should

be also assigned but it is negligible comparing to the values in Eqs (5.39) and (5.40). The

results for 〈xG∆G〉 are shown in Fig. 5.20.

5.5 The D0 and D̄0 meson production asymmetry

The general agreement between the shapes of measured distributions and corresponding

AROMA MC generator predictions with the parton shower is rather good as shown in

Fig. 5.16. However, significant deviations have been observed between AROMA predictions

and the measured data with respect to the differences between D∗+ and D∗− production.

Fig. 5.21 shows particle-antiparticle asymmetries of the semi-inclusive cross sections:

AD
0,D̄0

(X) =
dσD

∗+ − dσD∗+

dσD∗+ + dσD∗+
=
dσD

0 − dσD̄0

dσD0 + dσD̄0
, (5.41)
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Figure 5.20: Different NLO QCD fits for xG∆G together with the LO and NLO results obtained

from the open-charm analysis. For references and description of the fits see Fig.5.19. Figure is

taken from [226].

for theD∗ tagged sample and for AROMA, as a function ofX = ν, ED0 , zD0 and pD
0

T 2 variables.

In the simple LO approach, assuming the PGF with independent fragmentation of charm

and anticharm quarks to be the relevant production mechanism, no differences should be

observed between D∗+ and D∗− production. However, for processes where the quark content

of the target remnant enters differences may occur. Only D∗− has a valence quark in common

with target nucleon.Furtheremore the c quark instead of fragmenting into D∗+ can hadronize

into a charm baryon together with a diquark of the target nucleon, leading to the so-called

associated production of, for instance D∗−Λc. If the parton shower and LUND fragmentation

model is used in AROMA, part of these effects are taken into account in the simulations

and therefore the asymmetry in the D∗+ and D∗− production is seen also in the MC, see

Fig. 5.21. A significant discrepancy is seen in zD0 dependence for large z but not in the other

kinematic dependencies. The data at large z were therefore discarded from the analysis of

gluon polarisation. Asymmetries between production of D0 and D̄0 or D∗+ and D∗− were

already observed in numerous earlier experiments, [249, 250, 251, 252, 253, 254] The reported

observations support the existence of the production mechanism others than PGF for large

zD0 . More details about the COMPASS results on the production of charm mesons can be

found in [222] and [255].

Spin-independent fragmentation has been assumed in the determination of the gluon po-
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Figure 5.21: The measured asymmetries A(X) for D∗ data (blue stars) and AROMA MC (red

crosses) events as a function of X = ν,ED0 , zD0 and pD
0

T 2 . The data were obtained in 2002-2006

years. This figure is reproduced from [222].

larisation from the open-charm D meson production data. The non-zero asymmetry AD
0,D̄0

from Eq. (5.41) may imply that the hadronization process can depend on the spin states of

the active parton and the target remnants. This hypothesis and its potential consequences

for the gluon polarisation determination is discussed below in the framework of a simple

model to obtain an upper limit on the possible effect. According to the formulae Eq.9.3

from Appendix 9.1 the potenial spin-dependent part of fragmentation function, ∆H, ap-

pears in the polarisation averaged as well as in the spin dependent parts of the cross section

for D meson production. A simple mechanism which that leads to spin dependence in the

fragmentation function could be the following. The fragmenting anti-charm quark from PGF

can form a D̄0 meson together with a u valence quark from the polarised target remnant

within the string-type LUND fragmentation model. Information about the initial polarisa-

tion state of the nucleon is then transferred to the fragmentation process and in principle the
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fragmentation can depend on the polarisation of the u quark. This mechanism is negligible

for D0 mesons which are produced from anti-u quark from the target remnant since the

sea quarks are practically unpolarised. Therefore, asymmetry in the fragmentation process

can occur between anti-D0 and D0 meson production. The dependence of the polarisation

in the fragmentation of the D̄0 meson can affect also the double-spin asymmetry, used in

the gluon polarisation determination. Simple calculations lead to the following expressions

for the muon-nucleon double-spin signal asymmetry AµN→µ′D0X and the D0 and D̄0 meson

production asymmetry AD
0,D̄0

:

AD
0,D̄0

= −1

2

∆G⊗ dσ̂ ⊗∆HD̄0

G⊗ dσ̂ ⊗H
, (5.42)

AµN→µ′D0X =
∆G⊗ d∆σ̂ ⊗H + 1

2
G⊗ d∆σ̂ ⊗∆HD̄0

G⊗ dσ̂ ⊗H
, (5.43)

where H = 1/2HD̄0
= 1/2HD0

is a fragmentation function and ∆HD̄0
describes the polari-

sation dependent part of fragmentation process. ∆HD0
= 0 and the Eqs (5.42) and (5.43)

are written in LO approximation. Generalization to NLO is straightforward. The produc-

tion asymmetry AD
0,D̄0

can be estimated in the same kinematic bins as the double-spin

asymmetry used in the gluon polarisation analysis. Solving Eqs (5.43) bin-by-bin allows one

to estimate the potential spin-dependent fragmentation effect (on the determination of the

gluon polarisation). LO calculations show that it is not possible to explain the whole effect of

the asymmetry AD
0,D̄0

only by spin-dependent fragmentation. Assuming, that only part of

the effect of the asymmetry AD
0,D̄0

can be related to spin-dependent fragmentation process

the solution of the Eqs (5.43) allowed to find the potential effect on gluon polarisation to

be very small (up to 5%). This estimate should be an upper limit on the effect. One can

then conclude that the observed asymmetry in the production of D0 and D̄0 mesons has, at

most, small impact on the gluon polarisation measurement from double-spin asymmetries

in D meson production. It is also clear that the production asymmetry AD
0,D̄0

is indication

of a mechanism different from PGF charm production. Associated production is a probably

candidate. Due to the cut on zD the determination of the gluon polarisation is not affected.

5.6 Summary of the gluon polarisation measurement

from open-charm D meson production

Detailed analysis of the open-charm data from the COMPASS experiment, performed at

LO and NLO QCD accuracy has been discussed. The gluon polarisation results have been
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obtained at a scale 〈µ2〉 ≈ 13 GeV2. The LO result is:
〈

∆G
G

〉LO
= −0.08 ± 0.21 (stat.) ±

0.09 (syst.) for xG range : 0.06, 0.22. The gluon polarisation result at NLO acuracy has been

found:
〈

∆G
G

〉NLO
= −0.20 ± 0.21 (stat.) in the xG range : 0.18, 0.47. The obtained gluon

polarisation is small, well below the values needed to restore the Ellis-Jaffe sum rule due to

the gluon anomaly term.



Chapter 6

Determination of the gluon

polarization from DIS events with

high-pT hadron pairs

In DIS, virtual photo-absorption is the dominant process. It does not provide direct access

to the gluon distribution since the virtual photon does not couple directly to the gluon.

Measurement of events from higher order photon-gluon fusion (PGF) processes is a way to

extract the gluon distribution and the gluon polarisation. The Feynman diagram of the PGF

Born process is presented in Fig. 6.1c together with the dominant DIS process (Fig. 6.1a)

and Compton gluon radiation (Fig. 6.1b).

q

γ

q

a)

q

γ
q

g

b)

g

γ

q̄

q

c)

Figure 6.1: DIS diagrams for γ∗N scattering: a) virtual photo-absorption (LP), b) gluon radiation

(QCD Compton diagram), c) photon-gluon fusion (PGF).

Both PGF and QCD Compton (QCDC) processes are of first order in the strong coupling

constant αS, so their contributions to the DIS cross section are lower than the Born virtual

photon absorption contribution. The cleanest way to tag the PGF process is via the open

charm-production, i.e. by selecting charmed mesons in the final state. Here the contribution
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from the dominant diagram is very small, because the charm quark contents in the nucleon is

negligible. Due to the large mass of the charm quark, the contribution from the fragmentation

processes is also low. However, for the same reason, charm pair production via PGF is

suppressed, so that the statistical precision on the gluon helicity distribution obtained in this

way is relatively low. In the previous chapter the determination of the gluon polarisation

from open-charm D meson production at COMPASS was discussed in detail. A way to

overcome the statistical limitation is to tag the PGF process for light quark pairs production

by detecting final state hadrons with large transverse momentum (pT ) with respect to the

virtual photon direction. In the dominant process, the hadron pT is due to the intrinsic

kT of quarks in the nucleon [256] and due to the fragmentation process, resulting in small

transverse momenta.

For QCDC and PGF processes hadrons mainly acquire transverse momentum from pri-

mary produced partons. The requirement of observing two hadrons with large transverse

momentum is expected to enhance the contribution of the PGF process in the selected sam-

ple. This method of selecting PGF events has been proposed in [125], revised in [257] and

applied in SMC ([215]), HERMES ([216, 217]) and also in COMPASS ([218]) experiments.

As the method requires selection of hadrons with large pT to enhance the fraction of PGF

events, the final sample is reduced. Therefore it is important to optimize the kinematic cuts

to find an optimal trade off between the PGF fraction in the data sample and the statistical

precision. This is especially important for DIS, where in addition Q2 > 1 GeV2 is required
1. Such an optimization was done in the SMC analysis [215] where for the first time a neural

networks approach was used in this type of analysis. In this chapter the determination of the

gluon polarisation from DIS events with high-pT hadron pairs observed in the final state with

the COMPASS experiment is presented. A new approach based on a statistical weighting

method and the ANN approach are discussed. For the first time the gluon polarisation result

is extracted in three bins of xG. The detailed description of this analysis can be also found in

[239, 258]. The analysis is performed in LO QCD approximation where the physical model

of the DIS interaction is composed of the three partonic level processes: the dominant DIS

process, QCDC and PGF, see Fig. 6.1. The potential contribution from resolved photons

is discussed and is estimated to be negligible in the COMPASS kinematic regime. The

unwanted contributions from the dominant DIS and QCDC processes are estimated with a

MC generator. Good agreement between the data and the MC sample is a crucial point in

this analysis. The NLO corrections for high-pT hadron pair production are only available

in the photoproduction limit [259, 260] and cannot be applied in this analysis. Some of the

NLO effects are taken into account in the systematics studies via parton showers in the MC.

1About 90% of the high-pT events collected in COMPASS are events in the Q2 < 1 GeV2 region.
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The chapter is organized as follows. In section 6.1 the decomposition of the asymmetry

and the relation to obtain the gluon polarisation from the measured asymmetries is dis-

cussed. The data sample and the event selections are discussed in section 6.2. In section 6.3

the weighting method is presented while the Monte-Carlo simulations and ANN training is

discussed in section 6.4. The gluon polarisation results are shown in section 6.6, followed by

a short summary of the gluon polarisation results in section 6.7.

6.1 Spin cross section asymmetry for high-pT hadron

pairs

The differential cross section for the production of two high-pT hadrons in the DIS regime,

Q2 > 1 GeV2, can be written as:

dσ = (G⊗ dσ̂PGF +
∑
q

e2
qq ⊗ dσ̂LP +

∑
q

e2
qq ⊗ dσ̂QCDDC)⊗H. (6.1)

A similar decomposition can be made for the spin-dependent part of the cross section. As

defined in the previous chapters, G and q denote PDFs for gluons and quarks respectively,

and H is a fragmentation function. Here for simplicity all kinematic variable dependencies

are omitted in the notation and ⊗ denotes a convolution integral.

The helicity asymmetry for the production of two high-pT hadrons in the DIS regime,

Q2 > 1 GeV2, can be expressed as a function of the Bjorken scaling variable x as follows:

A2h
LL(x) =

〈
∆G

G
(xG)

〉
aPGF
LL RPGF

〈
aPGFLL RPGF

〉
+
〈
ALO1 (x)

〉
DRLP

〈DRLP 〉

+
〈
ALO1 (xC)

〉
aQCDC
LL RQCDC

〈
aQCDCLL RQCDC

〉
, (6.2)

where

ALO1 ≡
∑

i e
2
i∆qi∑

i e
2
i qi

, (6.3)

and all other variables are integrated in the experimental kinematic domain. RLP , RPGF and

RQCDC are the process fractions, presented in Fig. 6.1. The corresponding partonic cross

sections needed for the analysing powers aPGFLL and aQCDCLL (i.e., the partonic cross section

asymmetry) have been calculated in [225]. For the PGF process, the partonic cross sections

are given in Eqs (5.9) and (5.9), with the quark mass m equal to 0. The partonic cross
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sections for the QCDC process are 2.

dσ̂ =
8α2e2

qαs

3x(ŝ+Q2)2

2(1− y) + y2
(

1− 2m2
l

Q2

)
2 Q2

(
2− 2 û Q2

(ŝ+Q2)2
− Q4 + û2

ŝ t̂

)
− 4(1− y) û

(ŝ+Q2)2

 ,
(6.4)

and

d∆σ̂ =
8α2e2

qαs

3x(ŝ+Q2)2

y (2− y − 2y2m2
l

Q2 )

2 Q2

[
2 (Q2 − û)

ŝ+Q2
− Q4 + û2

ŝ t̂

]
(6.5)

The depolarisation factor D, the fraction of the muon beam polarization transferred to the

virtual photon, depends mainly on y, as see from Eq.(5.10), and is equal to the analysing

power for the dominant DIS process. The quark momentum fractions are equal to Bjorken

x for the LP and to xC for the QCDC process. In the PGF events xG denotes the gluon

momentum fraction. The averaged values are defined in an analogous way to Eq. (5.7), as

follows:

〈
aPGFLL RPGF

〉
≡ aPGFLL G⊗ dσ̂PGF ⊗H

dσ
,

〈
∆G

G

〉
aPGF
LL RPGF

≡ ∆G/G aPGFLL G⊗ dσ̂PGF ⊗H
aPGFLL G⊗ dσ̂PGF ⊗H

,

(6.6)

for PGF.

The spin independent cross section dσ is given in Eq.(6.1). Similar definitions hold for the

LP and for QCD Compton processes.

The asymmetry ALO1 depends on x (xC) and very weakly on Q2. Therefore instead of the

weighted averaged values:
〈
ALO1 (x)

〉
DRLP

and
〈
ALO1 (xC)

〉
aQCDC
LL RQCDC

a parameterization of

ALO1 as a function of x can be used. The asymmerty in Eq.(6.2) then simplifies to:

A2h
LL(x) =

〈
∆G

G
(xG)

〉
aPGF
LL RPGF

〈
aPGFLL RPGF

〉
+ALO1 (x) 〈DRLP 〉+ALO1 (xC)

〈
aQCDCLL RQCDC

〉
.

(6.7)

The evaluation of ∆G/G from the experimental asymmetry A2h
LL using expression (6.7)

is possible only when the contribution from background processes (LP, QCDC) can be com-

puted and subtracted. Therefore the analysis requires a precise Monte Carlo description of

2The partonic cross sections presented here are integrated over azimuthal angles of the partons. The

unintegrated formulae taken into account the the azimuthal angles dependences were used in the analysis,

see [225].
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the data, so that the fractions R and the analysing powers aLL can be reliably determined.

The LO asymmetry ALO1 can be evaluated from the PDFs (polarised and unpolarised quarks

distribution functions extracted e.g. from global fits), or by using directly the measured Ad1
inclusive asymmetries 3. In this analysis the measured asymmetry Ad1 has been used which

is less dependent on QCD analysis and related assumptions.

Expression (6.7) is valid at LO accuracy. The possible spin dependence of the fragmen-

tation functions (see Appendix 9.1) is neglected. The latter effect was estimated in a MC

study performed with LEPTO [261] generator. A string-type mechanism to describe the

fragmentation process in LEPTO is used [142]. The probability for a diquark to be in a

scalar state based on the SU(6) proton wave function was introduced [144]. This method

allows one to set an upper limit on the effect related to the potential spin dependence in the

fragmentation process. The effect was found to be negligible in the COMPASS kinematical

regime while it can be more significant for HERMES kinematics.

The inclusive asymmetry AinclLL can be decomposed analogously to A2h
LL in Eq. (6.7):

AinclLL (x) =

〈
∆G

G
(xG)

〉
aincl,PGF
LL Rincl

PGF

〈
aincl,PGFLL Rincl

PGF

〉
+ ALO1 (x)

〈
DRincl

LP

〉
+ ALO1 (xC)

〈
aincl,QCDCLL Rincl

QCDC

〉
. (6.8)

Note that y, x, xG and xC , and consequently D and aLL, can be different in the inclusive

and high-pT samples. It was, however, checked in MC simulation that the averaged xG and

xC in the two samples are very similar and they will be thus the same below.

The combination of Eqs (6.7) and (6.8) and neglect small terms (note that the fractions

RPGF and RQCDC are much smaller for the inclusive sample than for the high-pT sample)

leads to:

3The COMPASS high-pT data used in the present analysis were collected with a deuteron target.
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A2h
LL(x) =

〈
∆G

G
(xG)

〉
aPGF
LL RPGF

〈
aPGFLL RPGF

〉
− 〈DRLP 〉〈

DRincl
LP

〉 〈∆G

G
(xG)

〉
aincl,PGF
LL Rincl

PGF

〈
aincl,PGFLL Rincl

PGF

〉

−

〈
aQCDCLL RQCDC

〉
〈
DRincl

LP

〉 〈
∆G

G
(x′G)

〉
aincl,PGF
LL Rincl

PGF

〈
aincl,PGFLL Rincl

PGF

〉

+
〈DRLP 〉〈
DRincl

LP

〉
AinclLL (x)− AinclLL (xC)

〈
aincl,QCDCLL Rincl

QCDC

〉
〈
DRincl

LP

〉


+

〈
aQCDCLL RQCDC

〉
〈
DRincl

LP

〉
AinclLL (xC)− AinclLL (x′C)

〈
aincl,QCDCLL Rincl

QCDC

〉
〈
DRincl

LP

〉
 . (6.9)

The averages in Eq.(6.9) are evaluated over all events that have the same x (or are within

the same bin in x). In the weighing method the statistical weight is determined for every

event-by-event. The corresponding formula for A2h
LL(x) written formally for a single event

reads:

A2h
LL(x) =

∆G

G
(xG)

[
aPGFLL RPGF −

RLP

Rincl
LP

aincl,PGFLL Rincl
PGF

]
− aQCDCLL RQCDC

DRincl
LP

∆G

G
(x′G)aincl,PGFLL Rincl

PGF

+
DRLP

Rincl
LP

[
A1(x)− A1(xC)

aincl,QCDCLL Rincl
QCDC

DRincl
LP

]

+
aQCDCLL RQCDC

Rincl
LP

[
A1(xC)− A1(x′C)

aincl,QCDCLL Rincl
QCDC

DRincl
LP

]
, (6.10)

where A1 = AinclLL /D.

Since ∆G/G appears in Eq. (6.10) at xG and x′G, the determination of the gluon polar-

isation requires the definition of an effective xG value that is probed in the measurement.

This relies on the assumption of a linear dependence of ∆G/G on xG:

xavG =
α1xG − α2x

′
G

α
(6.11)

where:
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α1 = aPGFLL RPGF − aincl,PGFLL RLP
Rincl
PGF

Rincl
LP

, (6.12)

α2 = aincl,PGFLL RQCDC
Rincl
PGF

Rincl
LP

aQCDCLL

D
. (6.13)

Although the shape of the gluon polarisation is not known, the assumption of a linear

dependence in xG can be fulfill for an appropriate choice of the xG binning.

The final relation between the gluon polarisation and the measured asymmetry A2h
LL can

be written as follows:

∆G/G(xavG ) =
A2h
LL(x)− Acorr

α1 − α2

, (6.14)

where

Acorr = A1(x)D
RLP

Rincl
LP

+ A1(xC)
1

Rincl
LP

(aQCDCLL RQCDC − aincl,QCDCLL Rincl
QCDC

RLP

Rincl
LP

)

− A1(x′C)aincl,QCDCLL

Rincl
QCDC

Rincl
LP

RQCDC

Rincl
LP

aQCDCLL

D
. (6.15)

6.2 Data sample and event selection

The data were collected during the years: 2002 - 2004 and 2006. Events retrained for the

further analysis were required to have an interaction vertex located in the target fiducial

volume, a beam muon (µ) and a scattered muon (µ′). The DIS region is selected by the

usual Q2 > 1 GeV2 and by a selection depending on the the energy fraction y carried by

the exchanged virtual photon; events with y < 0.1 are rejected because their depolarisation

factor is rather low, while events with y > 0.9 are rejected because they are strongly affected

by radiative effects. The above cuts define the inclusive sample. The high-pT sample requires

at least two additional charged hadrons associated with the vertex. The two with the highest

pT are considered to in the analysis. The following selection criteria are applied to hadron

candidates: pT1 > 0.7 GeV for the leading hadron and pT2 > 0.4 GeV for the sub-leading

one; the Feynman variable xF > 0 for both hadrons and z1 + z2 < 0.95, where z is the

hadron energy divided by the virtual photon energy, in order to remove events originating

from exclusive processes. After all cuts, a sample of about 7.3 million events is used in the

present analysis.
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6.3 The analysis method

A method similar to the one used in the inclusive asymmetry measurement at COMPASS

[262] is used in this analysis 4. This method is similar also to the weighting method used in

the determination of the gluon polarisation from open-charm D meson production, discussed

in the previous chapter. In this approach data from different cells j = u, d, u′, d′ are combined

so that the beam fluxes, the apparatus acceptances and the unpolarised cross sections cancel

out. The gluon polarisation can be estimated by solving the following second order equation:

pupd′

pu′pd
=

(1+ < Cu >w + < βu >w ∆G/G(xavG ))(1+ < Cd′ >w + < βd′ >w ∆G/G(xavG ))

(1+ < Cu′ >w + < βu′ >w ∆G/G(xavG ))(1+ < Cd >w + < βd >w ∆G/G(xavG ))
,

(6.16)

where pj is a sum of event weights w in the sample j and < Cj >w and < βj >w are weighted

means of fPbPtA
corr and fPbPt(α1−α2), respectively. The weight w in the current analysis

is defined as w = fPb(α1 − α2). Eq.(6.16) is obtained from a set of equations similar to

Eqs (5.16) and (5.20). In the original SMC ([215]) high-pT analysis only mean values of the

fractions R and analysing powers aLL for the three processes were used. The contribution of

the leading process (LP) was suppressed by requiring the presence of two hadrons with very

high transverse momenta. This requirement leads to a severe loss of statistics. In the present

analysis, a Bayesian driven ANN approach for the extraction of ∆G/G is used. It allows

the use of less restrictive pT cuts by dealing simultaneously with the three processes. The

ANN, trained on a MC sample, assigns to each event a probability of originating from one

of the three processes. The weight w, constructed for each individual event, includes these

probabilities. Events which most likely are not PGF are kept with a weight which reduces

their contribution to the gluon polarisation. For a given event different ANNs provide not

only the probabilities of the various processes but also their analysing powers as well as the

xC and xG variables. As in the open-chamr analysis the weighting approach based on the

ANN makes optimal use of the statistical power of the data and allows to avoid biases which

may result from correlations between the analysing power and the kinematic quantities used

to evaluate asymmetries.

4The formulae for a first-order and for a second-order as well as for a weighted method applied to the

high-pT analysis in COMPASS are discussed in [239].
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Figure 6.2: Comparison between data (histogram) and MC LEPTO simulations using COMPASS

tuning (full squares) and default LEPTO tuning( open circles) The distributions of the inclusive

variables Q2, x and y.are shown in top figures whereas the data/MC ratios are shown in the bottom.

Normalized to the number of events.

6.4 Monte-Carlo simulations and ANN training

In the high-pT analysis the same ANN package is used as in the open-charm analysis [263].

Many results derived from the Neural Network approach strongly depend on the Monte Carlo

sample on which the ANN is trained. Hence a precise description of the experimental data

by MC is essencial for the analysis.

The LEPTO event generator was used to generate both an inclusive DIS sample and a

sample which already contains at least a two of high-pT hadrons. The generated events were

processed by the COMPASS detector simulation package COMGEANT and reconstructed

in the same way as real events by the COMPASS reconstruction program CORAL. Finally,

the same cuts used in the analysis of real data were also applied on the reconstructed MC

samples. The MSTW08 PDF parametrization [264] has been used in the analysis as it gives

reasonable agreement with F2 measured in the COMPASS kinematic range and is valid down

to Q2 = 1 GeV2. The LEPTO ”built in” FL function (calculated inside the MC generator

from the PGF and QCDC contributions) is used to improve data/MC agreement in the high

y region. Finally, a correction for radiative effects, as described in [265], was introduced.

For the better description of the hadronic variables, the Parton Shower (PS) option in
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Figure 6.3: Comparison between data (histogram) and MC simulations using COMPASS tuning

(full squares) and default LEPTO tuning (open circles), in terms of distributions and Data/MC

ratios for the hadronic variables: pT1 , pT2 , p1, p2 and the hadron multiplicity, normalized to the

number of events.

LEPTO has to be enabled. However this procedure introduces some inconsistency, since PS

simulates higher order effects while the gluon polarisation ∆G/G is determined at LO. The

impact of this discordance is taken into account in the evaluation of systematic errors. To

further improve the agreement with data for the hadronic variables, some parameters de-

scribing the fragmentation process in LEPTO have been tuned (Table 6.1). They correspond

to the width of the gaussian pT distribution (PARJ 21), the shape of the non-gaussian tail

(PARJ 23-PARJ 24) and the symmetric Lund fragmentation function (PARJ 41-PARJ 42)

[261, 142]:

PARJ 21 PARJ 23 PARJ 24 PARJ 41 PARJ 42

Default 0.36 0.01 2.0 0.3 0.58

COMPASS 0.34 0.04 2.8 0.025 0.075

Table 6.1: LEPTO parameters with default and changed values used to tune the fragmentation

function.

The comparison of the high-pT data sample and MC with COMPASS and default LEPTO

tuning is shown in Fig. 6.2 for the inclusive variables Q2,x and y, and in Fig. 6.3 for

the hadronic ones, the leading and sub-leading hadron momenta p1, p2, the correspond-
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ing transverve momenta pT1 , pT2 , and the hadron multiplicity. One observes that, with

COMPASS MC tuning, a satisfactory description is obtained for these distributions.

To parametrize processes fractions and analysing powers needed to determine the statisti-

cal weight w several ANN were used. The input vectors contain the reconstructed kinematical

observables and the ANN are designed to provide a parametrization of a required quantity

X. The ANN are trained to give as an output the expectation value of X for the considered

values of the input parameters [239, 258]. For the inclusive sample the input parameters

are x and Q2, while for the high-pT sample the transverse and longitudinal momenta of the

leading and sub-leading hadrons, pT1 , pT2 , pL1 , and pL2 , are used in addition. The trained

ANN were then used on the real data to obtain statistical weights for every event.

Fig. 6.4 shows an example of ANN parameterization of three processes fractions R′s

in two-dimensional plots as a function of all input variables used in the ANN training.

As expected, the LP contribution decreases with increasing transverse momentum of the

hadrons, while contribution of QCDC and PGF increase. The PGF fraction is very small

at high x and the QCDC dominates at high y. LP is concentrated on the lower values of y.

The fractions R′s are classified by two ANN output variables o1 and o2 in the following way:

RLP =
2√
3
o2, RQCDC = o1 −

1√
3
o2, RPGF = 1− o1 −

1√
3
o2. (6.17)

The two-dimensional plots of MC events as a functions of o1 and o2 are shown in Fig. 6.5.

MC events distributions for three different sets of pT cuts, pT1 > 0.7 GeV and pT2 > 0.4

GeV, pT1 > 0.7 GeV and pT2 > 0.7 GeV and pT1 > 1.2 GeV and pT2 > 0.7 GeV are shown

to illustrate the increase of the PGF and QCDC fractions with these cuts.

An example of the quality of the ANN parametrization is given in Fig. 6.6. It shows

the probability of the LP, QCDC and PGF processes as a function of
∑
p2
T for the MC

and for the parametrization given by the ANN. Good agreement is observed. While the LP

probability reduces with pT (pT1 , pT2 and
∑
p2
T ), the QCDC and PGF become the more

significant contributions.

The ANN parameterizations of the analysing powers and momenta fractions xG and xC

have been obtained in a similar way as in the open-charm analysis, (c.f. section 5.3.2). The

correlations between MC aLL and the ANN parameterized ones are smaller than in the LO

open-charm case because the high-pT model used in this analysis contains three different

processes while LO open-charm production is dominated only by PGF.
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Figure 6.4: ANN parameterization of fractions R of three processes presented as a two-dimensional

projections of six input variables: (pT1 , pT2), (pL1 , pL2), (x,Q2). Each time four out of these six

variable in the ANN input vector are chosen as a weighted mean values of the high-pT sample:

x = 0.012, Q2 = 2.2 GeV2 , pT1 = 1.4 GeV, pT2 = 0.8 GeV, pL1 = 30 GeV and finally pL2 = 18

GeV.

6.5 Systematic studies

The main contribution to the systematic error comes from the MC dependence in the analy-

sis. In total, seven MC samples were generated with different combinations of fragmentation

tuning. They consisted in default LEPTO or COMPASS tuning, parton shower (PS) on and

off options, different choices of the PDFs (MSTW08, CTEQ5L [266] ) and with different

FL functions ( LEPTO ”built in” and from the R = σL/σT parametrization of [267]). In

addition different s0-called cut-off parameters schemes (cf. [261]) for PS on and PS off MC

options were used. They do not affect the data/MC comparison but they change the fraction

e.g. PGF events and are therefore important for systematics studies. So, while keeping the

cut-offs default parameters [261], a various cut-off parameters schemes were tested. The

RMS value of the obtained ∆G/G from these MC samples was found to be small, 0.02

However, it turned out that the asymmetry A2h
LL is very small, and so the above RMS may
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Figure 6.5: The MC events distributions as a function of the output variables: o1 and o2 of the

ANN parameterization of fractions R′s. Three different sets of pT cuts are shown: pT1 > 0.7 GeV

and pT2 > 0.4 GeV (left), pT1 > 0.7 GeV and pT2 > 0.7 GeV (middle), and pT1 > 1.2 GeV and

pT2 > 0.7 GeV (right). The plots illustrate the increase of the PGF and QCDC fractions in the

samples with these pT cuts.

underestimate the systematic uncertainty related to MC. To avoid this, it was considered in

addition how the statistical error of ∆G/G changes for various MC tunings. This leads to an

error contribution δ(∆G/G)MC = 0.045. The other uncertainty contributions are discussed

below.

The uncertainty of ∆G/G due to choice of Ad1 parameterization and stability of the

ANN results were found to be small, δ(∆G/G)Ad
1

= 0.015 and δ(∆G/G)NN = 0.010 respec-

tively. The uncertainties of f, Pb, and Pt have an even smaller impact on the final result:

δ(∆G/G)f,Pb,Pt = 0.004 .

The HERMES results [268] suggest that for heavier nuclei the dilution factor f depends

on the transverse momentum of hadrons. In COMPASS, tests were performed to check this

dependence. No such dependence is observed for the 6LiD target as compared to He, the

medium in which the target material is immersed. 5

A possible spin dependence of the fragmentation functions is also neglected. Its effect

was estimated in a MC study performed with LEPTO in which the probability for a diquark

to be in a scalar state was introduced based on SU(6) proton wave function [144] and it was

found to be very small in our kinematic regime.

The experimental false asymmetries appear if the acceptance ratio of the neighbouring

cells is different for the data taken before and after the field reversal. They were searched for

5This effect can be important for COMPASS proton target data. In this analysis only deuteron data,

collected on 6LiD target are analysed.
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Figure 6.6: ANN parameterization and MC results comparison for fractions RPGF , RQCDC , RLP

in bins of
∑
p2
T .

in a sample in which cuts on transverse momenta of the hadrons were lowered to pT1,2 > 0.35

GeV and Q2 > 0.7 GeV2. This lead to a large increase in statistics and allowed more

precise studies of the spectrometer stability. False asymmetries exceeding the statistical

error were not found. Taking this error as a limit for the false asymmetries one obtains

δ(∆G/G)false = 0.019 .

The two different values xC and x′C appearing in Eq. (6.14 ) were assumed to be equal.

Two tests were performed to check the systematic effect of this assumption. In the first one,

xC = 1.6xC was assumed. The value 1.6 was found as an ”educated guess” taken from MC.

In the second one, the ANN parameterisation of xC was used with the previously obtained

xC (instead of x) as an input parameter. This leads to δ(∆G/G)form = 0.035

The expression used for the calculation of aLL assumes that the quarks are massless.

This assumption can be questioned for the strange quarks. Tests were performed excluding

kaons from the data sample, or making a parametrization of the ANN using as an input

events only with pions. The final results were found to be unchanged within the expected

statistical fluctuations.

The impact of the resolved photon processes on the extracted value of ∆G/G was also

studied. Using the RAPGAP generator [237] it was found that events originating from

resolved photons are expected to have very different kinematic distributions with respect to
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the event from high-pT sample. It was checked whether adding an admixture of events from

resolved photon processes can improve the MC description of the data. The results show

that the contribution from resolved photons in the considered kinematic range is well below

1% and, hence, negligible. The more detailed discussion about resolved photon contribution

to this analysis can be found in [239].

total bin 1 bin 2 bin 3

δ(∆G/G)MC 0.045 0.077 0.067 0.129

δ(∆G/G)A1d 0.015 0.021 0.014 0.017

δ(∆G/G)NN 0.010 0.010 0.010 0.010

δ(∆G/G)f,Pb,Pt 0.004 0.007 0.007 0.010

δ(∆G/G)false 0.019 0.023 0.016 0.012

δ(∆G/G)form 0.035 0.026 0.039 0.057

TOTAL 0.063 0.088 0.081 0.143

Table 6.2: Summary of the systematic contributions.

The contributions to the systematic uncertainty and their quadratic sum are presented

in Table 6.2. They were also evaluated in three xG bins defined below (see Table 6.3). The

total systematic uncertainty of the ∆G/G results is estimated to be 0.063, which is slightly

larger than the statistical error.

6.6 The gluon polarisation results

∆G/G has been extracted with Eq.(6.16) for every conguration separately 6 to reduce sys-

tematic uncertainties. The results have been corrected for the probability of the deuteron

target to be in a D-wave state [121]. The mean values for each year of data taking are shown

in the left-hand plot of Fig. 6.7. They are compatible within their statistical errors, with a

global average:

∆G/G = 0.125± 0.060(stat.)± 0.063(syst.), (6.18)

at xG = 0.09 and hard scale µ2 = 3 GeV2 .

The data cover the range 0.04 < xG < 0.27 and have been divided into three statistically

independent subsamples by cuts on the xG variable parameterised by the ANN. . The

correlation between the generated and the parameterised xG is about 62% As a consequence,

the division leads to three xG bins which have different mean values but a large overlap. The

6One conguration usually corresponds to 16h (2 days) of data taking in 2002 - 2004 (2006).



6.6 The gluon polarisation results 135

G
/G

!

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

All data: 2002-2006

2004 2003 2004 2006 All
data

-210 -110
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

gx

g/
g 

!

, prel., 02-062>1 (GeV/c)2, Q
T

COMPASS, high p
, prel., 02-042<1 (GeV/c)2, Q

T
COMPASS, high p
COMPASS, open charm, prel., 02-07

2>1 (GeV/c)2, Q
T

SMC, high p
2, all Q

T
HERMES, high p

2=3(GeV/c)2µG>0, !COMPASS Global fit with  
2=3(GeV/c)2µG<0, !COMPASS Global fit with  

, prel., 02-062>1 (GeV/c)2, Q
T

COMPASS, high p
, prel., 02-042<1 (GeV/c)2, Q

T
COMPASS, high p
COMPASS, open charm, prel., 02-07

2>1 (GeV/c)2, Q
T

SMC, high p
2, all Q

T
HERMES, high p

2=3(GeV/c)2µG>0, !COMPASS Global fit with  
2=3(GeV/c)2µG<0, !COMPASS Global fit with  

, prel., 02-062>1 (GeV/c)2, Q
T

COMPASS, high p
, prel., 02-042<1 (GeV/c)2, Q

T
COMPASS, high p
COMPASS, open charm, prel., 02-07

2>1 (GeV/c)2, Q
T

SMC, high p
2, all Q

T
HERMES, high p

2=3(GeV/c)2µG>0, !COMPASS Global fit with  
2=3(GeV/c)2µG<0, !COMPASS Global fit with  

Figure 6.7: Left: ∆G/G for each year of data taking and the final average value. Right: comparison

of the final ∆G/G as a function of xG with the previous results. The QCD fit curves are from [8] .

results, listed in Table 6.3, provide no evidence for any signicant dependence of ∆G/G on

xG. These results are compared with previous LO evaluations of ∆G/G based on high-pT

hadronic events in Fig. 5.14. In the right-hand plot of Fig. 6.7 the global average ∆G/G

result is shown together with previous LO results.

total bin 1 bin 2 bin 3

xG mean < xG >= 0.09 < xG >= 0.07 < xG >= 0.10 < xG >= 0.17

xG range 0.04 < xG < 0.27 0.04 < xG < 0.12 0.06 < xG < 0.17 0.11 < xG < 0.27

∆G/G 0.125± 0.060 0.147± 0.091 0.079± 0.096 0.185± 0.165

Table 6.3: Summary of the ∆G/G results.

The ∆G/G results obtained in the quasi-real photoproduction regime (Q2 < 1 GeV2) at

COMPASS are also shown in Figs 5.14 and 6.7. The hard scale in this analysis is defined by∑
p2
T of the hadron transverse momenta instead of Q2. Therefore, in addition to the cuts on

pT of the leading and sub-leading hadrons,
∑
p2
T > 2.5 GeV2 is required. The physical model

used in the low-Q2 high-pT COMPASS analysis is based on PYTHIA MC generator [223],

which include the resolved photon contribution as well as LP, PGF and QCDC. The resolved

photon processes contribute significantly ( 50% according to PYTHIA MC ) to the high-pT

hadron pairs production in photoproduction regime while they are negligible in the large

Q2 DIS domain. These contributions introduce a important uncertainty related to the so-

called hadronic component of the photon structure. The polarised photon structure has not
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been measured to data. On the other hand the DIS events used in the analysis presented

here became only a small fraction of the collected events; about 90% of the COMPASS

high-pT hadron pair events originate from the photoproduction domain. More details of

the determination of the gluon polarisation in the quasi-real photoproduction regime at

COMPASS can be found in [218] and in [269, 270]. The hard scale and the range of gluon

momentum are almost the same as in both COMPASS measurements and the two values

of ∆G/G are compatible within their statistical error. The ∆G/G value obtained in the

COMPASS open charm analysis at LO (see chapter 5) is also in a good agreement with the

presented results. The SMC results from high-pT , Q2 > 1 GeV2 [215] and the HERMES

results from high-pT , all Q2 analyses [217] are also compatible with the present ones.

In conclusion, a direct measurement of the gluon polarisation extracted in the LO approx-

imation has been performed on all COMPASS data taken with longitudinal polarised 6LiD

target. ∆G/G is extracted at from a large sample of DIS events with Q2 > 1 GeV2, including

a high-pT hadron pair, by a method based on the Neural Networks. This approach increased

the statistical precision of the result by almost a factor two with respect to the standard

method in which a set of cuts is applied to pT1,2 to optimize δ(∆G/G). For the first time the

gluon polarisation was evaluated in three intervals of the fractional gluon momentum.

6.7 Summary of the gluon polarisation measurement

The direct measurements of the gluon plarisation performed by SMC, COMPASS and HER-

MES Collaborations indicate that gluons are not polarised in the xG range covered by the

measurements. The collider experiments STAR [11] and PHENIX [12] at RHIC measured

the gluon polarisation by observing helicity asymmetries for hadrons and jets in polarised

proton-proton collisions. These measurements of the double spin longitudinal asymmetries

have been used in a global QCD fits an the results also indicate that gluons are weakly

polarised [46]. There is, however, also true that the precision of the gluon polarisation mea-

surements is still not satisfactory. Therefore the better measurements with higher precision

are needed.

The interesting question is if gluons are polarised in a very small xG domain. To measure

the gluon polarisation in this region one needs to wait for a new lepton-proton/ion collider,

see e.g. [42] and [205]. From the other hand the gluon polarisation can be ”washed out” by

the gluon-gluon interactions dominated at small xG. Therefore there are no strong arguments

for highly polarised gluons concentrated at small xG in the nucleon. The weak sea quarks

polarisation observed in many experiments also can suggest that gluons are not strongly

polarised. The gluons for large xG region are also not precisely measured but they are
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strongly suppressed.

If gluons are not polarised or in opposite, if they are strongly polarised, the OAM of

partons should play an important role in the structure of the nucleon. This interesting

subject is shortly discussed in the next chapter.



Chapter 7

The spin structure of the nucleon;

GPDs and orbital motion

During four decades of DIS experiments of high energy leptons off nucleons, the knowledge of

the nucleon structure has made impressive progress. The collinear (longitudinal) structure

of the nucleon is encoded in PDFs. The successful prediction of the scale dependence of

the PDFs is one of the great successes of QCD. The complementary aspect of the nucleon

structure is the description of partons in the transverse plane in momentum space. On the

quantum field theoretical ground TMDs are adequate to describe the transverse structure

of the nucleon. The TMDs are discussed in detail in chapter 3. The TMDs depend on

the intrinsic motion of partons inside the nucleon and allow reconstruction of the three-

dimensional nucleon structure in momentum space. Most TMDs would vanish in the absence

of parton OAM and therefore the TMDs offer the opportunity to learn about the OAM

of quarks and gluons inside a nucleon. In addition most TMDs and related observables,

azimuthal asymmetries, are due to couplings of the transverse momentum of quarks with the

nucleon (or the quark) spin. This ”spin-orbit” correlations, similar to those in the hydrogen

atom, can therefore be studied. The relation between OAM and TMDs is, however, rather

qualitative and model dependent.

To complete the three-dimensional imaging of the nucleon the information from TDMs is

combined with the information on the parton spatial distribution from GPDs. The Fourier

transform of the GPDs can be expressed in terms of Impact Parameter Distributions (IPDs).

These IPDs provide a probabilistic interpretation of GPDs. Hard exclusive reactions such

as deeply virtual Compton scattering (DVCS) and exclusive production of mesons can give

an access to GPDs.

GPDs generalize the form factors, distribution amplitudes and standard PDFs and quan-
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tify various correlations/distributions of quarks and gluons in terms of their momentum

fractions and positions in the transverse plane (IPDs).

The GPDs as seen in DVCS depend on the photon virtuality Q2 , the total four-

momentum square t transferred between initial and final nucleon states and on x and ξ.

The latter two variables represent respectively the average and half the difference between

the initial and final longitudinal momentum fractions of the nucleon, carried by the par-

ton throughout the process. Note that here x is not equal to Bjorken xBj in DIS and can

be negative. Negative momentum fractions are identified with antiquarks. Note also that

GPDs appear in the DVCS amplitude instead of the DIS cross section 1. Only Q2, t and

ξ = xBj/(2− xBj) (Bjorken limit) are accessible experimentally; x is a variable which is in-

tegrated over (due to the loop in the ”handbag” diagram describing GPDs at LO accuracy).

To take into account the spin properties of hadrons and quarks, one needs four GPDs: H,

H̃, E and Ẽ. The GPDs H i and H̃ i (i = u, d, s,G), which describe nucleon-helicity conserved

scattering processes, include as limiting cases (t = 0, ξ = 0) the standard polarised and

unpolarised PDFs. The case of nucleon-helicity flip is described by the GPDs Ei and Ẽi for

which there are no such limiting cases. GPDs with ξ 6= 0 describe the correlations. Taking

only the point t = 0 (forward limit) corresponds to integration over impact parameters

(IPDs, see section 7.1) and information about the transverse structure is lost.

The first moment (in x) of GPDs give the electromagnetic form factors. Form factors

contain information about the distribution of partons in the transverse plane. As the form

factor is a first moment of GPDs, they involve integration over the momentum fraction x.

Information about longitudinal structure is thus lost.

The E functions are inaccessible in DIS as the DIS is described by forward limit. However

the limit: t = 0 and ξ = 0 of E exists:

Ei(Q2, x, 0, 0) = κi(x) (7.1)

and its integral leads to the anomalous magnetic moment of the nucleon:∑
q

eq

∫ 1

0

(κq(x)− κq̄(x))dx = κN (7.2)

The GPDs are related to TAM as defined in Ji’ s sum rule [31]:

Jq(Q2) =
1

2

∑
i=q,q̄

∫ 1

−1

x(H i(Q2, x, ξ, 0) + Ei(Q2, x, ξ, 0))dx (7.3)

JG(Q2) =
1

2

∫ 1

−1

x(HG(Q2, x, ξ, 0) + EG(Q2, x, ξ, 0))dx (7.4)

1They can be also defined in terms of so-called nonforward parton distributions,see [205].
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and
1

2
= Jq(Q2) + JG(Q2) (7.5)

The variable ξ can be arbitrary in Eqs: (7.4) and (7.4) but fixed. Fixing ξ = 0 the Ji’s sum

rule can be written as follows:

Jq(Q2) =
1

2

∑
q

∫ 1

0

x(q(x,Q2) + q̄(x,Q2) + κq(x,Q2) + κq̄(x,Q2))dx (7.6)

JG(Q2) =
1

2

∫ 1

0

x(G(x,Q2) + κG(x,Q2))dx (7.7)

The momentum integral add up to 1 while the angular momenta to 1/2, Eq. (7.5) and the

following interesting sum rule for GPD E is obtained:∑
q

∫ 1

0

x(κq(x,Q2) + κq̄(x,Q2) + κG(x,Q2))dx = 0 (7.8)

Note, that only valence quarks contribute to κN , while Jq involves also sea quarks.

All these relations seem to be a good way to constrain the contributions from the total

quark angular momenta to the nucleons spin budget.

In general, the GPDs contain much richer structural information on the nucleon than

conventional form factors and structure functions. There are two possible approaches to

model GPDs: calculations in specific dynamical models like the bag model or the chiral

soliton model, or relations of the GPDs and the PDFs and form factors. In the latter case

the key point is the interplay between the x, ξ and t dependencies of the GPDs. An example

is given in Fig. 7.1 , where one particular model [271, 272] for GPD H is shown as a

function of x and ξ at t = 0. One can easily identify the standard quark density PDF at

ξ = 0 including its typical rise around x = 0 corresponding to the diverging sea contribution.

The negative x part is related to antiquarks.

The QCD evolution equations for GPDs are similar to those for the PDF and in principle

allow one to fit the data using parameterizations of GPDs and to extract the less model

dependent information on them. At the moment, our knowledge about GPDs is mostly

limited to the valence quark GPDs (HERMES , COMPASS, Jefferson Lab 6 GeV and also

Jefferson Lab 12 GeV in the near future) and rather low precision data from HERA, see

[32]-[41]. A high-energy high-luminosity Electron-Ion Collider (EIC) will be a good machine

for studies of hard exclusive reactions and sea quark and gluon GPDs. [42, 205]. Ref. [205]

contains a recent review of the present knowledge of GPDs and future prospects for their

measurement.
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Figure 7.1: An example of the GPD H model [271, 272] as a function of x and ξ for t = 0. For

ξ = 0 the typical shape of the standard quark PDF distribution is seen. The negative x part is

interpreted as the antiquark contribution. The figure is taken from [271].

In next sections of this chapter selected topics related to orbital motion are discussed.

In section 7.1 relations between TMDs and IPDs (Fourier transforms of GPDs) are dis-

cussed. The qualitative description of Sivers effect can be made in terms of distorted IPDs

and so-called Chromodynamic lensing. Remarks related to the controversy on the defini-

tion of OAM/TAM are given in section 7.2. Results for OAM obtained from Lattice QCD

calculations and on selected nonperturbative models are discussed in section 7.3.

7.1 Transverse distortion, QCD lensing and the Sivers

effect

A particularly simple physical interpretation for the GPDs as probability densities exists in

the limiting case ξ = 0 where the parton carries the same longitudinal momentum fraction

x in initial and final state and hence the momentum transfer is purely transverse, t =

−~∆2
⊥. The Fourier transform of the GPDs with respect to ~∆⊥ defines the impact parameter

representation, IPD. The IPDs provide a probabilistic interpretation of the GPDs. The

impact parameter ~b⊥ (the distance between the active quark and the center of longitudinal

momentum ~R⊥ =
∑

i xi~ri⊥) defines the position of the quark in the transverse plane. The
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unpolarised IPD is defined as a Fourier transform of GPD H:

H(x,~b⊥) =

∫
d2∆⊥

2π
ei
~∆⊥.~b⊥H(x, 0,−~∆2

⊥). (7.9)

The helicity IPD H̃ as well as helicity-flip IPD E are defined in a similar way:

H̃(x,~b⊥) =

∫
d2∆⊥

2π
ei
~∆⊥.~b⊥H̃(x, 0,−~∆2

⊥), (7.10)

E(x,~b⊥) =

∫
d2∆⊥

2π
ei
~∆⊥.~b⊥E(x, 0,−~∆2

⊥). (7.11)

The Q2 dependence is omitted in the notation for simplicity. The three-dimensional IPDs

can be interpreted as providing a set of tomographic images of the nucleon. They provide a

three-dimensional images of the nucleon in a mixed coordinate-momentum space: the plane

of the impact parameter ~b⊥ and the longitudinal momentum x. A qualitative picture of

nucleon tomography is the following. For very small x (x ∼ 0.003) the tomographic image

shows sea quark and gluon distributions in the impact parameter space. The valence quarks

surrounded by pion cloud are observed for slightly higher values of x ( x ∼ 0.03), while for

large x region (x ∼ 0.3 and higher) mostly the valence quark distributions are seen.

An example of the unpolarised IPD in an unpolarised nucleon, q(x,~b⊥) = H(x,~b⊥),

calculated in the model from [30], is shown in Fig. 7.2 (left panel) for three different values

of x: 0.1,0.3 and 0.5. The unpolarised quark distribution is symmetric and the effective size

of the nucleon in the impact parameter plane decreases with increasing x.

For a transversely polarized nucleon (e.g. polarized in the +x̂-direction) the IPD qx̂(x,~b⊥)

is no longer symmetric due to the non-zero value of the spin-flip GPD E. This deformation

is described by the gradient of the Fourier transform of E:

qx̂(x,~b⊥) = H(x,~b⊥)− 1

2M

∂

∂by
E(x,~b⊥). (7.12)

Here M is the nucleon mass. The distorted u and d IPDs for a nucleon polarised in the

+x̂-direction calculated within the model from [30] are shown in Fig. 7.2 (right panel) again

for three different values of x: 0.1,0.3 and 0.5. E and hence the details of this deformation

are not very well known, but its integral over x allows one to relate the average transverse

deformation:

dqy ≡
∫
dxd2b⊥byqx̂(x,~b⊥)qx̂(x,~b⊥) =

1

2M

∫
dxEq(x, 0, 0) =

κq

2M
, (7.13)
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to the contribution from the corresponding quark flavor q to the anomalous magnetic mo-

ment:

κup = 2κp + κn = 1.673, κdp = 2κn + κp = −2.033, (7.14)

where the subscripts p and n stand for the proton and neutron, respectively, and the values

of the anomalous magnetic moments for the proton and the neutron are: κp = 1.793 and

κn = −1.913. The results presented in Fig. 7.2 are model dependent but the sign and the

magnitude of the shift does not rely on model predictions because of the relation to the

proton/neutron anomalous magnetic moment. Positive κup implies a shift in +ŷ-direction

and negative κdp a shift in the −ŷ-direction. The size of the shift is of the order of 0.2 fm.

These signicant distortions of parton distributions in impact parameter space together

with final state interaction (FSI) provides a natural mechanism for the Sivers effect 2. This

mechanism is called ”Chromodynamic lensing” and produces a Sivers asymmetry and dy-

namically generates k⊥ of partons inside the nucleon. Although in general FSI are very

complicated, it is expected to be on average attractive thus translating a position space

distortion to the left into a momentum space asymmetry to the right and vice versa. Since

the primordial momentum distribution of the quarks (without FSI) must be symmetric, a

qualitative connection between the primordial position space asymmetry and the momen-

tum space asymmetry due to FSI is found. A non-zero value of the spin-flip GPD E is a

source of distortion of the quark distribution in the impact parameter plane for a trans-

versely polarized nucleon. The non-zero spin-flip E distribution requires non-zero orbital

angular momentum of the quarks inside the nucleon. The spatial distortion of the quark

distributions is the reflection of the presence of OAM of quarks.

Strictly speaking the Sivers mechanism presented above is only valid in mean field models

for the FSI as well as in simple spectator models [276] -[278]. Furthermore, there is in general

no one-to-one correspondence between the quark distributions in impact parameter space

and the unintegrated parton densities (e.g. Sivers function). They are both connected by

an overarching Wigner distribution [27]. They are not Fourier transforms of each other due

to the Wilson gauge links in the gauge-independent definitions of the TMDs and GPDs, as

was discussed in section 3.2. On the other hand, TMDs and IPDs contain complementary

information about three-dimensional images of the nucleon in momenta space (TMDs) and

in mixed coordinate-momentum space (IPDs).

The IPDs are transversely distorted also when one considers transversely polarised quarks

in an unpolarised nucleon. This distortion leads to the Boer-Mulders asymmetry Higher-

twist effects like quark-gluon correlations can also be manifested in quark transverse plane

2The importance of the FSI as a possible source of the single spin asymmetry has been discussed in [275].
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Figure 7.2: Nucleon tomography: left: The symmetric unpolarised valence quark distribution

q(x,~b⊥) in an unpolarised nucleon shown for three different x values: 0.1,0.3 and 0.5. Right: The

distorted unpolarised u and d quark distributions in the nucleon polarised along +x̂ direction.

These deformations are due to non-zero value of spin-flip IPD: E(x,~b⊥). (Figs are obtained in the

model of [30] and taken from [274]).

distortions.

For a general discussion of parton distributions in impact parameter space and their

connection to generalized parton distributions the reader is referred to Refs. [30, 199, 200,

279].

7.2 Controversy on the definition of orbital and total

angular momentum

The importance of the orbital motion of the quarks and gluons is obvious in the light of

the results obtained for quark and gluon poalrisation measurements. However there is a

controversy in QCD how to split the total angular momentum into separate quark and gluon

components. The problem was recently discussed in many papers [13, 273, 280]. An extensive

analysis can be found in [14]. The OAM/TAM in gauge theory, as was pointed out in [31],
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should be expressed in terms of gauge invariant, local and covariant operators. A different

approach has been proposed in [13, 280] where even in QED the traditional definitions of

AM of electrons and photons were questioned. These two approaches lead to different results

for the momentum and angular momentum carried by quarks and gluons. Foe example

in the approach from [13, 280] the total momentum carried by gluons is asymptotically

(µ2 → ∞) equal to 1/5 while the so-called Bellinfante definition used in Ji’s sum rule (c.f.

Eqs: (7.4) and (7.4), predicts a more conventional result 1/2. The result that half of the

momentum of the nucleon is carried by gluons is very well-established one, tested over a

large range of Q2. Therefore it is difficult to accept a much smaller prediction. On the other

hand, this prediction holds for the asymptotic regime, which is still far from being accessed

experimentally.

Below a short summary of the discussion about angular momentum definitions in QCD

is given following the review [14]. Three versions of angular momentum operators can be

defined: canonical, Bellinfante, used in Eqs (7.4) and (7.4), and as defined by Chen and

collaborators in [13]. The main difference is in the field combination used in the construction

of AM operators. Canonical (Noether construction from the Lagrangian) may not be gauge

invariant. For example the canonical energy-momentum tensor is not gauge invariant because

space-dependent gauge transformations do not commute with spatial translations. Bellifante

is built as a gauge-invariant quantity. In Chen’s definition the decomposition of gauge boson

field into a ”physical” part (satisfying Coulomb gauge) and a ”pure” field with vanishing

rotation is used to construct the angular momentum operator. The corresponding formulae

for all three approaches can be found in [14]. To illustrate the idea of these decompositions

the formulae for the simpler QED case for electron and photon system are given in appendix

9.4.

There are two kind of problems which appear in the context of the angular momentum.

They are those related to any interacting particles and those specic to gauge theories. The

general problem for interacting particles (like electrons and photons or quarks and gluons)

is how to split the total momentum/angular momentum into two pieces associated with

momentum/angular momentum carried by the individual particles. The problem is non-

trivial since the particles exchange momentum and angular momentum as a result of their

interaction. For example such a splitting for momentum can be done with the canonical

version of the relevant operators but these operators are not gauge invariant. The canonical

angular momentum operator can be split into orbital and spin parts but the spin operator

of photon/gluon field is not gauge invariant. The Bellinfante angular momentum operator

is gauge invariant, but does not split into orbital and spin parts. It is generally stated

that there is no gauge invariant way of splitting TAM into spin and orbital parts. The
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consequence of this fact was presented in section 2.2.2 where the problem of non-existance

of twist-2, gauge invariant, local gluonic operators in OPE and problems with the definition

of the gluon helicity distribution ∆G were discussed. On the other hand ∆G is measured

e.g. via DGLAP evolution equations. The important point is that ∆G does not measure the

gluon spin in a nucleon. It measures the gluon spin in a particular gauge in a nucleon. As it

was argued in section 2.2.2 for light-cone quantization, ∆G can be interpreted as the gluon

helicity distribution or spin of the gluon in the axial gauge. Note that the interpretation

of the experimental results is made in the framework of the QCD improved Quark Parton

Model which is defined on the light-cone 3. Maybe the parton model should be regarded as

a picture of QCD in the axial or temporary gauge.

In the third definition of the angular momentum by Chen the spin operator is invariant

but it does not make sense as a spin vector. The spin density at a point x depends on the

fields throughout all space in this construction. In addition it is not known how to measure

the angular momentum defined in this approach.

To conclude: the Bellifante definition seems to be the most practical one because it is

gauge invariant and therefore can be directly compared with the results obtained in Lattice

QCD approach. In addition, the TAM of quarks and gluons can be related to GPDs via

Ji’s sum rule, Eqs: (7.4) and (7.4). Very recently a similar relation between the expectation

value of the transverse component of the Bellifante version of the angular momentum of a

quark in a transversely polarized nucleon in terms of the GPDs H and E has been obtained

[281]. The gluon angular momentum in the Bellifante version cannot be split into spin and

orbital part in a gauge invariant way. The gluon helicity distribution however can be defined

and interpreted as the gluon spin part in a particular gauge, e.g. the axial gauge which is a

natural choice for QPM framework.

7.3 Lattice QCD results

Since the 1980’s remarkable progress has been made with respect to the theoretical founda-

tions of gauge theories on the lattice as well as with the methods and algorithms required

for their numerical implementation and large scale simulations on supercomputers. As a

consequence computations of the hadron spectrum can nowadays be performed in full lattice

QCD (LQCD) very close to the physical pion mass, and hadron structure calculations have

been pushed down to pion masses of around two times of the physical mass of = 139 MeV.

LQCD results are by now routinely used as input for phenomenology if direct experimental

3Note that in the QCD the asymptotic states of quarks and gluons, used in perturbative calculations, do

not exist.
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Figure 7.3: Left: u and d quark density distributions in the transverse plane for unpolarised

nucleon. Middle: distorted u and d quark density distributions for transversely polarised nucleon

(Sivers). Right: distorted u and d quark density distributions for trasnversely polarised quarks

inside unpolarised nucleon (Boer-Mulders). (Figs taken from [283]).

information is not available. A review of LQCD techniques and results can be found in

[43]-[45].

Nucleon structure calculations in lattice QCD are important for testing QCD as the

fundamental theory of quarks and gluons and making predictions complementary to exper-

imental efforts that aim to measure the full three-dimensional picture of the proton and

nucleon. The LQCD calculations can also help in understanding the origin the nucleon spin.

Lattice calculations of nucleon structure are pursued by many groups. Recent advances are

described in [282].

As an example of LQCD results, the quark density distributions in the transverse plane

are plotted in Fig. 7.3. The distortion of the u and d quarks similar to the deformations

discussed in sec 7.1 (Fig.7.2) is clearly seen for the unpolarised quarks inside a transversely

polarised nucleon (middle panel, Sivers effect) and for transversely polarised quarks inside

an unpolarised nucleon (right panel, Boer-Mulders effect).

Lattice QCD has progressed to provide information about the spin fractions and OAM
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Figure 7.4: Left: u and d quark contributions to the nucleon spin from the domain wall and hybrid

action calculations [284]. Right: u and d quark spin and orbital momentum from the domain wall

calculations. (Figs taken from [284]).

contributions for u and d quarks in the nucleon at a typical scale µ2 = 4 GeV2. As an example

the quark TAM and separate contributions of u and d quark spin and OAM to the proton

spin as a function of the pion mass are shown in Fig.7.4. The pion masses 300 − 400 MeV

are still too heavy to be realistic and the LQCD calculations shown in Fig. 7.4 have been

performed with some approximations (domain wall and hybrid action calculations [284]).

The angular momentum of d quarks, Jd, is consistent with zero and the OAM and spin

parts cancel out for d quarks. The u quark angular momentum is found to be: Ju =

0.236 ± 0.006 [43, 286]; the OAM of u and d quarks are: Ld ≈ −Lu = 0.185 ± 0.06. This

leads to the surprising LQCD result namely that of a cancellation between OAM of u and d

quarks to a total Lu+d ≈ 0.030± 0.012. The LQCD result for ∆Σ is about 0.48, higher than

observed experimentally.

Naive model calculations, as for example in the non-relativistic quark model suggests

∆Σ = 1. As was discussed in chapter 2 relativistic effects reduce ∆Σ to about two thirds.

In Refs [48, 287, 288] a further reduction of ∆Σ has been proposed by including pion cloud

contributions and corrections from one gluon exchanges. With such corrections the final

result for ∆Σ is consistent with the experimental value.

For the missing 60 − 70% of the nucleon spin an orbital angular momentum of up and

down quarks should be responsible. On the other hand Lu+d appears to be in contrast to

lattice calculations where the orbital angular momentum contribution comes out close to

zero [43]. To explain this dfference, it was proposed to consider the renormalization scale
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Figure 7.5: The QCD evolution (scale dependence) of the LQCD results obtained at scale µ2 = 4

GeV2 for ∆Σ and orbital angular momentum of quarks Lu+d. Gluons are added to satisfy nucleon

spin budget. (Figs are taken from [286]).

dependence of the quantities appearing in the nucleon spin sum rule [48]. Therefore the

comparison of the LQCD results with chiral model predictions requires the QCD evolution

of lattice results down to the low scales characteristic of model calculations, µ2 ≈ 0.2 GeV2.

Fig.7.5 shows the result of QCD evolution of the LQCD results concerning quark spin and

OAM parts, obtained at a scale µ2 = 4 GeV2. The fully consistent QCD evolution equations

for the orbital angular momenta of quarks and gluons at NLO accuracy can be found in

[285], where a detailed comparison between LQCD results and relativistic chiral models is

presented. The final values for ∆Σ, Lq and Jq at the physical pion mass were obtained from

extrapolations employing the covariant baryon chiral perturbation theory results [289]. The

details of the lattice QCD simulations used in the QCD evolution can be found in [290].

The ”matching” scale for the comparison between LQCD results and relativistic quark

models is defined as the scale at which gluon contribution to the nucleon spin vanishes due

to evolution, see Fig. 7.54. The quark helicity contribution ∆Σ and OAM, Lu+d, taken at

the scale µ2 ≈ 0.17 GeV2 are equal to: ∆Σ ≈ 0.62 and Lu+d ≈ 0.19, respectively. The results

obtained within the relativistic quark models are very close to these values: ∆Σ ≈ 0.64 and

Lu+d ≈ 0.18 [286].

4Effective chiral QCD approximation is used in the chiral models and the pions play role of the Goldston

bosons.
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On the other hand the effects from different types of improvements (related to the pion

cloud effects, manifestly gauge invariant OAM operators, one-gluon exchange corrections)

reduce the value of the ∆Σ to measured one-third, in agreement with the experimental

results, and tend to make it increasingly difficult to find a common low matching scale

where at least quantitative agreement with the evolved lattice results can be achieved for

all of the different spin observables. Also the so-called chiral soliton model [49] gives a

different results than is obtained from the LQCD + evolution. There are several reasons

for these discrepancies. First, the backward QCD evolution to low scales is very sensitive

to the approximation used (LO vs NLO) and to uncertainties related to the calculations of

the saturated coupling constant in the small scale regime 5. Second; the start point to the

backward evolution are LQCD results obtained at µ2 ≈ 4 GeV2, higher than the typical

value observed experimentally.

An exception is the isovector orbital angular momentum combination, Lu−d, for which

systematic lattice errors are minimal. This quantity displays generic behavior with a sign

change as it evolves from lattice QCD to low scales, in accordance with the model expecta-

tions. For a more complete discussion the reader is referred to [285] and references therein.

The LQCD results that the OAM of quarks is very close to zero seems to be in contra-

diction with non-zero Sivers effect observed experimentally. This difference may be related

to the definitions and interpretation of the orbital angular momentum and orbital motion of

quarks. The controversy on the definitions was discussed in the previous section while the

possible Sivers effect interpretation as a combination of the chromodynamic lensing (FSI)

and the presence of transverse distortion in the quark distributions is discussed in section

7.1. The gauge invariant Bellifante definition of angular momentum is used in LQCD com-

putations. The interpretation of the Sivers effect is given in the framework of the quark

parton model and assumes orbital motion of quarks and hence a non-zero GPD E. The

gauge invariant lattice QCD angular momentum operator can be different from this related

to the gradient of E GPD.

5The NNLO approximation in QCD evolution is also discussed in [285] together with coupling constant

uncertainties.



Chapter 8

Summary and outlook

This article reviews the spin structure of the nucleon. The large part of this review focuses

on the direct gluon polarisation measurements with the COMPASS experiment. The

author was deeply involved in these measurements and had key responsibilities for the

data analysis. The author’s main contributions to the data analyses are: the application

of the Artificial Neural Network in the weighted method, the application of the NLO QCD

calculations to the determination of the gluon polarisation from the open-charm D meson

production, the decomposition of the double helicity asymmetry and a new method to

extract the gluon polarisation from the measured asymmetries for inclusive and high-pT

events in the DIS domain. These contributions are presented in detail together with new

gluon polarisation results obtained from COMPASS data.

Taking into account all presently available information one can summarize the spin struc-

ture of the nucleon as follows:

Precise measurements of the longitudinal spin structure function g1(x,Q2) show that quarks

contribute only about 1/3 to the spin of the nucleon. This result is also confirmed by QCD

fits (which describe data very well) and by an independent measurement of the valence

quarks polarization. The valence u and d quarks are polarised longitudinally to high degree

and with opposite signs.

The difference between first moment of the g1 structure function for the proton and neu-

tron defines the Bjorken sum rule which is confirmed by the data. This is a fundamental

sum rule because it relies only on SU(2) symmetry between up and down quarks, or isospin

invariance. Inclusive measurements allow one to conclude that the strange (anti)quark polar-

isation is slightly negative while SIDIS results indicate a slightly positive value. The SIDIS

flavour decomposition confirms that the polarisation of the sea quarks is very small and that
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the asymetric scenario, ∆u = −∆d, is preferred.

Direct measurements point to a small central value of the gluon polarization with large

uncertainties so that spin contribution of 0.2 − 0.3, large enough to solve the ”spin crisis”

cannot be excluded.

Different types of asymmetries measured with precision at RHIC also indicate that the

large gluon polarization scenario is excluded. Therefore the role of axial anomaly is marginal.

The SIDIS data collected on transversely polarised targets give one an access to the

transverse structure of the nucleon. The transversity distribution describes the transversely

polarised quarks inside the transversely polarised nucleon. The non-zero Collins fragmenta-

tion function allows one to measure the transversity in semi-inclusive DIS.

Beyond the collinear approximation and with a finite transverse momentum of the par-

tons inside the nucleon eight transverse momentum dependent PDFs (TMDs) are needed

to fully describe the cross section at leading twist and leading order. All these functions

lead to azimuthal asymmetries in the distribution of hadrons produced in SIDIS processes

on transversely polarised targets and can be disentangled by measuring the different angular

modulations. The T -odd Sivers function is of particular interest. This function describes a

correlation between the transverse momentum of an unpolarised quark in a transversely po-

larised nucleon and the nucleon spin vector. The observation of a non-zero Sivers asymmetry

suggests the presence of the orbital angular momentum of quarks inside nucleon.

The Collins asymmetry measured on proton targets is sizable for both positive and neg-

ative hadrons. A non-zero Sivers asymmetry is seen for positive hadrons, which persists to

rather small x values. The COMPASS and HERMES results agree well. The Collins and

Sivers results on deuteron targets are compatible with zero. Combined with the non-zero

proton results, this suggests a cancellation between the u and d quark contributions.

The TMDs depend on the intrinsic motion of partons inside the nucleon and allow recon-

struction of the ”three-dimensional” nucleon structure in momentum space. The information

from TDMs is combined with complementary information from IPDs - the Fourier trans-

form of the GPDs. The three-dimensional IPDs can be interpreted as providing a set of

tomographic images of the nucleon in a mixed coordinate-momentum space. Future precise

measurements of TMDs and GPDs (which contains also information about the longitudinal

nucleon structure) should allow one to fully reconstruct three-dimensional spin structure of

the nucleon.

The observed nucleon spin deficit in the longitudinal data requires one to go beyond the

collinear approximation and consider the nucleon as a three-dimensional object. The Quark

Parton Model (QPM) is defined in the infinite momentum frame, where the nucleon is moving

fast. The understanding that a fast moving nucleon is still a three-dimensional object with
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a very rich transverse structure is one of the most important outcomes obtained in the last

years. Lorentz-Fitzgerald contraction reduces the spatial size of the nucleon in the direction

of its movement and allows one to describe the nucleon in the one-dimensional momentum

space in terms of PDFs. However the transverse size of the nucleon is not reduced and similar

to the size of the nucleon at rest. The large transverse size allows for complicated correlations

e.g. between the spin and transverse motion of quarks and lead to the distortion of the quark

transverse distributions (Sivers and Boer-Mulders effects). Some of these are related to the

orbital motion of the quarks and gluons. For example the distortion of the quark distributions

in impact parameter space together with final state interactions (chromodynamical lensing)

provides a natural mechanism for a Sivers asymmetry. The distortion is generated by the

spin-flip function GPD E, which is non-zero in the presence of orbital angular momentum

of quarks.

Noticeable progress has been made on the lattice QCD approach in the last years. LQCD

also provides information about spin fractions and orbital angular momentum contributions

for u and d quarks in the nucleon. This approach links the perturbative QCD regime with

the non-perturbative chiral limit of QCD, described in many models including Skyrme model

and relativistic chiral models. The comparison between LQCD results and the predictions

of these models is still far from being perfect and requires backward QCD evolution of the

LQCD results to the typical low scale at which chiral models are defined. On the other hand

the chiral models with corrections like pion clouds effect and one-gluon exchange contribution

are able to reproduce the experimental results e.g. one-third of the nucleon spin carried by

quarks.

LQCD results show the cancellation between large orbital angular momenta of u and d

quarks (they are opposite in sign). This observation combined with the small value of the

gluon polarisation and with the fact that quarks contribute only about 1/3 to the spin of the

nucleon allows one to conclude, that the spin of the nucleon is effectively composed of the

spins of quarks and of orbital angular momentum of the gluons. On the other hand, there

is a general controversy on the definition of angular momentum of quarks and gluons. The

LQCD approach is gauge-independent while the interpretation of many results is made in

the framework of QPM and in a specific gauge. For example the gluon helicity distribution

can be defined and interpreted as the gluon spin part in the axial gauge.

Remarkable progress has been made in the last years in the understanding of the nucleon

structure on experimental as well as on theoretical grounds. It is now clear that the simple

one-dimensional QPM picture has to be revised and that a complete three-dimensional de-

scription is needed. It appears that spin provides the unique opportunity to probe the inner

structure of a composite system such as the nucleon.
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The main experimental activity in the near future (next 5 years) will be dedicated to

the precise measurement of the TMD and GPD functions. The GPDs can be accessed via

Deeply Virtual Compton Scattering. The DVCS program is now under preparation at CERN

(COMPASS-II proposal) and in JLAB (12 GeV program).

Longer-terms plans are connected with the construction of new electron-ion collider or

electron-proton machines. The EIC machine has been proposed in USA (BNL or JLAB). The

rich physical program dedicated to precise measurement of distributions of gluons and the

quark sea at high energies, containing TMDs, GPDs, nucleon and nuclei tomography, QCD

matter under extreme conditions and electroweak physics is discussed.(The EIC Science case:

a report on the joint BNL/INT/JLab program). The preliminary studies for Electron-LHC

option (eLHC machine) has already started at CERN.

In closing the largest part of the visible mass is due to the nucleons, and less than 30

MeV out of 940 MeV of the nucleon mass originates from the Higgs Boson mechanism.

The remaining 97% of the nucleon mass is due to gluons which are massless. Therefore

the understanding of the nucleon structure is a fundamental and very important part of

elementary physics.



Chapter 9

Appendices

9.1 The helicity dependent DIS cross sections

In this section the cross sections for the DIS processes are formally expressed in the helicity

basis. The presented formulae are general and only factorization into PDFs, hard process

partonic cross sections, σ̂, and fragmentation process is assumed. For DIS processes this

factorization is proven at least up to NLO QCD approximation. For simplicity the depen-

dence of the kinematic variables are omitted and σ (σ̂) can be the differential or integrated

cross section. Convolution integrals are denoted by ⊗. The notation used in this section is

the following. p+ (p−) defines the PDF for parton p (quark or gluon) with helicity parallel

(anti-parallel) to the helicity of the nucleon. σij represents DIS cross section with lepton

helicity state i and nucleon helicity j (i, j = +,−). σ̂ij denotes the hard cross section for

lepton-parton interaction with lepton helicity state i and parton helicty statej. For exam-

ple, the cross section σ++ corresponds σ
→⇒ while σ+− denotes σ

→⇐. The produced hadrons are

assumed to be unpolarised. However in general, the fragmentation function H can depend

on the helicity states of the active parton and the nucleon. A good example is the string

fragmentation model [223, 142], where the potential dependence of the spin states in the

fragmentation can be forced by non-standard set of fragmentation parameters. Therefore

the similar notation as for cross sections is used for fragmentation function. Hij describes

the fragmentation process into unpolarised hadrons when the active parton with helicity i

is kick out from the polarised nucleon in the j helicity state.
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The four DIS cross sections for different helicity configurations can be written:

σ++ = p+ ⊗ σ̂++ ⊗H++ + p− ⊗ σ̂+− ⊗H−+,

σ+− = p− ⊗ σ̂++ ⊗H+− + p+ ⊗ σ̂+− ⊗H−−,
σ−+ = p+ ⊗ σ̂−+ ⊗H++ + p− ⊗ σ̂−− ⊗H−+,

σ−− = p− ⊗ σ̂−+ ⊗H+− + p+ ⊗ σ̂−− ⊗H−−, (9.1)

where σ̂−+ = σ̂+− , σ̂++ = σ̂−−, H++ = H−− and H−+ = H+−. In the COMPASS exper-

iment the two (or three) target cells with opposite polarisations are used while the beam

polarisation is kept constant. Therefore the unpolarised part σ and the spin-dependent part

∆σ of the DIS cross sections are:

σ = σ++ + σ+− = p+ ⊗ (σ̂++ + σ̂+−)⊗H++ + p− ⊗ (σ̂++ + σ̂+−)⊗H+−,

∆σ = σ++ − σ+− = p+ ⊗ (σ̂++ − σ̂+−)⊗H++ − p− ⊗ (σ̂++ − σ̂+−)⊗H+−. (9.2)

The standard polarisation-averaged fragmentation functions is defined as H = 1
2
(H++ +

H+−) while the polarisation-dependent part is ∆H = H++ − H+−. Defining unpolarised

and polarised PDFs as p = p+ + p− and ∆p = p+ − p−, respectively, Eq. 9.2 can be easily

written as:

σ = p⊗ σ̂ ⊗H +
1

2
∆p⊗ σ̂ ⊗∆H,

∆σ = ∆p⊗∆σ̂ ⊗H +
1

2
p⊗∆σ̂ ⊗∆H, (9.3)

where σ̂ = σ̂++ + σ̂+− and ∆σ̂ = σ̂++− σ̂+−. The formulae for unpolarised and polarisation-

dependent factorized DIS cross sections are obtained by neglecting ∆H.

9.2 A Neural Network approach

Artificial Neural Networks (ANN) are one of the modern methods of data analysis. Their

main characteristic is an ability to learn, similar to the human brain.. Although ANN are

a greatly simplified model of the human brain they are capable e.g. of modelling an object

of unknown characteristics - parametrisation, dividing a set of objects into several groups

based on their characteristics - classification, and many more.
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An ANN consist of interconnected information processors (neurons). A model of the

neuron that is commonly used has been introduced by McCulloch and Pitts in 1943 [291].

A state of every neutron is defined with the help of a so-called activation function, f(x),

which is a step function; 0 for x < 0 and 1 for x > 0. In most applications the original step

function is replaced with a continues sigmoid function like f(x) = 1/(1 + exp(−βx)); β > 0,

or a hyperbolic tangent f(x) = tgh(αx/2) = (1 − exp(−αx))/(1 + exp(−αx)); α > 0. By

selection of this activation function the sensitivity of the neural network to the outliers in

the input data can be adjusted.

ANN are statistical models that can provide mapping from input to output parameters

space. A commonly used architecture s the Multi Layer Perceptron (MLP), with neurons

divided into layers. The MLP is a neural network without feedback. The signal is propagated

throughout the network in one direction. The external information fed into the input layer is

processed in the hidden layers and the result, produced by the output layer, is a classification

of the event (or prediction) by the Network. It is worth to say that at least one hidden

layer is needed for the MLP to be able to parametrise the exclusive OR logic function.

However, already two hidden layers are sufficient to enable the network to cope with any

parametrisation problem [292].

The training of an ANN is realized by the weights that are assigned to the connections

between neurons. During the training procedure the Network tunes the strength of each

variable-neuron and neuron-neuron connection. The strengths are obtained by minimising

the squared deviation between the expected output and the actual Neural Network predic-

tion, This training process stops when the deviation reaches a stable minimum

The data set on which the ANN is trained is randomly divided into two parts: the

“training set” and the “testing set”. The network is trained using the “training set” while the

“testing set” is used to monitor the training procedure. When the network errors obtained

from the two sets diverge too much, the training is stopped. This prevents situations where

the neural network would learn the contents of the “training set” by heart instead of finding

more general patterns. The crucial drawback in using MLP for data analysis is choosing the

optimal number of neurons (bias-variance problem from machine learning).

The ANN used in the analyses presented in this thesis were prepared using the NetMaker

package, [231] and [263]. This package was implemented for COMPASS and for ICARUS

neutrino experiment. There are two hidden layers in this Network and the number of neurons

in them varies during the training process (dynamic Network). As an input for training and

running ANN a set of kinematic observables like Q2, y, zD, pD0

T , x and others have been

used.
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The program is written in the C#1 language and optimised for working with large data

sets. It provides a graphical interface for the network preparation and for controlling the

learning process. After the process is finalised, a file containing the description of the struc-

ture of the network, including all the weights, is prepared. It is a text file written in standard

XML and is subsequently used later in the COMPASS experiment analysis software.

The ANN approach guarantees that the correlations among the different observables are

correctly taken into account.

9.3 NLO QCD fits of g1(x,Q2) updated with the NLO

open-charm result on ∆G/G

In this section the results of the new NLO QCD fits of the polarised parton distributions,

performed with inclusion of the result on 〈∆G/G〉NLO, Eq.(5.38), obtained at a scale 〈µ2〉 ≈
13 GeV2 are presented. The results are be compared with those of Ref. [8] where the gluon

helicity distribution was parametrised at a reference Q2 of 3 GeV2 in the form

∆G(x) =
ηg x

αG (1− x)βG∫ 1

0

xαG (1− x)βG dx

. (9.4)

Here ηG is the integral of ∆G(x), ηG ≡ ∆G. To simplify the notation the subscript G

in xG has been omitted. The same parameterization, Eq. (9.4), was used for the singlet,

non–singlet quark and gluon helicity distributions except for the singlet quark in the fit with

ηG > 0 where a factor (1 + γx) was added to allow for change of sign. The high x parameter

of the gluon helicity distribution was fixed to βG = 10. The total number of free parameters

was equal to 10. The fits were performed in perturbative QCD at NLO approximation using

all inclusive data with Q2 > 1 GeV2. Two solutions with comparable χ2 probability were

found, one with ηG > 0, the other with ηG < 0.

In the new fit all the data used in [8] were employed as well as the 15 COMPASS values of

Ap1 published later [68]. The reference Q2 is kept at 3 GeV2 and the same parameterisations,

Eq. (9.4), are used. The total number of free parameters is also equal to 10.

The new open charm result is not attached to a precise value of x and thus its contribution

is taken into account by the average

〈RG〉 =

∫ 0.47

0.18

[
∆G

G
(x,Q2 = 13)

]
dx/(0.47− 0.18) (9.5)

1C# (C sharp) is an object-oriented programming language developed by Microsoft and based on C++

syntax.
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which is re-evaluated during the fit for any modification of one of the gluon or singlet quark

parameters. The obtained value of 〈RG〉 is compared to the open charm result vOC = −0.20

with the error σOC = 0.21 and the χ2 of the fit is incremented by (〈RG〉 − vOC)2/σ2
OC.

The unpolarised gluon distribution G(x,Q2) in the denominator of Eq. (9.5) is taken

from the MRST04 parameterization [293]. It was used also [8]. In contrast to previous

parameterizations by the same group, MRST04 predicts a slower decrease of the gluon

distribution at high x, (1− x)β with β ∼ 3–4. For this reason the choice of βG = 10 for the

fit with ηG > 0 in Ref. [8] leads to a strongly peaked distribution of ∆G/G which in turn

generates a dip in the fitted distribution of gd
1 (x) around x = 0.25 for low values of Q2 and

leads in some cases to very asymmetric errors due to the limits imposed by the positivity

condition |∆G(x)| ≤ G(x). To avoid these unphysical features, βG is now fixed to 6 in the

fit with ηG > 0.

The fitted distributions of ∆G(x)/G(x), evolved to Q2 = 13(GeV/c)2 are shown in Fig.

5.19, together with error bands corresponding to the statistical errors as derived from the

error matrix on the fitted parameters. The present open-charm result is within one standard

deviation of the fitted curve for ηG < 0 and 2.8 σ below the one for ηG > 0. The results of two

other global fits, DSSV [47] and LSS [247], which employ both DIS and SIDIS asymmetries

are also shown on the same plot. In case of the LSS, two solutions, with positive and with

sign-changing ∆G are marked. In the DSSV fit, ∆G changes sign at x ≈ 0.1 (unlike G(x))

and is about 1.5 σ above the COMPASS open charm value. The LSS fit cannot distinguish

between a positive and a sign-changing ∆G. Both solutions give a positive ∆G at the (x,Q2)

of the present measurement that are about 2 and 2.5σ above the value of it.

The present open charm result has practically no effect on the fit for ∆G < 0, where

ηG = −0.32 ± 0.11 with- and without that measurement, while it reduces significantly the

positive ηG, from ηG = 0.39± 0.07 to ηG = 0.24± 0.09 after it is included.

9.4 Angular momentum operator in QED

To illustrate the problem of controversy concerning the denition of quark and gluon angular

momentum in QCD the formulae for the three possible angular momentum operators are

presented. For simplicity the QED case is considered; the TAM is defined for electron and

photon system. As discussed in section 7.2 there are three versions of angular momentum:

canonical, Bellinfante and the one proposed by Chen and collaborators in [13]. The canonical

angular momentum Jc for electron ψ and photon A fields can be defined as follows:
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~Jc =

∫
d3xψ†~γγ5ψ +

∫
d3xψ†

[
~x× (−i~∇)

]
ψ +

∫
d3x( ~E × ~A) +

∫
d3xEi

[
~x× ~∇Ai

]
= ~Sec + ~Lec + ~Sγc + ~Lγc . (9.6)

The Bellifante TAM can be defined and decomposed as follows:

~JB =

∫
d3xψ†~γγ5ψ +

∫
d3xψ†

[
~x× (−i ~D)

]
ψ +

∫
d3x( ~E × ~B)

= ~SeB + ~LeB + ~JγB, (9.7)

and finally Chen’s proposition is:

~JCh =

∫
d3xψ†~γγ5ψ +

∫
d3xψ†

[
~x× (−i ~Dpure)

]
ψ +

∫
d3x( ~E × ~Aphys)

+

∫
d3xEi

[
~x× ~∇Aipsyh

]
= ~SeCh + ~LeCh + ~SγCh + ~LγCh. (9.8)

As usual Dµ = ∂µ − ieAµ, E and B are electromagnetic fields. In the proposition by

Chen and collaborators the photon (gluon) field is decomposed as ~A = ~Aphys + ~Apure and:

~∇. ~Aphys = 0, ~∇× ~Apure = 0. (9.9)

The Bellifante definition is gauge invariant, but the splitting of the gauge boson angular

momentum into a spin and orbital part is not possible. The canonical definition is not gauge

invariant but the spin and orbital part can be defined separately. Chen’s construction is

gauge invariant and allows for splitting into spin and orbital part but the spin operator does

not make sense as a spin vector. More details can be found in original papers [13, 280] and

in [14].
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[101] B. Bade lek and J. Kwieciński, Phys. Lett. B 418, 229 (1998).
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