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Abstract

The COmmon Muon Proton Apperatus for Structure and Spectroscopy, short COM-
PASS is a �xed target experiment at CERN1 in Geneva, Switzerland. As a two stage
spectrometer, it aims to study the spectra and inner structure of hadrons and partic-
ipates in the search for exotic mesons with quantum numbers JPC that can not be
obtained by quark-antiquark states. Former experiments give evidence for the existence
of exotic resonances in the π−η′ and the π−η �nal states[4][9]. For exact measurements
of the quantum numbers of these exotics a partial wave analysis is required that relies
on a good description of the acceptance of the detector response at COMPASS. In this
thesis the acceptance as a function of various kinematic relevant variables is investigated
through a Monte Carlo simulation of the π−η′ and the π−η decay channels.

An event generator is used that simulates the di�ractive excitation in the pπ− → pX
process and lets the generated resonance X decay isotropically into π−η′ or π−η with the
η either disintegrating to two photons γγ or three pions π−π+π0. The momentum trans-
mission t′ is exponentially distributed with a slope of 6 and starts at 0, 1GeV2. The mass
of X is uniformly generated in the range of [mπ +mη′/η, 4GeV]. The three-body decays
in the respective decay channels are simulated with their experimental PDG weights.
The simulated �nal states with three pions in the η′- and the η-channel and the �nal
state with �ve pions in the η′-channel are put in COMGEANT and reconstructed with
CORAL. The same generated �nal states are parallely selected in a fast Monte Carlo
program with a rudimental implementation of only the geometry of the RICH and the
ECALs, where a photon energy higher than 1GeV and in ECAL2 higher than 4GeV
is required. The acceptances for both the full Monte Carlo and the fast Monte Carlo
simulation are studied and compared with each other.

In general the e�ciency in the full Monte Carlo is always lower compared to the pho-
ton acceptance, since no charged particle detection is implemented in the fast Monte
Carlo. As a function of the t′-distribution, the xy-distribution of the vertex position
and the Dalitz plots the acceptances are �at in every observed decay channel, which is
clearly in agreement of the two Monte Carlo simulations. The non-uniform acceptances
as functions of generated resonance mass mX , the z-distribution of the vertex position
and the azimuthal angle ϕGJ of the respective η

′ or the η in the Gottfried-Jackson frame
of X can also be viewed as understood, since the shapes can be reproduced by the
photon acceptance Monte Carlo. As a function of the cosine of the polar angle θGJ the
e�ciencies in the photon acceptance and the full Monte Carlo calculation look rather
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di�erent, which can be due two additional clusters in the full Monte Carlo simulation
that may come from secondary charged particles.

Very brie�y the Monte Carlo results are compared to real data. Namely the in�uence
of the RICH pipe is compared between the η channel in the photon acceptance Monte
Carlo and in real 2008 data. Both show a probability of a single photon to shower in
the RICH tube of around 21%. Also the transverse momentum of the η in the lab frame
is precisely reproduced in the full Monte Carlo simulation compared to data.
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1. Introduction

Nowadays the most basic understanding of nature is summarized in the Standard
Model, describing twelve elementary particles, six leptons and six quarks ,their an-
tiparticles, four principle forces and their respective gauge bosons. One of the four basic
forces in nature is the strong force, responsible for the cohesion of the nucleons in atomic
nuclei or the interactions between hadrons and quarks. Although there is a lot of ongoing
research in the �eld of hadronic interaction, very little is know about the mysteries of the
strong force, which shows a completely di�erent behavior than the other three forces.
COMPASS, the COmmon Muon Proton Apperatus for Structure and Spectroscopy is
one of the many experiments trying to investigate characteristics of strong interaction
and properties of hadronic systems. The �xed target experiment, located at CERN1 in
Geneva, Switzerland, is connected to the SPS (Super Proton Synchotron) of the LHC
(Large Hadron Collider). The COMPASS collaboration that consists of 26 institutes
with more than 240 physicist from all over the world, performs two programs, one with
a hadron beam and the other one with a muon beam.

The focus of this bachelor's thesis lies in the hadron program, whose purpose is hadron
spectroscopy and the search of exotic mesons produced in di�ractive excitation processes.
Experimental evidence for exotic mesonic structures, such as glueballs or hybrids, does
already exist and main candidates for these new particles are supposed in the �nal
states of the di�ractive scattering processes pπ− → pπ−η′ and pπ− → pπ−η[4][23]. To
precisely measure the quantum numbers of eventually occuring resonances in these decay
channels a partial wave analysis (PWA) is needed. The main concern of this thesis is a
Monte Carlo simulation for the π−η′ and the π−η channel to support the PWA with a
description of the acceptances of the COMPASS detector responses. The study of these
acceptances are important since they directly enter the theoretical framework for the
description of resonances through partial waves.

After a quick overview of the COMPASS experiment and its set up in the �rst chapter
of this bachelor's thesis the most principle theoretical concepts of the search for exotics
and the Monte Carlo simulation of the di�ractive excitation are summarized. Chapter 3
describes the programming of an event generator in some detail before a small photon
acceptance (PA) Monte Carlo analysis is performed to gain �rst expectation for the
acceptances and results for future comparison. The PA Monte Carlo program serves
for a fast possibility to simulate the acceptances at COMPASS and is used to estimate
the in�uence of the three meter long steal pipe of the RICH detector (Ring Imaging
CHerenkov Counter) in the experimental set up. In the later sections of the same
chapter a description of a full Monte Carlo simulation using the software COMGEANT
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and CORAL follows and the acceptances of both Monte Carlo procedures, the fast PA
Monte Carlo and the full Monte Carlo simulation, are studied and compared with each
other. At last a brief comparison of the π−η �nal state in real 2008 data and in the full
COMGEANT and CORAL calculation is touched.



2. The COMPASS Experiment

COMPASS, the COmmon Muon Proton Apperatus for Structure
and Spectroscopy is one of the many experiments at CERN (Conseil
Européenne pour la Recherche Nuclèaire, European Organisation
for Nuclear Research) located in Geneva, Switzerland. Linked to the
Super Proton Synchotron (SPS) at the Large Hadron Collider (LHC),
it is a two stage mass spectrometer for �xed target experiments,
providing high luminosity and a good momentum resolution in a wide
kinematical regime. After the approval in 1996 by CERN, it was built
between 1999 and 2000 to contribute to multiple topics in particle
physics such as structure functions of nucleons, spin contributions
of their quark consituents, properties of gluons or the search for

exotic mesons. To address this abundance of physics �elds, COMPASS runs two main
programs, the muon program using a muon beam and the hadron program where either
pions or kaons are used as beam particles to bombard di�erent targets[6]. After the �rst
test runs in 2002 and the �rst hadron beams in 2004, 2006 and 2007 were dedicated to the
muon program while in 2008 and 2009 COMPASS took data for the hadron program[2].
In the following section the physics of the two programs are brie�y described and the
basic experimental set up is explained.

2.1. COMPASS Physics

In the following, an overview of the physics of the muon and hadron program at COM-
PASS is given. With the focus on the hadron program some selected topics are brie�y
discussed and previous experiments, not only from the COMPASS collaboration, are
cited.

2.1.1. The Muon Program

Since experimental results from previous experiments of EMC [1] or SLAC [3] showed
that the contribution of the quarks inside a nucleon to its total spin is only around 30%,
further investigation of the spin dependent structure function is needed. The muon
program at COMPASS has the main goal to �nd out what carries the spin content of a
nucleon and how it is distributed. A polarized muon beam as well as di�erent polarized
and unpolarized targets are needed to be able to measure the polarization of either
gluons or sea-quarks which are both discussed as the carrier of the residual spin. At
COMPASS both competing explanations can be veri�ed.
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4 2.1. COMPASS PHYSICS

Gluon Polarization:

With deep inelastic scattering the muon program aims at a direct measurement of the
gluon helicity distribution ∆G. In a photon-gluon fusion the polarized muon beam par-
ticle interacts with a gluon of the proton target via a virtual photon shown in Figure 2.1.

Figure 2.1.: Photon-Gluon Fusion[20]

In the leading order of this process open charm will be produced, which is mainly
reconstructed as a neutral D0 meson and its decay products. This allows the study of a
cross section asymmetry for the open charm leptoproduction.

Λ and Λ̄ Polarization:

Another possible contribution to the nucleon's spin could be carried by strange sea
quarks that can be measured via the longitudinal polarization of the Λ and Λ̄ hyperons,
baryons consisting of at least one strange but no charm or bottom quark. With the
combination of a polarized muon beam and an unpolarized target one can determine the
polarization of a Λ and its strange quark.

2.1.2. The Hadron Program

The hadron program at COMPASS covers three main issues. The polarization mea-
surement of hadronic structures using the Primako� e�ect, the investigation of charmed
hadrons and the search for excotic states, which is the branch this thesis aims to con-
tribute to. In the next chapter the basic theory about exotic mesons, needed in this
thesis is covered.

Primako� Scattering:

QCD chiral theories give predictions about the polarizabilities of pion and kaons that
can be veri�ed at COMPASS using Primako� scattering.
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Figure 2.2.: A Primako� reaction[20]

The Primako� mechanism (shown in Figure 2.2) can be view as the reverse process
of the meson decay into two photons. The beam particle Compton scatters o� a virtual
photon in the Coulomb �eld of a nucleus with a high charge number in inverse kinemat-
ics. Such reactions with a very low momentum transfer between beam and target are
important to study mesonic structures.

Charmed hadrons:

Single-charmed and double-charmed baryons are experimentally observed but very little
is know about their properties like lifetimes and widths in leptonic and semi-leptonic
decays. Investigating these particles is interesting for learning more about the charm
quark itself and testing QCD predictions outside the light quark sector.

Exotic hadrons:

Baryons consisting of three quarks qqq, antibaryons made out of three antiquarks q̄q̄q̄
and mesons, bound quark anti quark pairs qq̄ are the only observed hadrons so far, but
many other forms are theoretically predicted. Strongly interacting particles that have
not the normal baryonic or mesonic form are called exotics. There are exotic systems
consisting of more than three valence quarks for example a pentaquark ”qqqqq̄”, �avour
blind glueballs, bound states of only gluons ”ggg” or a mixture of valence gluons and
valence quarks ”qgq” called hybrids. Since one can �nd color neutral combination for all
exotics, they are not forbidden by QCD, but they can have quantum numbers JPC not
accessible by normal hadrons. Previous experiments already gave evidence for exotic
mesons in π−η or π−η′ �nal states with the forbidden quantum numbers of JPC = 1−+.
Results of the Brookhaven National Laboratory experiment E852 at the Alternating
Gradient Synchotron (AGS) studying the π−p → π−η′p �nal state at an energy of
18GeV/c and a sample of approximately 6000 events, lead to discussions about the
existence of an exotic resonance, the π1(1600)[9].



6 2.2. EXPERIMENTAL SET UP

(a) [9] (b) [4]

Figure 2.3.: π−η′ mass distribution

Figure 2.3(a) shows the π−η′ e�ective mass distribution recorded in E852. As you can
see there is a small peak around 1, 3GeV which refers to the known a2(1320) and a broad
enhancement at 1, 6GeV. The smooth curve in Figure 2.3(a) shows the acceptance as a
function of mass. A partial wave analysis (PWA) of this channel con�rmed a resonance at
1600MeV with the exotic quantum numbers JPC = 1−+ [9]. The similar VES experiment
in 1993 looking at the same π−η′ e�ective mass spectrum but in a di�erent decay channel
π−N → π−η′N at 37GeV also saw two peaks for the a2(1320) and the π1(1600) [4], as
you can see in Figure 2.3(b). COMPASS with its ability to use hadronic p, µ, K or
π beams and obtain higher statistics, is in a unique position for trying to produce and
con�rm exotics through di�ractive production, explained in the next chapter. In the
following section the important parts of the experimental set up of COMPASS for the
hadron program is brie�y described.

2.2. Experimental Set Up

In this section the most important parts of COMPASS get described and speci�c ex-
perimental properties during the data taking in 2008 are given, because the 2008 data
serve as reference for the later described Monte Carlo simulation. For an explanation of
the di�erent elements of COMPASS in greater detail I refer to [2]. Figure 2.4 shows the
experimental set up with its two stages. In every stage there are detectors for tracking
and calorimetry. The �rst stage detects low energy particles with bigger angles with
respect to the beam that de�nes the z axis, while the second stage covers smaller angles
and higher energy of the detected particles.
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Figure 2.4.: COMPASS set up[2]

The Beam

The COMPASS experiment is connected to the M2 beam line of the SPS (Super Proton
Synchotron) that accelerates protons up to 400GeV. These protons travel in bunches of
1013 particles with a duration of 16, 8s striking a �rst target that creates the secondary
beam particles for COMPASS, mainly pions and kaons. Momentum �lters select the
right beam particles needed for a certain experiment. Six percent of the pions and kaons
decay into muons and muon neutrinos, π±, K± → µ±νµ. While in the muon program
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one extracts these muons with the use of hadron absorbers before the beam enters the
COMPASS set up, in the hadron program the muons get de�ected by other bending
magnets to get a pure hadron beam.

The Target

In principle the experimental set up allows to work with a lot of di�erent targets, solid
or liquid, polarized or unpolarized. To polarize the target it needs to be cooled with
liquid helium down to 200mK and in a process called �dynamic nuclear polarization� it
is exposed to a magnetic �eld of 2, 5B and microwaves with a certain frequency. In the
muon program one used 6LiD or NH3 while solid lead and liquid hydrogen targets were
installed during the hadron runs. In the data of 2008 underlying this thesis, one used
unpolarized liquid hydrogen. Stored in a cylindric cell of 40cm length and a radius of
3, 5cm it was also surrounded by the liquid helium cooling.

The Recoil Proton Detector (RPD)

For detecting and reconstruction the recoil proton the Recoil Proton Detector (RPD)
surrounds the target area. It consists of two scintillator rings that measure the time
the proton travels between them and its direction. With these measurements one can
determine the momentum vector of the recoil proton. The RPD can detect particles in
a angular range of 66◦ to 80◦ and with momenta greater than 250MeV which means
a momentum transfer higher than t = (ptarget − precoil)

2 = ppp2recoil = (250MeV)2 =
0, 06GeV2[24].

The Ring Imaging Cherenkov Counter (RICH)

The duty of the Ring Imaging CHerenkov Counter (RICH) is to identify hadrons by
their speci�c Cherenkov ring. It is basically a long iron tube �lled with C4F10 gas in
which incoming hadrons can travel faster than the speed of light in that gas. Similar to
a Mach cone the hadron emits light if it is that fast. In pion-proton di�ractive scattering
the produced particles have such short lifetimes that they immediately decay within the
target region. A lot of them decay into two daughter photons that unfortunately often
shower already in the RICH pipe before the electromagnetic calorimeters due to pair
production. Thus the RICH detector is not a valuable element in the decay channel
studied in this thesis, which gives rise to the question of its absolute in�uence on the
measurements. In chapter 4.3.2 I tried to �nd ways to investigate the e�ect of the RICH
on the acceptance and compare its simulation with real data.

The Electromagnetic Calorimeters (ECAL1/ECAL2)

The electromagnetic calorimeters ECAL1 and ECAL2 are of major importance in the
COMPASS experiment. Since there are mostly decays into charged daughter particles
or photons, the reconstruction of the mother particles in the decay chain rely heavily on
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the record in the ECALs. Charged particles entering the scintillator emit photons due to
bremsstrahlung that convert into electron-positron pairs. These charged electrons and
positrons radiate bremsstrahlung again and this chain continues until the energy of the
photons is not high enough to build a e+e−-pair any more. Of course a photon entering
the calorimeter can start the same chain with pair production. All photons produced in
the electromagnetic calorimeter together form a so called cluster. The ECALs not only
record the positions of these clusters but also their energy.

The Hadronic Calorimeters (HCAL1/HCAL2)

The hadronic calorimeters HCAL1 and HCAL2 are able to detect and measure hadrons
that prefer to interact strongly and therefore are less signi�cant in the ECALs. Since
all particles in the decay chain studied in this thesis are either charged or photons the
hadronic calorimeter are not important, besides one can see a �shadow� of HCAL1 in
the record of ECAL2 that is located behind. The HCALs play a more important role
in the muon program where they measure for example neutrons from charmed baryon
decays or can be used as part of the trigger.

The Trigger

The goal of a trigger system is a preselection of events that are interesting for the
physics one wants to study. It rapidly decides by simple criteria, such as the exceeding
of detector thresholds while other logical conditions are true, which events to keep and
which to already sort out before the total amount of events is recorded. In this thesis
with the focus on di�ractive production the trigger of choice is the DT0 trigger. It is
a combination of other triggers, mainly the beam trigger that selects events where only
one beam particle interacted with the target and the RPD trigger that makes clear that
there is one recoil proton that can be traced back to the target. The Veto trigger is
also part of the DT0. Besides others it marks events where additional particles from
hadronic interactions or halo-particles are present in the beam line.





3. Theoretical Overview

This chapter provides the necessary theoretical background knowledge for the physics in
this thesis. First a general overview of mesons and exotics is given and special features of
the relevant decay channels are shown that are important for the later presented results
of the Monte Carlo simulation. Later basic kinematics that is important to program
the event generator is presented. To keep this part short, theorems and equations are
directly given and not derived. The goal in these sections is to comprise every topic in
a few equations or conditions so that they are easy to implement in programming code.
The implementation itself is explained in the later chapter.

3.1. Mesons and Exotics

In 1934 Yukawa predicted the existence of a carrier particle of the nuclear force. In his
theory nucleons in an atomic nucleus hold together due to the exchange of this carrier
particle. He expected the mass of the particle between the mass of leptons (meaning
`light-weight') and baryons (`heavy-weight') and called it meson, from the Greek word
mesos, meaning 'intermediate'[11]. 1947 the �rst mesons, the charged pions π+ and
π− were discovered with a mass about 273 times bigger than the mass of an electron
(mπ+,π− ≈ 135MeV). Like all mesons, these pions are members of the hadron family,
which means that they consist of quarks. Mesons are bound states qq̄′ of quarks q and an-
tiquarks q̄′ where the �avour of q and q̄′ may be di�erent. They are usually characterized
by their total angular momentum J , their parity P and their charge conjugation C. J is
thereby composed from the total spin S (S = 1 meaning parallel and S = 0 anti-parallel
spin of q and q̄′) and the relative orbital spin L of the qq̄′ pair, |L − S| ≤ J ≤ |L + S|.
P and C are de�ned as follows[15].

P = (−1)L+1; C = (−1)L+S; G = (−1)IC = (−1)L+S+I (3.1)

These properties of mesons allow a classi�cation in JPC multiplets distinguishing among
(pseudo-)scalar, (pseudo-)vector and tensor mesons. Table 3.1 gives the lowest lying
meson states with their quantum numbers, while Figure 3.1 shows a nonet of some
known pseudo-scalar mesons with JP = 0−.

11
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Figure 3.1.: Nonet: pseudo-scalar mesons with JP = 0− con�guration, di�erent charge
Q, spin S, isospin I3,[22]

meson type S L P J JP

scalar 1 1 + 0 0+

vector 1 0 − 1 1−

tensor 1 1 + 2 2+

pseudo-scalar 0 0 − 0 0−

pseudo-vector 0 1 + 1 1+

Table 3.1.: Di�erent meson types and their quantum numbers

The charge conjugation C is only a good quantum number for neutral mesons that
are their own antiparticles like the π0 or the other mesons in the middle of the mul-
tiplet shown in Figure 3.1. Therefore the C-Parity can be generalized to G-Parity
de�ned in Equation (3.1) where I is the isospin. In strong interactions both G and I
are conserved. It is apparent from Equation (3.1) that some combination of JPC like
0+−, 1−+, 2+−, 3−+, ... are not accessible in mesonic qq̄′ states. An establishment of states
with these �forbidden� quantum numbers would be a hint for the existence of non-qq̄′

objects with either more than two quarks or gluonic components[21]. Theoretically pos-
sible objects occupying forbidden JPC states are glueballs (gg, ggg), tetraquarks (qqq̄q̄)
and hybrids (qgq̄), which are in general referred to as exotics. Some candidates for ex-
otics with JPC = 1−+ have been seen in the �nal states of the π−η′- and the π−η-system.
They are so called resonances, intermediate �subatomic particle formations�, visible as
peaks in invariant mass spectra. Their very short lifetimes τ give them certain resonance
widths Γ = ~

τ
(~: Planck's constant). According to the uncertainty principle ∆E∆t ≥ ~

2
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a resonance has no well de�ned mass, but a blurred value ∆m.

∆E∆t ≥ ~
2

(3.2)

∆E = (∆m)c2 (3.3)

∆t = τ (3.4)

⇒ ∆m ≥ ~
2τc2

=
Γ

2c2
(3.5)

With extremely short lifetimes even lower than the lifetimes of the decay products (τη =
5, 0 · 10−19s, τη′ = 3, 2 · 10−21s), the mass widths of these resonances would be several
MeVs, which makes it experimentally very di�cult to observe such broad peaks and
assign them to resonances. A good understanding of what is underground and what is
physical peaks in a recorded spectrum is needed, which makes a realistic Monte Carlo
simulation very important.

3.2. The η′ and η Decay Channel

The decay channel of interest with possible candidates for exotics are π−p→ π−η′p and
π−p→ π−ηp with the η′ decaying into two pions and the ηs disintegrating to either two
photons or three pions. Figure 3.2 schematically summarized every decay that is taken
into account for this thesis. In Table 3.2 the �nal states with their numbers of charged
particle tracks and the labeling that is used in the following is shown.
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π− ptarget

precoil

X

π−η′

γγ

π+π−η

γγ

π+π−π0

γγπ−η

π+π−π0

γγ

Figure 3.2.: Decay scheme of the η′- and η-channel
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p+ π− → pX
X → label number of tracks

π−η′(π+π−η(γγ)) η′, η → γγ 3
π−η′(π+π−η(π+π−π0(γγ))) η′, η → π+π−π0 5
π−η(π+π−π0(γγ)) η, η → π+π−π0 3

Table 3.2.: Final states of the decay channels

Data from the COMPASS hadron runs can be selected according to these �nal states
and in the Monte Carlo simulation the whole decay chain is imitated. The �rst step,
where the pion beam hits the �xed proton target π− + p → X + p, can be simply
described as a standard two-body scattering problem. Figure 3.3 visualized this process,
À + Á → Â + Ã. In the following let pi be the momentum Lorentz vector (4-vector) of
a particle i = 1, 2, 3, 4 and pppi the spatial momentum vector (3-vector).

p
1
, m

1

p
2
, m

2

p
3
, m

3

p
4
, m

4

Figure 3.3.: Two-body scattering[15]

The two-body scattering is normally described using the Mandelstam variables s, t, u
de�ned as follows.

s = (p1 + p2)
2 = (p3 + p4)

2 (3.6a)

t = (p1 − p3)2 = (p2 − p4)2 (3.6b)

u = (p1 − p4)2 = (p2 − p3)2 (3.6c)

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (3.6d)

s is usually referred to as the center of mass energy while t re�ects the momentum
transmission, which is always negative for scattering processes. In this thesis not only
t but also t′ is used as a variable for momentum transmission. It is the di�erence
between t and the minimal momentum transmission tmin that can be computed with
Equation (3.8).

t′ = |t− tmin| (3.7)

tmin = (
s+ t+ u

2
√
s

)2 − (p1cm − p3cm)2 ≈ (m3 −m1)
2

4ppp21
(3.8)

In this simpli�ed picture p3 would be the Lorentz vector of a resonance X. However
the production mechanism of this resonance can not be explained by the two-body
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scattering. A more accurate explanation is a di�ractive excitation of the pion beam
particle, a process with a momentum transmission t low enough, so the target proton
remains intact, but high enough to excite the pion leading to an appearance of the
resonance.

3.2.1. Di�ractive Excitation

A detailed look of the pion-proton interaction is shown in Figure 3.4. The process where
the pion projectile is scattered o� the target proton can be considered to be an exchange
of another particle, the pomeron P. It was �rst predicted by Regge in 1961 in the
framework of the so-called Regge theory, a set of empirical relations that are not based
on Quantum Chromo Dynamics (QCD)[18].

Figure 3.4.: Pomeron exchange in di�ractive excitation[10]

The pomeron can be viewed as a multi-gluonic state and is theoretically described by
a Reggeon trajectory. The momentum transfer t in a di�ractive dissociation process is
by de�nition the squared 4-momentum q of the exchanged pomeron,

t = q2 = (p−π − px)2 = (E−π − Ex)2 − (ppp−π − pppX)2. (3.9)

The projectile does not directly hit the target proton, but only touches it with an impact
parameter that is in the range of the strong interaction (≈ 10−15). t is therefor so small
that the recoil proton has the chance to remain intact[10].

3.2.2. Two-Body Decay

After the di�ractive production of the resonance X, it can disintegrate into a pion and
a η′ or a η as you can see in Figure 3.2. Figure 3.3 shows a two-body decay scheme in
the lab frame.
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Figure 3.5.: Two-body decay[15]

For convenience this two-body decay is viewed in the center of mass (CM) frame,
where the 4-momentum vectors p1 and p2 of the daughter particles are parallel, opposite
and of same length due to 4-momentum conservation. The energies of À and Á in the
CM-frame are given by Equations (3.10) using natural units with c = 1 and assuming s
is again the center of mass energy.

E1cm =
s+m2

1 −m2
2

2
√
s

(3.10a)

E2cm =
s+m2

2 −m2
1

2
√
s

(3.10b)

|ppp1cm| =
√
E2

1cm −m2
1 (3.10c)

|ppp2cm| = |ppp1cm| =
√
E2

2cm −m2
2 (3.10d)

(3.10e)

To determine these properties not only in the lab frame, but in any other inertial
system, one can apply a Lorentz transformation like in Equation (3.11), where E∗/p∗‖
are the properties in the new system, while E/p‖ are the ones in the system from which
one wants to boost. The ‖-index of the momenta means that only the momentum
components parallel to the boost direction are transformed.(

E∗

|ppp∗‖|

)
=

(
γf −γfβf
−γfβf γf

)(
E
|ppp‖|

)
(3.11)

The relativistic variables βf and γf of the frame to be changed are computed as follows.

βf =
|ppp|
E

(3.12)

γf =
1√

1− β2
f

(3.13)

The relativistic energy momentum relation (Equation (3.14)) is therefor true in every
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inertial system.
E2 = ppp2 +m2

0 (3.14)

However with these equations one knows the energies and momenta of every decay
product in every inertial system, two variables are still unknown and can not be de-
termined from conservation laws, the orientation of the decay plane described by two
spherical angles ϕ and θ[14].

A very useful inertial system in which the two-body decay of the resonance X is
described, is the Gottfried-Jackson frame. It is the rotated center of mass system with
the beam line as z axis and the xy-plane spanned by the 3-vectors of the recoil proton
and the resonance. This system is very important because the angular momentum of
the daughter particles can be easily quantized through a projection on the z-axis.

3.2.3. Three-Body Decay

In both decay channels, η′ and η in Figure 3.2 you can see the presence of three-body
decays, namely η′ → π+π−η and η → π+π−π0.

p
1
, m

1

p
3
, m

3

P, M p
2
, m

2

Figure 3.6.: Three-body decay[15]

While in a two-body decay the momenta of the daughter particles are equally dis-
tributed with reference to the rest frame of the mother resonance, this is normally not
the case in a three-body decay, schematically pictured in Figure 3.6. This manifests
itself in an anisotropic phase space with the in�nitesimal phase space element

dL =
1

(2π)9
δ4(P − p1 − p2 − p3)

d3ppp1
2E1

d3ppp2
2E2

d3ppp3
2E3

. (3.15)

In 1953 R.H. Dalitz introduced a convenient technique to visualize this phase space,
that can be described by only two variables. He took two combinations of the masses
of the decay particles, for example m12 = (p1 + p2)

2 and m23 = (p2 + p3)
2 and created a

scatter plot with the squares of these variables on the x- and y-axis. This type of scatter
plot, now called Dalitz plot, provides a very useful tool to study the dynamics of every
three-body decay[5].



CHAPTER 3. THEORETICAL OVERVIEW 19

(m
23

)
max

0 1 2 3 4 5
 0

 2

 4

 6

 8

10

m
12

  (GeV2)

m
2
3
  
(G

e
V

2
)

(m
1
+m

2
)2

(M−m
3
)2

(M−m
1
)2

(m
2
+m

3
)2

(m
23

)
min

2

2

2

2

Figure 3.7.: Dalitz plot[15]

Figure 3.7 gives an idea how a Dalitz plot looks like. In the case of an fully isotropic
decay, the Dalitz plot would be completely �at, which means that there are no angular
correlations between the decay products. Since symmetries or decay mechanisms involv-
ing a resonance may impose restrictions on the momentum distribution, the Dalitz plot
shows non-uniformities. If the three-body decay is dominated by a resonant process, a
peak around the mass of the resonance appears in the Dalitz plot. In the case of the η′-
and η-decay, it is acquainted from literature that they neither decay over resonances nor
isotropically. For a mathematical description of the form of the Dalitz plot one often
uses a certain parameterization called general decomposition[19]. Equation (3.18) shows
the de�nition of the variables X and Y for the general decomposition, where Ti is the
kinetic energy of the decay product i = 1, 2, 3.

Q = T1 + T2 + T3 (3.16)

X =

√
3

Q
(T2 − T1) (3.17)

Y =
m1 +m2

m2

T3
Q
− 1 (3.18)

Because the point density in the Dalitz plot is proportional to the intensities of the
three-body �nal states, the height in the Dalitz plot, or if you wish, the z-axis is a
measure of the decay amplitude |M |2. With the general decomposition one can �t
the shape of the plot like in Equation (3.19), with A being a normalization factor and
a, b, c, d, the �t parameters.

|M |2 = |A|2{1 + aY + bY 2 + cX + dX2} (3.19)

This equation allows to reconstruct a weighted Dalitz plot ,and therefore a restricted
momentum distribution for the decay products, in a Monte Carlo simulation using the
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�t parameters obtained from an experiment.

3.3. Pair Production

One possible interaction of electromagnetic radiation with matter is pair production.
While pair production refers to the production of a particle-antiparticle pair in general,
here only the creation of an electron-positron out of an energetic photon is covered. This
process can happen in an interaction of the photon with an atomic nucleus, which takes
place if a photon passes through any kind of detector material in the COMPASS set
up. In the electromagnetic calorimeters this e�ect is used to measure the energy of the
photon but a photon can hit other elements of the experimental set up before, which
means it disintegrates too early for a detection. As you can see later this happens very
often, especially in the RICH pipe. The threshold of a e+e− pair production is the rest
energy of the positron and the electron, Eγ,min = 2mec

2 = 1, 022MeV and the longer the
path of a photon going through a material is, the more probable it becomes that pair
productions happens. If a photon with an initial intensity I0 hits a material layer with
an thickness x the intensity behind the layer is given by Equation (3.20),

I(x) = I0 exp(−µx), (3.20)

where µ is the mass attenuation coe�cient that depends on the photon absorption cross
section σ via Equation (3.21) with NA as Avogadro's constant and A and ρ the atomic
number and the density of the material.

µ = σ
NA

ρA
(3.21)

For high photon energies this mass attenuation coe�cient reaches an asymptotic limit
µ0 of

µ0 =
7

9

NA

A
r2e4αZ

2 ln
183

Z1/3
=

7

9

1

X0

. (3.22)

The in Equation (3.22) de�ned quantity X0 is called the radiation length, which is a
speci�c constant for a material. It denotes the thickness of the material, in which the
probability for a pair production at high photon energies is given by Equation (3.23)[13].

P (γ → e+e−) = 1 − exp (−7/9) ≈ 54% (3.23)

After traveling one radiation length in a material, the probability that a photon did not
disintegrate and still exists, decreased by a factor of 1/e. Equation (3.23) serves as future
reference in the next chapter, where the e�ect of pair production becomes crucial in the
implementation of the RICH pipe in the photon acceptance Monte Carlo simulation.
For a proper theoretical de�nition of the radiation length I refer to [5] and [13].



4. Monte Carlo Analysis

Before an explanation of the procedures in the Monte Carlo calculations, a small overview
of the used software is given. Afterwards the programming of the event generator is
described. Later in this chapter the two Monte Carlo simulations are treated and their
results of the acceptances are compared with each other. At the end of this chapter an
interesting comparison between the transversal momentum of the η as daughter particle
of the resonance X in real data and the full Monte Carlo analysis is started.

4.1. Software

The task for the software chain used in this thesis is to gain useful physics information
out of raw, experimental or simulated, data containing only binary detector signals.
To achieve this, comprehensive programs and frameworks are required that are already
built, tested and available. The software used for this thesis is a mixture of general pro-
grams in high energy physics (ROOT, GEANT) and COMPASS speci�c tools (CORAL,
COMGEANT).

The ROOT Framework

ROOT is an object oriented analysis framework widely used in particle physics. Written
in C++ it was developed in the 1990's in the context of the NA49 experiment at CERN
to handle the impressive amount of data that was produced[17]. High amounts of data
can be structured and stored in ROOT �les for later visual presentation and evaluation.
All plots in this thesis were created in ROOT and the generator for the Monte Carlo
simulation is programmed for the CINT C++ interpreter implemented in ROOT.

COMGEANT

GEANT is another tool used in high energy physics programmed at CERN. It is able
to simulate detector responses to particle tracks through an experimental set up and
represent trajectories in the set up visually[7]. For the COMPASS experiment the speci�c
detector sizes, materials and properties got implemented in the generic GEANT code
obtaining the useful tool COMGEANT. Responsible for the simulation of the generated
particles in the COMPASS set up with their detector hits it is the back bone of the
Monte Carlo analysis.

21
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CORAL

CORAL stands for COMPASS Reconstruction and AnaLysis and was developed by the
COMPASS collaboration to reconstruct the relevant data like particle trajectories, mo-
menta or charge from the raw detector signal amplitudes and time information obtained
from experimental or Monte Carlo output. In the reconstruction the best possible tracks
and vertices are interpolated and the cluster position and energy in the calorimeters are
determined through shower �ts on an event-by-event basis. All these quantities are
written into a mDST (mini Data Summary Table) , a ROOT �le, that can be further
deconstructed by PHAST[8].

PHAST

The PHysics Analysis Software Tool PHAST is used to read the mDST output of
CORAL. Also written in C++, it allows the user to select information of reconstructed
events and �lter sub-samples under various conditions. This is done by programming
a function called �UserEvent� that PHAST executes for every single event stored in a
mDST �le. Thus, one can automate di�erent selection routines for di�erent analysis
purposes[16].

4.2. The Event Generator

The �rst part of the Monte Carlo chain is the event generator. Its task is to randomly
generate events of the decay of interest. As a C++ code using ROOT libraries it is
mainly based on a standard random number generator. Every variable that is also
measured in real data needs to be simulated in a way that it re�ects a realistic event in
the COMPASS experiment. How this is used to end up with a set of Lorentz vectors for
every decay particle in the �nal state is described in the following. In section A.2 in the
appendix of this thesis you �nd source code fragments that were used in the analysis.

Vertex and beam properties:

The �rst thing that the generator code does is randomly choosing a vertex position.
For the z-component a simple random number is uniformly generated in the target area
between −70cm and −30cm. The x- and y-component is randomly picked out of a
histogram showing a real vertex distribution in 2008 COMPASS data (see Figure 4.1).



CHAPTER 4. MONTE CARLO ANALYSIS 23

x
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

100

200

300

400

500

600

700

800

(a) xy distribution

z
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 00

10000

20000

30000

40000

50000

(b) z distribution

Figure 4.1.: generated Vertex distribution

With a routine programmed by Prometeusz Jasinski the resulting position vector for
the primary vertex is used to interpolate a possible direction of the beam. With this
direction and a beam energy also created with a random number, but with a Gaussian
distribution with µ = 191.29(MeV) and σ = 1.94476(MeV), a Lorentz vector for the
beam particle is easily put together, setting its magnitude to pbeam =

√
E2
beam −m2

π− .

Di�ractive Production of the resonance X:

In the next step the generator produces a Lorentz vector of a �ctitious resonance X.
First the mass is uniformly generated in an interval of [mπ± + mη′,η, 4GeV], as you can
see in Figure 4.2.

mX
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Figure 4.2.: Generated mass distribution (η′, η → 2γ)

In the picture of a simple two-body scattering of the beam and the �xed target
(ptarget = (0, 0, 0,mp)), the 4-vectors of the recoil proton and the resonance X are then
calculated by generating a Gaussian-distributed random momentum transfer t and using
Equations (3.6a). Based on the results of [24] the slope of the generated t′-distribution
is 6 so that the simulation matches the situation in real data. In order to simulate a
minimal momentum transfer due to the threshold of the RPD (see chapter 2.2) t′ starts
at 0.1GeV2 as shown in Figure 4.3.
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Figure 4.3.: Generated exponential t' distribution with a slope of 6

To get the Lorentz vectors of the resonance X and the recoil proton, one uses Equa-
tion (3.6a) to get the angle α between the beam (z-axis) and the resonance X in the
CM-frame as follows,

t =(pbeam − pX)2 = p2beam + p2X − 2pbeampX = (4.1)

=m2
beam +m2

X − 2(EbeamEX − pppbeam · pppX) (4.2)(
pppbeam · pppX = |pppbeam| · |pppX | · cosα

)
(4.3)

α = cos−1
(t+ 2EbeamEX −m2

beam −m2
X

2|pppbeam||pppX |

)
(4.4)

, where Ebeam, EX , |pppX |,|pppbeam| are the particle properties in the CM-frame determined
with Equations (3.10). Together with a random ϕ ∈ [−π, π] re�ecting the angle of the
decay plane the Lorentz vector of the resonance X and the recoil proton can be set and
with a Lorentz boost (Equation (3.11)) transformed in the lab system.

With the simulated resonance X one has to follow the di�erent decay channels from
Figure 3.2 and implement all two-body and three-body decays until the �nal states.
This is done by programming a function respectively for every decay and just calling it
for the di�erent steps in the decay chain.

Two-body decay:

Boosting in the rest frame of the particle that decays one can simply use Equation (3.10)
to compute the energies of the daughter particles. Because the masses of the decay
products are known, one can easily determine their momentum |ppp| with Equation (3.14).
Since there are no restrictions on the direction of the momenta both spatial variables ϕ ∈
[−π, π] and cos θ ∈ [−1, 1] are uniformly generated and one obtains enough information
to build 4-vectors for every decay product. At the end of the two-body decay function
these vectors get boosted in the lab frame.
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Gottfried-Jackson frame:

To calculate the kinematically relevant azimuthal and polar angle ϕGJ and θGJ of the
η′/η in the Gottfried-Jackson frame of the resonance X, a function is implemented in
the code that boosts the Lorentz vector of the η′/η in the rest frame of X and puts up a
rotation matrix that immediately rotates it in the GJ-frame with the beam line as the
z-axis. Figure 4.4 shows the distribution of the Gottfried-Jackson angles of either the η′

or the ′eta which is completely �at.
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Figure 4.4.: Generated angular distribution of the η′/η in the GJ-frame.

Three-body decay:

In reality the three-body decays of the η′ and the η are not isotropic in their phase spaces.
This has to be taken into account when simulating these decay processes. Technically
the three-body decay is �rst generated completely �at by introducing another �ctitious
resonance with random mass m12 ∈ [m1 + m2,M − m3] and applying two two-body
decays[14]. To get the weighted distribution the amplitude |M |2 needs to be calculated
according to Equation (3.19) with the �t parameter from Table 4.1. Now these two
steps, the uniform three-body decay and the determination of |M |2, is put in a do-while
loop under the condition that |M |2 is smaller than its maximum value (compare to
section A.2 in the appendix). Hence a three-body decay in an event is repeated as long
as the intensity of the possible m2

13-m
2
23-con�guration is lower than the maximal |M |2.

In this way one obtains the following anisotropic Dalitz plots in Figure 4.5, that are
realistically reproduced in comparison to real data[24].

decay a b c d reference
η′ −0, 127 −0, 106 0, 015 −0, 082 [15]
η −1, 090 0, 124 0 0, 057 [19]

Table 4.1.: Used �t parameters for the Dalitz plots
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Figure 4.5.: Generated Dalitz plots

Implementing all these steps and ordering the two- and three-body decays by the decay
channels one obtains Lorentz vectors for every particle in the respective �nal states 3.2.
These 4-vectors can now be stored in a ROOT tree or printed in a txt-�le in order to
pass them to the other Monte Carlo programs.

4.3. Photon Acceptance Monte Carlo Simulation

To test the event generator and gain some expectations for the real Monte Carlo results,
some elements for simulating the photon acceptance of the experimental set up were
added to the generator code. As the name indicates only the photons in the �nal states
of the decays were considered and only a rudimental description of the detectors were
implemented. However this approach provides a �rst heuristic ansatz for an acceptance
study and helps to understand the later outcome of a full Monte Carlo analysis. Again
the source code can be found in the appendix under section A.2.

4.3.1. Implementations

The only detection elements in the COMPASS experiment implemented in the photon
acceptance Monte Carlo selection, sometimes also referred to as �Toy Monte Carlo� or
�Fast Monte Carlo�, are the two electromagnetic calorimeters ECAL1 and ECAL2 and
the 3, 14m long steel tube of the RICH detector that plays a major role in the acceptance
of events. In the following the simulation of these detectors are described.
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Figure 4.6.: ECALs in the photon acceptance Monte Carlo simulation

ECAL1/ECAL2:

The ECALs are implemented as simple plane areas perpendicular to the beam line and
located at the center of the calorimeters, as shown in Figure 4.6. An event is accepted
when both photons hit any of the two planes. In Figure 4.6 you can see the ECAL areas
with their holes, the exact dimensions can be taken from the source code in section A.2.
With the the known 3-momentum of the gammas from the generator one can easily
calculate their hit points in the ECAL planes according to Equation (4.5), with rrrhit
as the position vector of the hit point, rrrvertex the generated vertex position, ∇pppγ the
direction of the photon's momentum and λ the distance between the vertex and the hit
point.

rrrhit =

rxry
rz

 = λ∇pppγ + rrrvertex (4.5)

To simulate the threshold of the calorimeters an event is neglected if a photon hits
ECAL1 and has an energy smaller than 1GeV or if a photon travels in ECAL2 and its
energy is less then 4GeV. Figure 4.7 shows the plot of the photon positions viewed from
the beam direction.
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Figure 4.7.: Position of photons in the ECALs

The outer white margin in Figure 4.7 is due to another geometrical cut. Because of
the HCAL between the two ECALs in the experimental set up you can also see this
'shadow' in real data, so this is replicated in the code.

RICH:

For some reaction channels it is rather unfortunate that the RICH detector is still a
part of the experimental set up in the hadron program. While in the muon program
it was of major importance for the identi�cation of kaons from D-meson decays, in the
hadron program the RICH pipe is disturbing in the sense that its responsible for a great
acceptance loss. To estimate its e�ect on the photon acceptance a simple geometrical
model of the steel tube was inserted in the Toy Monte Carlo program. Figure 4.8 shows
the dimensions of the RICH pipe.
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Figure 4.8.: RICH pipe, L = 314, 0cm, r = 4, 985cm, R = 5, 0cm

The code computes the distance a photon traveled in the steel tube in units of radiation
lengths. This is computed as follows. First the hit points in the planes at zfront =
591, 7cm and zback = 905, 7cm, the front and back cover of the steel cylinder have to be
determined using Equation (4.5). The distance between these points gives the length of
the path the particle travels from the front to the back of the RICH pipe, but it only
collects radiation lengths by going through the steel surface of the cylinder. Therefore
one needs to �nd out where the photon enters the pipe surface and where it exits again.
This is done by solving Pythagoras' equation twice in the form of Equation (4.6), with
rin = 4, 985cm and rout = 5, 0cm.

(λinp
(x)
γ + r

(x)
vertex)

2 + (λinp
(y)
γ + r

(y)
vertex)

2 = r2in (4.6a)

(λoutp
(x)
γ + r

(x)
vertex)

2 + (λoutp
(y)
γ + r

(y)
vertex)

2 = r2out (4.6b)



30 4.3. PHOTON ACCEPTANCE MONTE CARLO SIMULATION

By solving these quadratic equations, one obtains λin and λout giving the distances
from the vertex to the position where the photon enters or exits the lateral surface of
the RICH pipe. Thereby the positions of the photon entering and leaving the steel
surface are determined and the path of a photon through the steel can be calculated and
divided by the speci�c radiation length of iron which is X0(Fe) = 1, 76cm. Figure 4.9
shows how many radiations lengths are collected by a single photon.
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Figure 4.9.: X/X0 of a photon hitting the RICH pipe

To simulate the pair production in the RICH pipe that would make a real event useless
for experimental investigations the program cuts out events if the calculated number of
radiation lengths is greater than a random number exponentially distributed with a
slope of 7/9, based on Equation (3.23). This means that one looses many events where
photons hit the tube of the RICH detector, which leads to a circular shadow structure
in the middle of ECAL2 that is clearly visible in Figure 4.7, which shows the same plot
as Figure 4.10 but with the implementation of the RICH pipe.
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Figure 4.10.: Position of photons in the ECALs with an implemented RICH

Since this loss of events where photons already shower in the RICH pipe before they
can be detected by the electromagnetic calorimeters is an inconvenient e�ect in the
experiments, one would like to know the absolute value of the decreased acceptance and
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whether it can be simulated realistically in the fast Monte Carlo. Therefore in the next
section 4.3.2 2008 data from week 37 selected for the η-channel with the η decaying in
π+π−π0 is compared with the RICH simulation.

4.3.2. The In�uence Of The RICH Pipe

For a reasonable comparison between the observed data and the RICH simulation in the
photon acceptance Monte Carlo one would like to investigate the in�uence of the RICH
pipe on a single photon. A comparison of plots like in Figure 4.10 and Figure 4.10 is
not so clear since an event is already cut out even if only one of the two photons in the
�nal state hits the RICH pipe not taking the other photon into account. To overcome
this problem one only looks at one photon in the event with the condition that the
other photon �ew una�ected through the RICH pipe. In the program this is down by a
query whether the distance of a photon from the z axis in the ECAL2 is smaller than
the radius of the RICH pipe, if yes, the other photon in the �nal state of the event is
plotted. In the case where both photons do not touch the RICH pipe one photon is
chosen randomly. The histograms in Figure 4.11 show the radii of the photon hit points
in ECAL2 plotted in this way.
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(c) real data, 21,4% loss

Figure 4.11.: Radii of photons in ECAL2

The left picture shows the radii of the photon in the photon acceptance Monte Carlo
without a cut on the radiation lengths so the e�ect of the RICH pipe is switched o�. The
picture in the middle shows the same curve in comparison to the radii of the photons
with the presence of the RICH pipe (blue line). The local minimum re�ects the shadow
of the RICH pipe in Figure 4.10. A comparison of the integrals of the two curves gives
the total loss of around 21, 0% because of the RICH pipe alone. For a comparison
of this loss in the fast Monte Carlo with the percentage loss in real data, the same
curve without the RICH (black line in the right picture) is scaled down to the real data
plot of the photons' radii (blue line in the right picture). The scaling factor is tuned
according to the match of the right and the left tales of both curves. The di�erence of
the resulting curves is 21, 4% which gives evidence that the e�ect of the RICH on the
photon acceptance is rather well understood and its simulation is quite realistic in the
observed η-channel. The agreement of the middle and the right panel in Figure 4.11 is
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not perfect. This is possibly due to misalignment of the RICH tube or to a di�erent
in�uence of the selection criterion that exactly two photon clusters are observed (see
next section).

4.4. Real Monte Carlo Simulation

With the event generator for the di�ractive excitation in the η′- and η-channel one can
start the real Monte Carlo Simulation for the COMPASS experiment. All generated
Lorentz vectors of the particles in the �nal state together with the vertex position are
written in a text �le to pass it into the COMGEANT program. COMGEANT simulates
the behavior of these particles in the di�erent materials of the experimental set up and
notes every detector hit. All generated information is stored in mDst.root �les that are
similar to real data. In a next step CORAL runs over these �les and tries to reconstruct
a track for di�erent detector signals corresponding to recorded particles. The CORAL
output is again saved in ROOT-�les from where the PHAST software is used to visualize
di�erent properties of the whole simulation and pull out comparable results. This is done
for the two �nal states of the π−η′-system and the π−η-channel with η → π+π−π0 and
the Monte Carlo results are compared with the simple photon acceptance simulation.

4.4.1. Selection Cuts

The UserEvent function called event-by-event in the PHAST program is responsible
for the selection of the reconstructed event in the CORAL output. CORAL cannot
reconstruct all events that are generated and sometimes it associates more tracks to an
event than there is particles in the generated events. For this reason one needs to cut on
properties speci�c for the respective decay channel. The individual cuts are explained
in the same order as implemented in the UserEvent function.

� DT0-Trigger: The �rst cut makes sure that the event did not set o� the DT0-
Trigger.

� One beam particle: Events where more than one beam particle �ew in the target
region are discarded as well.

� One best primary vertex: CORAL may rebuild several vertices per event, but
only primary vertices, which can be connected to the beam track, are of interest. It
happens that there are more than one primary vertex, in this case PHAST selects
only the best primary vertex, which is the one with the most tracks.

� Number of tracks: To make sure that the number of charged particles in the �nal
states are the same in the input and output of the reconstruction one needs to cut
on the number of tracks sprung from the best primary vertex. Therefore events
with three tracks from the best primary vertex are selected for the η′, η → γγ
and η, η → π−π−π0 channel and �ve tracks for η′, η → π−π−π0 (see Table 3.2).
Although this cut on the tracks coming out of the best primary vertex reduces
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the number of bad events drastically, there are still a lot of events with more than
three or �ve charged particle tracks as you will see later in this section.

� Charge Conservation: Reconstructed events that miss charge conservation are
also thrown away.

� One track in the RPD: Only events are selected, where there is one recon-
structed track in the RPD.

� Two good clusters: Comparable to the cut on the right number of tracks of
charged particles, the cut on two clusters in the ECALs ensures that there are
only two neutral photons that shower in the ECALs. A good cluster is one, where
there is no reconstructed particle track pointing to it. Still this is not enough
and the clusters also have to ful�ll other condition, namely their energy must be
greater than 1GeV if the cluster is located in ECAL1 and greater than 4GeV in
ECAL2.

� Exclusivity: In the UserEvent function there is also a query whether the event
is exclusive meaning energy is conserved. If the total energy of all �nal particles
is not in a range between 180GeV and 200GeV the event is also thrown away.

� Reconstructed invariant γγ mass: Last the reconstructed invariant mass of the
two photons is only allowed in a certain interval around their parent particle's mass.
In the case of the photons originating from a η, m(γγ) ∈ [0, 43GeV; 0, 63GeV] and
in the case of a π0 being the parent particle m(γγ) ∈ [0, 110GeV; 0, 170GeV].

This wealth of selective cuts lets the initial amount of events shrink dramatically to
a small subsample of events that ful�ll the above conditions. The cut�ow diagrams in
Figure 4.12 show how many events are still in the sample after each cuts. As you can
see the biggest drop of events is due to the cut on the number of tracks leaving the best
primary vertex. Since it is more unlikely to correctly reconstruct �ve particle tracks than
only three, the loss is even more dramatic in the case of the η′, η → π+π−π0 simulation.
The second hardest cut is the one on two good clusters, where in the case of η → γγ the
number of accepted events drop by an approximated factor of 2, while in the other two
cases with η → π+π−π0 the number of events decrease by a factor of around 3 to 4.
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(c) η, η → π+π−π0

Figure 4.12.: Cut�ow diagrams
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4.5. Comparison Of Acceptances

After the selection of good events in the Monte Carlo outcome one can start to study
the acceptance as a function of various variables. Technically this is done by plotting a
certain reconstructed distribution in a histogram and dividing it by the respectiveMonte
Carlo truth, the generated distribution put in the Monte Carlo chain. Figure 4.13(a)
shows the generated z-distribution of the vertex position in the η′-channel, with η → γγ,
while in Figure 4.13(b) you can see the vertex position in z after the selection cuts.
Obviously the position distribution of the vertex in the z-direction is not �at like it was
generated by the event generator. Hence the acceptance shown in Figure 4.13(c) is not
uniform.
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Figure 4.13.: z-distribution of the vertex position in the η′, η → 2γ event class.

In the following the acceptances for the di�erent �nal states as a function of di�erent
variables are compared between the photon acceptance Monte Carlo and the full Monte
Carlo.

z-distribution of primary vertex:

Figure 4.14 shows the acceptance as a function of the z direction of the vertices for
all considered decay channels in the full Monte Carlo (red lines) in comparison to the
fast Monte Carlo simulation (black lines). In the Fast Monte Carlo you can see a small
negative slope of the acceptance over the z-position of the vertices. This could be
explained by the fact that the further back the vertex lies in the target the bigger is the
gap between ECAL1 and ECAL2 in which a photon may �y that is consequently not seen.
In the real Monte Carlo however there is a clearly opposite e�ect where the acceptance
is lower if the vertex is closer to the beam. In this case it is simply the more detector
material that the photons have to pass on the way to the calorimeters, in which they
gain radiation lengths and are more likely to shower before a detection. The e�ect is not
clearly visible in the η′, η → π+π−π0 selection where there are the most charged tracks
to be reconstructed and the acceptance may rely more strongly on the detection of the
pions in the decay's �nal state. Since there is no charged particle detection implemented
in the photon acceptance Monte Carlo calculations, the acceptances are always higher
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than in the full Monte Carlo simulations, which becomes clear when looking at the two
di�erent scales on the left and the right edge of every sub�gure.
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Figure 4.14.: acceptance in z-distribution of the vertex position,
red lines: Full Monte Carlo
black lines: Fast Monte Carlo

xy-distribution of primary vertex, t', Dalitz plots:

In the same way as the acceptance in the vertex z-distribution, other variables are
studied. As it turns out the acceptance as a function of xy-distribution of the vertex
position is completely �at in every considered decay chain as well as the t′-distributions,
and the Dalitz plots. In Figure 4.15 the acceptance plots for these variables in the
(η′, η → π+π−π0)- and the (η, η → π+π−π0)- channel are presented representative for
the simulations of the other decay channels.
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Figure 4.15.: Uniform acceptances in all simulated decay channels

These results of the real Monte Carlo analysis can be perfectly reproduced with the
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photon acceptance Monte Carlo where the acceptances for the same variables are also
uniform, as you can see in Figure 4.16.
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Figure 4.16.: Uniform acceptances in the photon acceptance Monte Carlo

Mass of resonance X:

Another acceptance e�ect that is not totally �at but can be roughly reproduced by
the fast Monte Carlo is found in the mass distribution of the generated resonance. In
Figure 4.17 you can see the acceptance as a function of mX in the real Monte Carlo (red
lines) and in the fast Monte Carlo (black lines). The black scales on the right of every
sub�gure refer to the full Monte Carlo and the red scales on the left refer to the fast
Monte Carlo calculations. Although the e�ect is small, one can see an increase in the
mass acceptance towards large mX .
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Figure 4.17.: Acceptance as function of m(π−η′) or m(π−η),
red lines: Full Monte Carlo
black lines: Fast Monte Carlo



38 4.5. COMPARISON OF ACCEPTANCES

Since this e�ect arises in the fast Monte Carlo as well as in the real Monte Carlo
equally, it has to be of purely geometrical nature. Its explanation has to do with the
greater decay angle of high energy particles. A high initially generated resonance mass
means higher energies for all particles in the decay chain due to simple 4-momentum
conservation. The last decay in every considered decay chain is a η or a π0 disintegrating
into two photons. If these parent particles have lower energies the photons will have
smaller spatial angles, so less transversal momentum and they may �y in the hole in
the central region of ECAL2, which lets the acceptance decrease. Higher energies of
the parent particles lead to higher spatial angles and the photons are more likely to be
detected.

Gottfried-Jackson angles of η′/η:

For a further partial wave analysis of the π−η′- or the π−η-systems the important vari-
ables are the spatial angles ϕGJ and θGJ of the η′/η in the Gottfried-Jackson frame of
the generated resonance X. Figure 4.19 and 4.18 show the acceptances for these angles.
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Figure 4.18.: Acceptance as function of ϕGJ of η′/η
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Figure 4.19.: Acceptance as function of cos θGJ of η′/η

As a function of the azimuthal angle ϕGJ the acceptances look �at with a shallow
minimum in the η → γγ case and a shallow maximum in the η → π+π−π0 cases,
where the shape of the curves can be reproduced really well by the photon acceptance
Monte Carlo simulation. As a function of the polar Gottfried-Jackson angle θGJ the
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acceptance shows a deep minimum in the (η, η → π+π−π0)-channel at cos θGJ = −1,
where the ηs are emitted backwards. The dependence of the acceptance on the polar
angel θGJ in the other channels do not agree with the photon acceptance Monte Carlo,
which indicates a strong in�uence of the charged particle detection e�ciencies in the real
Monte Carlo simulation. Remarkable are the local minima around cos θGJ = 0, 8 in the
fast Monte Carlo histograms, that are also present in the real Monte Carlo acceptance
for the η, η → π+π−π0 case.

Mass of resonance X vs. cos θGJ :

To study the correlation between the generated mass of the resonant system and the
direction of the momentum of the decay product η′ or η, one plotsmX versus the cosine of
θGJ as done in Figure 4.20. To depress statistical �uctuations and for better comparison
the plots for the real Monte Carlo acceptances are rebinned.
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Figure 4.20.: Acceptance in mX vs. cos θGJ

Again the fast Monte Carlo resembles the real Monte Carlo better in the (η′, η → γγ)-
and especially in the (η,η → π+π−π0)-channel while in the (η′,η → π+π−π0)-case the
two di�er a lot. Noticeable is the acceptance drop for high masses and cos θGJ = −1
that is apparent in all channels as well as the band of decreased acceptance from high
masses and cos θGJ = 1 to low masses and cos θGJ = −1. The second is due to the
RICH pipe as a comparison to the fast Monte Carlo without the cut on the radiation
lengths shows. Figure 4.21 shows the same acceptance plot in the photon acceptance
Monte Carlo where the RICH pipe is switched o� so only the acceptance e�ects of the
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threshold and geometry of the ECALs are taken into account. The band of acceptance
loss in the fast Monte Carlo pictures in Figure 4.20 disappears.
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Figure 4.21.: Acceptance in mX vs. cos θGJ , fast MC without RICH pipe
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Figure 4.22.: Acceptance in cos θGJ , fast MC without RICH pipe

If one looks at the cos θGJ acceptance in the photon acceptance Monte Carlo without
the RICH (Figure 4.22) the local minimum at a forward emission with cos θGJ = 0, 8
disappears, too. This may mean that the RICH description in the full Monte Carlo with
COMGEANT and CORAL does not reproduce the e�ect of the RICH in the η′-channels
very well. Remarkable is the amount of clusters in ECAL1 and ECAL2 that are due two
secondary charged particles. As you can see in Figure 4.23 that shows the number of
reconstructed clusters. There are in average between 18 to 20 clusters in every observed
decay channel. These secondary clusters are not all �good� clusters (see section 4.4.1) so
most of them are below the ECAL energy thresholds or can be associated to a charged
particle track, but still there are often more than two good clusters in the ECALs as
Figure 4.24 shows. As compared to the photon acceptance Monte Carlo simulation,
the relative yield of one-good-cluster events is also increased in the full Monte Carlo
simulation. These clusters could let the e�ciencies in the photon acceptance Monte
Carlo and the real Monte Carlo di�er signi�cantly, since this e�ect is not taken into
account in the photon acceptance Monte Carlo analysis. This might be the reason for
the di�erences of the fast and the full Monte Carlo calculations for the acceptance as a
function of cos θGJ in the η′ decay channels.
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Figure 4.23.: Number of reconstructed clusters in the ECALs
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Figure 4.24.: Number of good clusters in the ECALs
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The same histograms for the photon acceptance Monte Carlo simulation are shown
in Figure 4.25. The whole reaction mechanism of photons creating clusters is not im-
plemented, so you only see the number of detected photons per event. It is not visible
that the �rst bin in all three histograms in Figure 4.25 is not completely empty, but
there are only 300 to 400 events where both photons do not �y in the electromagnetic
calorimeters. Since there are only two generated photons in an Monte Carlo event, it is
impossible to end up with more than two unlike in the real Monte Carlo calculation.
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Figure 4.25.: Number of detected photons in the fast Monte Carlo simulation

4.6. Comparison With Data

A natural next step would be a comparison of the Monte Carlo results to real data,
which can not be done in great detail, since it would be beyond the frame of this thesis.
However an interesting observation in the 2008 η data should be brie�y discussed here.
The data is selected with the same cuts as described for the Monte Carlo simulation
in section 4.4.1. If one looks at the transversal momentum of the η in the lab frame
and plots pppx(lab)ofη vs. pppy(lab)ofη, with ppp being the momentum 3-vector, one obtains
Figure 4.26. The z-axis in the lab system (the direction of the beam) is pointing out of
the pppxpppy-plane towards the observer.
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Figure 4.26.: pppx(lab)ofη vs. pppy(lab)ofη in real 2008 data
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As you can see, there is a clear ring structure in the plot shown in Figure 4.26 with
a global minimum at the center at zero transversal momentum of η. This ring can not
be reproduced in the full Monte Carlo with and isotropic resonance decay at the �rst
place, where the same pppxpppy-distribution is plotted in Figure 4.27 for resonance masses
not higher than 2GeV.
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Figure 4.27.: pppx(lab)ofη vs. pppy(lab)ofη in full Monte Carlo simulation with mX < 2GeV

However the ring structure appears also in the full Monte Carlo plot after introducing
a weight of sin2(ϕGJ) on every bin entry, where ϕGJ is again the azimuthal angle of η in
the Gottfried-Jackson frame of the resonance X. This simulates an anisotropic Al decay
of X. Figure 4.28 shows again the pppx(lab)ofη vs. pppy(lab)ofη plot for the full Monte
Carlo results, but this time weighted with this sin2(ϕGJ) term and the ring structure
appears.
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Figure 4.28.: pppx(lab)ofη vs. pppy(lab)ofη in full Monte Carlo simulation with mX < 2GeV
and a weight of sin2(ϕGJ on every bin

This ring is characteristic for di�ractive excitation processes with an exchange of a
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pomeron (see section 3.2.1). In strong interaction processes parity is conserved and
one has a production plane, which makes it convenient to describe the amplitudes of
the angular distribution in terms of re�ectivity eigenstates Aεlm(ϕ, θ), that are linear
combinations of the spherical harmonics Y m

l (ϕ, θ) as shown in Equation (4.7), with l
and m as the angular and magnetic quantum numbers of the resonance X[21].

Aεlm(ϕGJ , θGJ) = θ(m)[Y m
l (ϕGJ , θGJ)− ε(−1)mY −ml (ϕGJ , θGJ)] (4.7)

Here the introduced ε can take the values +1 or −1 and is called the re�ectivity quantum
number. Thus 0 ≤ m ≤ l. For the detailed theoretical explanation I refer to [21] and
[12]. Since di�ractive meson production is dominated by pomeron exchange only ε = +1
is expected and an the eigenstate looks like

A+1lm(ϕGJ , θGJ) = 2θGJ(m)i sin(mϕGJ). (4.8)

Hence the intensity |A+1lm(ϕGJ , θGJ)|2 is proportional to sin2(ϕGJ) in the case ofm = 1.

|A+1l1(ϕGJ , θGJ)|2 ∼ sin2(ϕGJ) (4.9)

Thus the sin2(ϕGJ) dependency is a consequence of dominant positive re�ectivity, which
is a natural feature of di�ractive excitation and is clearly visible in data through the ap-
pearance of the ring structure, which is also reproducible in the Monte Carlo simulation
if the m = 1 case is taken into account by weighting with sin2(ϕGJ). The hole on the
right side of the ring in Figure 4.26(only visible in the colour version) can be identi�ed
with the hole in ECAL2, since a fast Monte Carlo simulation without an implemented
hole shows a closed ring structure in the pppXpppy plot of the η. The actual size of the break
in the ring in Figure 4.26 is bigger than in the full Monte Carlo picture in Figure 4.27,
which is due to dead detector cells near the hole in ECAL2 that lead to a bigger loss of
events in the real data.



5. Conclusion And Outlook

As one main goal in the hadron program, COMPASS contributes to the search for exotic
meson resonances. In general a partial wave analysis (PWA) is necessary to measure
the exact quantum numbers of these resonant particle subsystems. To support such a
PWA of the π−η′- and the π−η-system. One needs a good description of the acceptance
of the detector responses. The focus of this thesis is a Monte Carlo simulation of the
whole experiment, where those new resonances are produced in the π−η′ and the π−η
�nal states via di�ractive excitation. After a realistic simulation of the full decay chains
of the produced resonances, acceptance studies were performed with two Monte Carlo
programs, a simple and fast photon acceptance Monte Carlo and a full Monte Carlo
calculation with COMGEANT and CORAL.

The comparison of the fast photon acceptance Monte Carlo simulation, where only the
ECALs and the RICH pipe geometry are taken into account, with the full COMGEANT
and CORAL Monte Carlo chain shows that, despite the rather simple description of the
experiment in the fast Monte Carlo, the acceptance as a function of many various vari-
ables is in agreement between the two simulations and thus can be understood quite well.
Since charged particle detection is completely neglected in the photon acceptance Monte
Carlo calculation the absolute value of the acceptance is consequently always larger but
the �at shape of the e�ciencies as functions of the generated resonance mass mX , the
momentum transmission t′, the Dalitz plots of η′ and η, the azimuthal angle ϕGJ of
the respective η′ or η and the xy-distributions of the vertex position can be reproduced
rather precisely.

The acceptance as a function of the polar angle θGJ in η, η → π+π−π0 decay channel is
also of same shape in comparison. However in the η′ case the e�ciencies in the real and
the photon acceptance Monte Carlo calculation are di�erent and not in agreement with
each other. The closer observation of secondary clusters in the real Monte Carlo simu-
lation indicates that the e�ect of secondary charged particles, that is not implemented
in the fast Monte Carlo, is not neglectable. A comparison with the acceptances in a
fast Monte Carlo calculation without the RICH may indicate that the the RICH pipe is
responsible for this e�ect. In this context a full Monte Carlo analysis of the η′ channels
without an implemented RICH tube would maybe illuminate the disagreement but is
beyond the time schedule of this thesis. However a simple estimation of the RICH's
in�uence on the photon acceptance, investigated with the fast Monte Carlo program,
showed that the probability of a single photon hitting the RICH pipe, so that the event
gets lost, is around 21% in the η channel in real data and the simulation.
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The next step would be a more detailed comparison of the Monte Carlo results to real
data. Therefore a precise implementation of dead detector cells would be crucial, since
they may be responsible for di�erent acceptance e�ects. Although this was not taken into
account, a comparison of the full Monte Carlo calculation of the η, η → π+π−π0 and real
2008 data of the same channel lead to an interesting observation. Before starting a partial
wave analysis to obtain the quantum numbers of the resonant system, restrictions on the
possible partial waves are already seen in the transversal momentum of the η. A global
minimum at zero transversal momentum may be explained by the absence of resonances
with magnetic quantum numberm = 0, which is a general feature of di�ractive excitation
processes that can be pictured by pomeron exchange between the projectile pion and the
target proton leading to natural re�ectivity ε = +1. In a pppx(lab)ofη vs. pppy(lab)ofη plot,
one can see a sin2(ϕGJ) dependence with the bare eye, which tells that in the selected
di�ractive excitation processes there is only natural exchange referring to m = 1. This
may already anticipate a selection of partial waves for the description of the resonant
π−η′- or π−η-systems in a partial wave analysis.



A. Appendix

A.1. Software Versions

� ROOT: 5.28

� COMGEANT: current version (May 2011)

� CORAL: Slot3 Production CORAL

� PHAST: 7.073

A.2. Source Code

Here you �nd some source code parts that where used in this thesis. For the explanation
see section 4.3.1. The following program parts were developed by Tobias Schlüter, Hauke
Wöhrmann and me.

A.2.1. The Event Generator

// de f i n e p a r t i c l e masses in GeV
const double mP = .93827203 ;
const double mPi = .13957018 ;
const double mPi0 = .1349766 ;
const double mEta = .54775 ;
const double mEtaPr = .95778 ;

// uses random t d i s t r i b u t i o n
// ge t Lorentz v e c t o r s in the CM frame
void d i f fEx ( const TLorentzVector& lv1 ,

const TLorentzVector& lv2 ,
TLorentzVector& lv3 ,
TLorentzVector& lv4 ,
const double m3,
const double m4)

{
TLorentzVector W = lv1 + lv2 ;
TVector3 boost = W. BoostVector ( ) ;
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TLorentzVector lv1CM = lv1 ;
lv1CM . Boost(−boost ) ;

double s = W.M2( ) ;
double E3 = ( s + m3*m3 − m4*m4) / (2 . 0* s q r t ( s ) ) ;
double E4 = ( s + m4*m4 − m3*m3) / (2 . 0* s q r t ( s ) ) ;
double p3 = sq r t (E3*E3 − m3*m3) ;
double s l ope = 6 . 0 ;
double t , costh ;
do

{
t = −gRandom−>Exp(1/ s l ope ) ;
costh=(t + 2*lv1CM .E()*E3 − lv1CM .M()* lv1CM .M()

− m3*m3)/(2* lv1CM .P()* p3 ) ;
}

while (TMath : : Abs ( costh ) > 1 . | | −t < 0 . 1 ) ;
double theta = acos ( costh ) ;
double phi = gRandom−>Uniform(−4*atan ( 1 . 0 ) , 4* atan ( 1 . 0 ) ) ;

lv3 . SetXYZT( p3* cos ( phi )* s i n ( theta ) ,
p3* s i n ( phi )* s i n ( theta ) ,
p3* costh , E3 ) ;

lv4 . SetXYZT(−p3* cos ( phi )* s i n ( theta ) ,
−p3* s i n ( phi )* s i n ( theta ) ,
−p3* costh , E4 ) ;

lv3 . Boost ( boost ) ;
lv4 . Boost ( boost ) ;

}

//Transforms Lorentz Vector in t o Got fr ied−Jackson frame
TLorentzVector GJframe ( TLorentzVector resX ,

TLorentzVector Beam,
TLorentzVector lvGJ )

{
TLorentzVector lvGJout = lvGJ ;
TRotation rotGJ ;
Beam . Boost(−resX . BoostVector ( ) ) ;
TLorentzVector Target ( 0 . , 0 . , 0 . ,mP) ;
Target . Boost(−resX . BoostVector ( ) ) ;
lvGJout . Boost(−resX . BoostVector ( ) ) ;
rotGJ . SetZAxis (Beam . Vect () ,−Target . Vect ( ) ) ;

return lvGJout . Transform ( rotGJ . Inve r s e ( ) ) ;
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}

// ge t Lorentz v e c t o r s in the CM frame
void twobodydecay ( const TLorentzVector& lv1 ,

TLorentzVector& lv2 ,
TLorentzVector& lv3 ,
const double m2,
const double m3)

{
double s = lv1 .M2( ) ;
TVector3 boost = lv1 . BoostVector ( ) ;

double E2 = ( s + m2*m2 − m3*m3) / (2 . 0* s q r t ( s ) ) ;
double E3 = ( s + m3*m3 − m2*m2) / (2 . 0* s q r t ( s ) ) ;

double p2 = sq r t (E2*E2 − m2*m2) ;
double p3 = sq r t (E3*E3 − m3*m3) ;

double costh = gRandom−>Uniform ( −1 . 0 , 1 . 0 ) ;
double theta = acos ( costh ) ;
double phi = gRandom−>Uniform(−4*atan ( 1 . 0 ) , 4* atan ( 1 . 0 ) ) ;

lv2 . SetXYZT( p2* cos ( phi )* s i n ( theta ) ,
p2* s i n ( phi )* s i n ( theta ) ,
p2* costh , E2 ) ;

lv3 . SetXYZT(−p3* cos ( phi )* s i n ( theta ) ,
−p3* s i n ( phi )* s i n ( theta ) ,
−p3* costh , E3 ) ;

lv2 . Boost ( boost ) ;
lv3 . Boost ( boost ) ;

}

double PDW(double a , double b , double c )
{
double s r = a*a + (b*b−c*c )* ( b*b−c*c )/ ( a*a ) − 2*(b*b+c*c ) ;
return 2*4* atan ( 1 . ) * s q r t ( s r )/ a ;

}

void threebodydecay ( const TLorentzVector& W,
TLorentzVector& lv1 ,
TLorentzVector& lv2 ,
TLorentzVector& lv3 ,
const double m1,



50 A.2. SOURCE CODE

const double m2,
const double m3)

{
double mmin = m1 + m2;
double mmax = W.M() − m3;

double wgtmax = PDW(W.M( ) ,mmin ,m3)*PDW(mmax,m1,m2) ;

double m12 , weight ;
int count = 0 ;
do

{
count++;

m12 = sq r t ( gRandom−>Uniform (mmin*mmin ,mmax*mmax) ) ;
weight = PDW(m12 ,m1,m2) * PDW(W.M( ) ,m12 ,m3) ;

}
while ( weight < gRandom−>Uniform (wgtmax ) ) ;

TLorentzVector lv12 ;
twobodydecay (W, lv12 , lv3 ,m12 ,m3) ;
twobodydecay ( lv12 , lv1 , lv2 ,m1,m2) ;

}

double DalitzWeight ( const TLorentzVector& W,
const TLorentzVector& lv1 ,
const TLorentzVector& lv2 ,
const TLorentzVector& lv3 ,
double* XY, double* abcd )

{
TVector3 boost = W. BoostVector ( ) ;
TLorentzVector lv1W = lv1 ;
TLorentzVector lv2W = lv2 ;
TLorentzVector lv3W = lv3 ;
lv1W . Boost(−boost ) ;
lv2W . Boost(−boost ) ;
lv3W . Boost(−boost ) ;

double T1 = lv1W .E( ) − lv1W .M( ) ;
double T2 = lv2W .E( ) − lv2W .M( ) ;
double T3 = lv3W .E( ) − lv3W .M( ) ;
double Q = T1 + T2 + T3 ;

double Xp = sq r t ( 3 . ) * (T2 − T3) / Q;
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double Yp =((lv1W .M()+2* lv2W .M( ) ) / lv2W .M( ) ) * (T1/Q) − 1 . ;

XY[0]=Xp;
XY[1]=Yp;

double M2 = 1 + abcd [ 0 ] * XY[ 1 ] + abcd [ 1 ] * XY[ 1 ] *XY[ 1 ]
+ abcd [ 2 ] * XY[ 0 ] + abcd [ 3 ] * XY[ 0 ] *XY[ 0 ] ;

return M2;
}

///////////////////////////////////////////////////////

// d i f f r a c t i v e e x c i t a t i on , c r ea t e resonance X
TLorentzVector X, pRec ;
double mX = mPi + mEtaPr + gRandom−>Uniform ( 3 . 0 ) ;
d i f fEx (beam , target ,X, pRec ,mX,mP) ;

// decay o f resonance X
TLorentzVector Pim_X, Eta_X, EtaPr , Pip_EtaPr ,

Pim_EtaPr , Eta_EtaPr , Eta ;
twobodydecay (X,Pim_X, EtaPr ,mPi ,mEtaPr ) ;

// decay o f e ta '
double M2etaPr , XYetaPr [ 2 ] ;
double abcdEtaPr [ 4 ] = {−0.127 ,−0.106 ,0.015 ,−0.082};
do

{
threebodydecay (EtaPr , Pip_EtaPr ,

Pim_EtaPr , Eta_EtaPr ,mPi ,mPi ,mEta ) ;
M2etaPr = DalitzWeight (EtaPr , Eta_EtaPr , Pip_EtaPr ,

Pim_EtaPr , XYetaPr , abcdEtaPr ) ;
gHist . F i l l ( "hM2etaPr" , "" ,1000 ,0 ,3 ,M2etaPr ) ;

}
while ( M2etaPr < gRandom−>Uniform ( 1 . 1 ) ) ;

//Got fr ied−Jackson frame
TLorentzVector Eta_XGJ = GJframe (X, beam ,Eta_X) ;
TLorentzVector EtaPrGJ = GJframe (X, beam , EtaPr ) ;

A.2.2. Photon Acceptance Monte Carlo Simulation

// de f i n e ca l o r ime t e r s
//ECAL1
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const double e1xyz [ 3 ] = { −0 .7 ,0 .96 ,1399 .5} ; // cen te r o f ca l o r ime t e r
const double e1xr = 84.26 + 8*14 . 3 ;
const double e1yr = 10*14 . 3 ;
const double e1x [ 2 ] = {−e1xr + e1xyz [ 0 ] , e1xr + e1xyz [ 0 ] } ;
const double e1y [ 2 ] = {−e1yr + e1xyz [ 1 ] , e1yr + e1xyz [ 1 ] } ;
const double e1z [ 1 ] = {e1xyz [ 2 ] } ;
const double e1hx [ 2 ] ={−14*3.83+e1xyz [0 ] , 14*3 .83+ e1xyz [ 0 ] } ; // ho l e
const double e1hy [ 2 ] = {−8*3.83 + e1xyz [ 1 ] , 8*3 .83 + e1xyz [ 1 ] } ;
//ECAL2
const double e2xyz [ 3 ] = {3 . 0 6 , 0 . 1 5 , 3 3 25 . 2 } ;
const double e2xr = 32*3 . 83 ;
const double e2yr = 24*3 . 83 ;
const double e2x [ 2 ] = {−e2xr + e2xyz [ 0 ] , e2xr + e2xyz [ 0 ] } ;
const double e2y [ 2 ] = {−e2yr , e2yr } ;
const double e2z [ 1 ] = {e2xyz [ 2 ] } ;
const double e2hx [ 2 ] = {2*3.83 + e2xyz [ 0 ] , 4*3 .83 + e2xyz [ 0 ] } ;
const double e2hy [ 2 ] = {−3.83 + e2xyz [ 1 ] , 3 .83 + e2xyz [ 1 ] } ;

// de f i n e RICH pipe
const double rpz = 748 . 7 ;
const double rp r i n = 4 . 9 8 5 ;
const double rprout = 5 ;
const double rp l en = 314 ;
const double radlegFe = 1 . 7 6 ;

// g i v e s i n t e g e r 0 ,1 ,2 f o r h i t ca l o r ime t e r and po s i t i o n
int c a l o h i t ( const TVector3& Vertex ,

const TLorentzVector& gamma,
TVector3& CaloPos i t i on )

{
double x = gamma.X( ) ;
double y = gamma.Y( ) ;
double z = gamma.Z ( ) ;

i f ( z <= 0) return 0 ;

// h i t in eca l 1 ?
CaloPos i t i on . SetX ( ( x/z )* ( e1z [ 0 ] − Vertex . Z ( ) ) + Vertex .X( ) ) ;
Ca loPos i t i on . SetY ( ( y/z )* ( e1z [ 0 ] − Vertex . Z ( ) ) + Vertex .Y( ) ) ;
Ca loPos i t i on . SetZ ( e1z [ 0 ] ) ;
i f ( Ca loPos i t i on .X()<=e1x [ 0 ] | | Ca loPos i t i on .X()>=e1x [ 1 ] )
return 0 ;

i f ( Ca loPos i t i on .Y()<=e1y [ 0 ] | | Ca loPos i t i on .Y()>=e1y [ 1 ] )
return 0 ;
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i f ( Ca loPos i t i on .X()<e1hx [ 0 ] | | Ca loPos i t i on .X()>e1hx [ 1 ] )
return 1 ;

i f ( Ca loPos i t i on .Y()<e1hy [ 0 ] | | Ca loPos i t i on .Y()>e1hy [ 1 ] )
return 1 ;

// h i t in eca l 2 ?
CaloPos i t i on . SetX ( ( x/z )* ( e2z [ 0 ] − Vertex . Z ( ) ) + Vertex .X( ) ) ;
Ca loPos i t i on . SetY ( ( y/z )* ( e2z [ 0 ] − Vertex . Z ( ) ) + Vertex .Y( ) ) ;
Ca loPos i t i on . SetZ ( e2z [ 0 ] ) ;
i f ( Ca loPos i t i on .X()<=e2x [ 0 ] | | Ca loPos i t i on .X()>=e2x [ 1 ] )
return 0 ;

i f ( Ca loPos i t i on .Y()<=e2y [ 0 ] | | Ca loPos i t i on .Y()>=e2y [ 1 ] )
return 0 ;

i f ( Ca loPos i t i on .X()<e2hx [ 0 ] | | Ca loPos i t i on .X()>e2hx [ 1 ] )
return 2 ;

i f ( Ca loPos i t i on .Y()<e2hy [ 0 ] | | Ca loPos i t i on .Y()>e2hy [ 1 ] )
return 2 ;

return 0 ;
}

// g i v e s r ad i a t i on l e n g h t s o f gammas
double hitRichPipe ( TVector3& Vertex , TLorentzVector& gamma)

{
const double d0 = rpz − ( rp l en / 2 . 0 ) ;
const double d1 = rpz + ( rp l en / 2 . 0 ) ;

// ( x ) ( Gx ) ( PVx )
// ( y ) = lambda *( Gy ) + ( PVy )
// ( z ) ( Gz ) ( PVz )

double x = gamma.X( ) ;
double y = gamma.Y( ) ;
double z = gamma.Z ( ) ;

TVector3 fpos , bpos ;
fpos . SetXYZ( (x/z ) * ( d0 − Vertex . Z ( ) ) + Vertex .X( ) ,

( y/z ) * ( d0 − Vertex . Z ( ) ) + Vertex .Y( ) ,
d0 ) ;

bpos . SetXYZ( (x/z ) * ( d1 − Vertex . Z ( ) ) + Vertex .X( ) ,
( y/z ) * ( d1 − Vertex . Z ( ) ) + Vertex .Y( ) ,
d1 ) ;
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// ( lambda*Gx + PVx)^2 + ( lambda*Gy + PVy)^2 = r^2
const double a = x*x + y*y ;
const double b = 2*( x*Vertex .X( ) + y*Vertex .Y( ) ) ;
const double c in=Vertex .X( )*Vertex .X()+

Vertex .Y( )*Vertex .Y()− rp r i n * rp r i n ;
const double cout=Vertex .X( )*Vertex .X()+

Vertex .Y( )*Vertex .Y()− rprout * rprout ;

const double lambdaIn = (−b + sq r t (b*b − 4*a* c in ) ) / (2* a ) ;
const double lambdaOut = (−b + sq r t (b*b − 4*a* cout ) ) / (2* a ) ;

const TVector3 In ( lambdaIn*x + Vertex .X( ) ,
lambdaIn*y + Vertex .Y( ) ,
lambdaIn*z + Vertex . Z ( ) ) ;

const TVector3 Out( lambdaOut*x + Vertex .X( ) ,
lambdaOut*y + Vertex .Y( ) ,
lambdaOut*z + Vertex . Z ( ) ) ;

i f ( fpos . Perp ( ) > rprout ) return 0 ;

i f ( fpos . Perp ( ) < rp r i n )
{

i f ( bpos . Perp ( ) < rp r i n ) return 0 ;
i f ( bpos . Perp ( ) <= rprout ) return ( bpos−In ) .Mag( )/ radlegFe ;
else return (Out−In ) .Mag( )/ radlegFe ;

}
else

{
i f ( bpos . Perp ( ) <= rprout ) return ( bpos−fpo s ) .Mag( )/ radlegFe ;
else return (Out−fpo s ) .Mag( )/ radlegFe ;

}

return 0 ;
}

///////////////////////////////////////////////////////

//gammas in ca l o r ime t e r s ?
TVector3 g1_CaloPosition , g2_CaloPosit ion ;
int c1 = c a l o h i t ( vertex , g1 , g1_CaloPosit ion ) ;
int c2 = c a l o h i t ( vertex , g2 , g2_CaloPosit ion ) ;
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int a = 1 ; //1 = good ( accepted ) event

i f ( g1 .E( ) < 1 | | g2 .E( ) < 1)
a = 0 ;

i f ( c1 == 2 && g1 .E( ) < 4)
a = 0 ;

i f ( c2 == 2 && g2 .E( ) < 4)
a = 0 ;

i f ( c1 == 0 | | c2 == 0)
a = 0 ;

//gammas in RICH?
double len1 , l en2 ;
l en1 = hitRichPipe ( vertex , g1 ) ;
l en2 = hitRichPipe ( vertex , g2 ) ;

i f ( l en1 > gRandom−>Exp ( 9 . 0 / 7 . 0 ) )
a = 0 ;

i f ( l en2 > gRandom−>Exp ( 9 . 0 / 7 . 0 ) )
a = 0 ;
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