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Abstract

This work describes the analysis and the results of the COMPASS collab-
oration on the measurement of the gluon polarization ∆G/G in the nucleon.

Inclusive polarized deep inelastic scattering experiments revealed that
the spin or helicity contribution of quarks to the nucleon spin is surprisingly
small. Typically values of ∆Σ = 20−30% are found in contrast to much larger
values of approximately 75% predicted by quark models. In principle quarks
and gluons can contribute with their spin and orbital angular momentum to
the nucleon spin of 1/2. This leads to the intuitive sum rule

1

2
=

1

2
∆Σ + ∆G+ Lq + Lg ,

where ∆Σ is the contribution of the spin of the quarks, ∆G the contribution
of the spin of the gluons, Lq and Lg the respective contributions of the quark
and gluon orbital angular momentum.

Next-to-leading order (NLO) QCD analyses of inclusive data point to one
possible solution to this so called spin puzzle: A large helicity contribution of
the gluons ∆G =

∫ 1

0
∆G(x)dx would lead to values of ∆Σ compatible with

the values found in quark models. This is one of the motivations to measure
∆G.

Experimentally this quantity is accessible via the measurement of dou-
ble spin asymmetries in two different processes: The first one is open charm
production which provides the cleanest and most direct measurement. The
second method is the production of hadron pairs with large transverse mo-
mentum. It has a higher statistical accuracy but is affected by a larger model
dependence. In this work special emphasis is put on the analysis of the open
charm data where a new method is developed to simultaneously determine
signal and background asymmetries.

COMPASS results indicate that the helicity contribution of the gluons to
the nucleon spin is small at a gluon momentum fraction xg ≈ 0.1. This is
confirmed by other experiments and NLO analyses of inclusive data. Large
values of ∆G of 2-3 are basically ruled out.
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Chapter 1

Introduction

The matter we are composed of consists of protons, neutrons and electrons.
Our present knowledge indicates that electrons are point-like particles with-
out any substructure, whereas protons and neutrons, also called nucleons,
have a complex substructure. The aim of this work is to investigate a special
aspect of this structure, namely the polarization of gluons inside the nucleon.

A nucleon consists of quarks and gluons. Both particles can contribute
to the nucleon spin of 1/2 with their intrinsic angular momentum, their spin,
and their orbital angular momentum. This leads to the following sum rule

1

2
=

1

2
∆Σ + ∆G + Lq + Lg , (1.1)

where ∆Σ is the contribution of the spin of the quarks, ∆G the contribution
of the spin of the gluons, Lq and Lg the respective contributions of the quark
and gluon orbital angular momentum.

Quark Models predict ∆Σ ≈ 0.75 and a simular value is obtained from
an analysis of axial matrix elements of baryon decays. This is in contrast
to much lower values of ∆Σ ≈ 0.25 found in polarized deep inelastic scat-
tering. A possible explanation for this rather large difference is a large spin
contribution of gluons, ∆G.

The results of the COMPASS experiment at CERN on ∆G will be pre-
sented in this work. Chapter 2 introduces deep inelastic scattering as the
basic tool to study the spin structure of the nucleon. Chapter 3 reviews the
so called nucleon spin puzzle, i.e. the discrepancy between small values of
∆Σ found in polarized deep inelastic scattering and values of ∆Σ ≈ 0.75
predicted by quark models. One possible solution to this spin puzzle would
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4 Introduction

be a large value of ∆G. Ways to measure ∆G are presented in Chapter 4.
Chapter 5 describes the COMPASS experiment. Chapter 6 explains the anal-
ysis, i.e. the steps from reconstructed events to the final value of the gluon
polarization ∆G/G. Special emphasis is put on the analysis of the open
charm data set which provides the most model-independent measurement of
∆G/G.



Chapter 2

Deep Inelastic Scattering

The main tool to study the (spin) structure of the nucleon is deep inelastic
lepton-nucleon scattering, considering the following scattering process:

l +N → l′ +X . (2.1)

A lepton (l) scatters off a nucleon (N). In the final state, either

• only the scattered lepton l′ (inclusive process), or

• part of the hadronic final state X (semi-inclusive process),

are observed.
This process is called deep inelastic, if the mass of the hadronic final

state MX is larger than the masses of the nuclear resonances, i.e. MX ≡
W ? 2 GeV. Most of the material presented in this chapter can be found in
text books like [1, 2].

2.1 Kinematics of Deep Inelastic scattering

Fig. 2.1 shows the kinematics of the deep inelastic scattering process. The
four-vectors of the particles are given in parentheses. Tab. 2.1 lists the
most important kinematic variables for the inclusive process. If in addition
to the scattered muon, at least one hadron is detected in the final state,
additional kinematic variables are needed to define the reaction. The most
important ones are listed in Tab. 2.2. Fig. 2.2 shows the relation between
various kinematic variables in the Q2 − y plane for a 160 GeV muon beam.

5



6 Deep Inelastic Scattering

variable meaning

M(m) nucleon (lepton) mass
k(k′) four vector of incoming (outgoing) lepton
s(s′) spin four vector of incoming (outgoing) lepton
p four vector of nucleon in the initial state
S spin four vector of nucleon in the initial state
pX four vector of hadronic final state

E = p·k
M

energy of incoming lepton in laboratory system

E ′ = p·k′

M
energy of outgoing lepton in laboratory system

θ scattering angle of lepton in laboratory system
θγ angle of virtual photon with respect to the

incoming lepton in laboratory system
q = k − k′ four momentum transfer
Q2 = −q2 four momentum transfer squared
≈4EE ′ sin2 θ

2
lepton mass neglected

ν = p·q
M

energy transfer in laboratory system
=E − E ′

W 2 = (p+ q)2 mass of hadronic final state squared

x = Q2

2p·q
= Q2

2Mν
Bjorken variable (0 ≤ x ≤ 1)

y = p·q
p·k

= ν
E

relative energy transfer in laboratory system (0 ≤ y ≤ 1)

γ2 = 2Mx
Ey

= Q2

ν2

Table 2.1: The most important kinematic variables and their meaning. The lab-
oratory system is the target rest frame.
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Figure 2.1: Kinematics of the deep inelastic scattering process. The four-vectors
of the particles are given in parentheses.

variable meaning

mh mass of observed hadron
ph four vector of hadron
Eh = p·ph

M
energy of hadron in laboratory system

z = p·ph

p·q
=Eh

ν
fraction of virtual photon energy carried

by the hadron in the laboratory system (0 ≤ z ≤ 1)

ph‖ = ~ph·~q
|~q|

momentum of hadron parallel to photon momentum ~q

pT =
√

~p2
h − p2

h‖ transverse momentum of hadron

relative to the photon
~q∗(~p∗h) three vector of the virtual photon (hadron)

in photon-nucleon-rest system
p∗h‖ momentum of the hadron parallel to photon momentum

in photon nucleon cm-system

xF = 2
W

~q∗·~p∗
h

|~q∗|
= 2

p∗
h‖

W
Feynman variable (−1 ≤ xF ≤ 1)

Table 2.2: The most important additional kinematic variables appearing in semi-
inclusive deep inelastic scattering.
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Figure 2.2: Various kinematic variables in the Q2 − y plane for a muon beam of
160 GeV momentum. The variables are explained in Tab.2.1
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The inclusive cross section can be expressed in terms of kinematic vari-
ables and two structure functions carrying information about the nucleon
structure:

dσlN→l′X

dxdy
=

8πMEα2

Q4

[

xy2F1(x,Q
2) + (1 − y − y2γ2

4
)F2(x,Q

2)
]

. (2.2)

The lepton mass was neglected in eq. (2.2). Only one photon exchange is
considered here. The structure functions F1(x,Q

2) and F2(x,Q
2) depend on

two variables, here chosen to be x and Q2.

2.2 Deep Inelastic Scattering and the Quark

Parton Model

In the Quark Parton Model (QPM) deep inelastic scattering is interpreted
as incoherent elastic scattering off partons inside the nucleon as indicated in
Fig. 2.3. The nucleon is viewed in the infinite momentum frame where each
quark carries a fraction ξ of the nucleon momentum. Transverse momenta
and masses are neglected. The momentum fraction ξ of the quark absorbing
the virtual photon is identical to the Bjorken-variable x defined in Tab. 2.1.
The structure functions have a simple probabilistic interpretation:

F1(x) =
1

2

∑

q

e2qq(x) , F2(x) = x
∑

q

e2qq(x) . (2.3)

The sum extends over all active quark flavors q = u, d, s, ū, d̄, s̄ and the q(x)
are the unpolarized quark distributions, so that q(x)dx is the number of
quarks of flavor q carrying a momentum fraction in the interval [x, x + dx].
This interpretation is only valid for reactions where the resolution is large
enough to resolve quarks inside the proton. This is the case for Q2 ? 1 GeV2

which corresponds to a resolution of 1/Q2 > 1/GeV= 0.2 fm. In the language
of Quantum Chromo Dynamics (QCD) this means that a hard scale has to be
present. For the inclusive case this is provided by Q2 ? 1GeV2. In the semi-
inclusive case it may be provided either by Q2 or the transverse momentum
of a hadron with respect to the virtual photon, pT , or the mass of a heavy
quark.

The quark parton model can be extended to semi-inclusive processes.
The variable z defined in Tab. 2.2 is the fraction of virtual photon energy
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Figure 2.3: Kinematics of the deep inelastic scattering process interpreted in the
Quark Parton Model (QPM). The four-vectors of the particles are
given in parentheses.
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carried by the hadron in the laboratory system. Intuitively it seems clear
that the observation of a π+ = ud̄ at large z signals that the struck quark
was most likely a u or a d̄ quark. Formally this can be expressed by the
introduction of so called fragmentation functions Dh

q (z), where Dh
q (z)dz is

the number of hadrons of type h originating from a struck quark of flavor
q in the momentum fraction range [z, z + dz]. In analogy to the structure
function F2 one can define:

F h
2 (x, z) = x

∑

q

e2qq(x) D
h
q (z) (2.4)

and extend eq. (2.2) to the semi-inclusive case [3].

2.3 Polarization Effects in Deep Inelastic Scat-

tering

To study the spin structure of the nucleon it is necessary to polarize the beam
and the target particle. In this work only longitudinally polarized beams and
targets are considered.

The cross section can be parameterized by two additional structure func-
tions g1 and g2, carrying information about the spin structure of the proton.
The difference of cross sections for antiparallel and parallel spins of target
and beam is given by:

d2σ↑↓

dxdy
− d2σ↑↑

dxdy
=

32πMEα2xy

Q4

[

(

1 − y

2
− y2γ2

4

)

g1(x,Q
2) − y

2
γ2g2(x,Q

2)

]

. (2.5)

Experimentally usually the cross section asymmetry

AlN =
dσ↑↓ − dσ↑↑

dσ↑↓ + dσ↑↑
(2.6)

is measured. It is given by

AlN = D

{

g1 − γ2g2

F1

+ η γ
g1 + g2

F1

}

, (2.7)
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with

D =
y(2 − y)(1 + γ2y

2
)

(1 + γ2)y2 + 2(1 − y − γ2y2

4
)(1 +R)

, (2.8)

η = γ
1 − y − γ2y2

4

(1 − y
2
)(1 + γ2y

2
)

(2.9)

and γ =

√

2Mx

Ey
=
Q2

ν2
, (2.10)

where R is the ratio of longitudinal to transverse virtual photon absorption
cross sections.

The lepton mass was neglected here. Since Q2 ≪ ν2, the kinematical
factors η and γ are small and eq. (2.7) simplifies to

AlN = D
g1

F1
. (2.11)

The factor D is the virtual photon depolarization factor. It describes the
polarization transfer from the lepton to the virtual photon. Thus g1/F1 can
be interpreted as a photon-nucleon asymmetry

AγN =
g1

F1

. (2.12)

In the QPM model g1 has a simple interpretation:

g1(x) =
1

2
Σqe

2
q∆q(x) , (2.13)

where the ∆q(x) are the polarized quark distributions:

∆q(x)dx = (q↑(x) − q↓(x))dx .

∆q(x) dx is the number of quarks with spin parallel to the nucleon spin
minus the number of quarks with spin antiparallel to the nucleon spin in
the momentum interval [x, x + dx]. The corresponding unpolarized quark
distribution is given by q(x) = q↑(x) + q↓(x). The QPM predicts g2 = 0.
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Figure 2.4: Higher order processes contributing to the cross section: The QCD
Compton (left) and the photon-gluon-fusion process (right).

2.4 QCD corrections

Fig. 2.3 shows only the leading order process. At higher orders in Quan-
tum Chromo Dynamic (QCD) other processes contribute. Two of them are
shown in Fig. 2.4. One is the QCD Compton effect, where the struck quark
radiates a gluon. The other one is the photon-gluon-fusion process where the
photon interacts, via the creation of a quark - anti-quark pair, with a gluon.
Tagging this type of process is of particular interest for measuring the gluon
contribution to the nucleon spin. These processes lead to a Q2 dependence
of the structure functions and quark distributions. The leading order (LO)
expressions for F2 and g1 read:

F2(x,Q
2) = xΣqe

2
q q(x,Q

2) ,

g1(x,Q
2) =

1

2
Σqe

2
q ∆q(x,Q2) . (2.14)

For the proton structure function gp
1 one finds explicitly at LO:

gp
1(x,Q

2) =
1

18

(

4(∆u(x,Q2) + ∆ū(x,Q2)) +

(∆d(x,Q2) + ∆d̄(x,Q2)) +

(∆s(x,Q2) + ∆s̄(x,Q2))
)

(2.15)
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At next to leading order (NLO) F2 and g1 depend in addition on the
unpolarized and polarized gluon distribution G(x) = G↑(x) + G↓(x) and
∆G(x) = G↑(x) −G↓(x). The NLO expression for F2 and g1 are given by

F2(x,Q
2) = x

∑

q

e2qq(x,Q
2) +

αs

2π
x
∑

i

e2i

∫ 1

x

dx′

x′

(

q(x′, Q2)fq

( x

x′

)

+G(x′, Q2)fG

( x

x′

))

(2.16)

and

g1(x,Q
2) =

1

2

∑

q

e2q∆q(x
′, Q2) +

αs

2π

1

2

∑

q

e2q

∫ 1

x

dx′

x′

(

∆q(x′, Q2)∆Cq

( x

x′

)

+ ∆G(x′, Q2)∆Cq

( x

x′

))

.(2.17)

The coefficients fq, fG, ∆Cq and ∆Cg are calculable in QCD but depend,
as the parton distributions do, on the renormalization procedure used.



Chapter 3

The Nucleon Spin Puzzle

This chapter reviews our knowledge about the spin structure of the nucleon
starting from the simple static quark model to next to leading order (NLO)
analysis of inclusive data from polarized deep inelastic scattering.

3.1 The Static Quark Model

In the static Quark Model the proton consists of two u and one d quark.
Assuming an SU(2) flavor and SU(2) spin symmetry, the wave function of
a proton with its spin projection pointing parallel to the quantization axis
reads [4]:

|p ↑> =
1√
18

(

2 |u ↑ u ↑ d ↓> + 2 |u ↑ d ↓ u ↑> + 2 |d ↓ u ↑ u ↑>

−|u ↑ u ↓ d ↑> −|u ↓ u ↑ d ↑> −|u ↓ d ↑ u ↑>
−|u ↑ d ↑ u ↓> −|d ↑ u ↑ u ↓> −|d ↑ u ↓ u ↑>

)

. (3.1)

This wavefunction allows to calculate the spin contribution of the u- and the
d-quark to the nucleon spin.

∆u = < p ↑ |Nu↑|p ↑> − < p ↑ |Nu↓|p ↑>=
30

18
− 6

18
=

4

3
,

∆d = < p ↑ |Nd↑|p ↑> − < p ↑ |Nd↓|p ↑>=
6

18
− 12

18
= −1

3
,

Nq↑(Nq↓) is the operator which counts the number of quarks of flavor q with
a spin projection parallel (anti-parallel) to the proton spin. Evidently in this

15



16 The Nucleon Spin Puzzle

p n Λ Σ+ Σ0 Σ− Ξ0 Ξ−

µ/µN QM 3 −2 −0.67 2.89 0.89 −1.1 −1.55 −0.55
µ/µN exp. 2.79 −1.91 −0.61 2.5 − −1.2 −1.25 −0.65

Table 3.1: Comparison of the magnetic moments in the static quark model and
the experimental values. For the quark masses the following values
are used: mu = md =

Mp

3 ,ms = 2
3Mp.

model the u and the d quark account for 100% of the nucleon spin, i.e.

∆Σ := ∆u+ ∆d =
4

3
− 1

3
= 1 , ∆G = Lq = Lg = 0 . (3.2)

Extending the SU(2) to an SU(3) flavor symmetry one can also derive
the wave functions for baryons with strangeness. These allow us as well to
calculate the magnetic moment of all baryons in the nucleon octet. The
values obtained with the assumption mu = md = MN

3
, ms = 2

3
Mp are shown

in Tab. 3.1. They agree remarkably well with the experimental values.

3.2 Relativistic Quark Models

The static quark model predicts a value for the weak coupling constant gA =
∆u − ∆d of 5/3 which is about 30% above the experimental value of 1.26.
In relativistic quark models quarks acquire orbital angular momentum and
the value for gA is reduced to its experimental value. Thus, in these models
one typically finds:

∆Σ ≈ 0.75 , Lq ≈ 0.125 , ∆G = Lg = 0 . (3.3)

3.3 Baryon Decays

The first moment of the polarized quark distributions ∆q =
∫ 1

0
∆q(x) dx.1:

is given by the following matrix element:

< ps|ψ̄qγ
µγ5ψq|ps >= (∆q + ∆q̄)sµ, (3.4)

1To simplify the notation we will often use the same symbol for a distribution ∆q(x)

and its first moment ∆q =
∫

1

0
∆q(x) dx.
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where |ps > describes a proton with a spin four-vector s.

This matrix element is related to the axial matrix elements of baryon
decays which can be expressed, assuming SU(3) flavor symmetry, with the
(generalized) Wigner-Eckhart theorem ([5],S.113)

< Bj |Ψ̄λkγ
µγ5Ψ|Bl >= ifjklF + djklD j, k, l = 1 . . . 8. (3.5)

as a function of two reduced matrix elements F and D and the SU(3) struc-
ture constants fjkl and djkl. Bj denotes a baryon in the baryon octet. λj are
the generators of the SU(3) group and

Ψ =





ψu

ψd

ψs



 .

Two of the SU(3) generators are diagonal:

λ3 =





1 0 0
0 −1 0
0 0 0



 and λ8 =





1 0 0
0 1 0
0 0 −2



 . (3.6)

The corresponding matrix elements for the proton are related to the first
moment of the polarized quark distributions as follows:

a3 = (∆u+ ∆ū) − (∆d+ ∆d̄) = F +D

= gA = 1.2670 ± 0.0035 , (3.7)

a8 = (∆u+ ∆ū) + (∆d+ ∆d̄) − 2(∆s + ∆s̄)

= 3F −D = 0.585 ± 0.025 . (3.8)

Due to the group structure of SU(3) the baryon decays provide only two
independent measurements for the three quantities (∆u+∆ū), (∆d+∆d̄) and
(∆s + ∆s̄). The additional assumption (∆s + ∆s̄)=0 leads to the following
prediction for the helicity contributions of the quarks:

∆Σ = 0.585 ± 0.025 , (3.9)

which is of the same order as the prediction from relativistic quark models.
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3.4 Deep Inelastic Scattering

Polarized deep inelastic scattering provides the third equation necessary to
avoid the assumption (∆s+ ∆s̄)=0. In analogy to eq. (3.5) one can define a
matrix element

a0 =< Bi|Ψ̄E3γ
µγ5Ψ|Bk >= (∆u+ ∆ū) + (∆d+ ∆d̄) + (∆s+ ∆s̄) = ∆Σ .

(3.10)
accessible in DIS. E3 is the three dimensional unity matrix. The first moment
Γp

1 of the proton structure function gp
1 can be written as:

Γp
1(Q

2) =

∫ 1

0

gp
1(x,Q

2) dx =
1

36

(

4a0(Q
2) + 3a3 + a8

)

. (3.11)

In contrast to a3 and a8 the matrix element a0 acquires a Q2 dependence in
the renormalization procedure due to the axial anomaly [6].

Polarized deep inelastic scattering experiments were first performed at
SLAC in the 1970s [7]. The European Muon Collaboration (EMC) at CERN
first determined the first moment of the spin structure function gp

1 and came
to the surprising result [8, 9]:

∆Σ = ∆u+ ∆ū+ ∆d+ ∆d̄ + ∆s+ ∆s̄ = 0.12 ± 0.17 , (3.12)

∆s+ ∆s̄ = −0.19 ± 0.06 . (3.13)

This means that the helicity contribution of quarks to the nucleon spin
is small and was at this time even consistent with 0! The strange quarks are
negatively polarized.

This result caused the so called “spin crisis”. Some physicists even casted
doubt on the validity of perturbative QCD [10].

A more recent LO analysis [11] of inclusive polarized DIS data arrive at
the following values

∆Σ = 0.18 ± 0.04 , (3.14)

∆s + ∆s̄ = −0.14 ± 0.01 . (3.15)

This result still indicates that the helicity contribution of the quarks to the
nucleon spin is small, though no longer compatible with 0, and that the
strange quarks are negatively polarized.
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3.5 NLO Analysis of Deep Inelastic Scatter-

ing

In NLO the matrix element a0 is no more directly related to ∆Σ which
depends on the renormalization and factorization scheme used. Two common
choices are the MS scheme and the Adler-Bardeen (AB) scheme. In these
two schemes one finds:

a0(Q
2) = ∆ΣAB − 3

αs

2π
∆G(Q2) , (3.16)

a0(Q
2) = ∆ΣMS(Q2) . (3.17)

The AB scheme is defined in such a way that ∆ΣAB does not depend on Q2,
whereas ∆ΣMS does.

A NLO analysis [11] of inclusive polarized DIS data arrives at the follow-
ing values

∆Σ = 0.23 ± 0.08 , (3.18)

∆s+ ∆s̄ = −0.12 ± 0.02 (3.19)

at Q2 = 1 GeV2. Here the so called JET scheme, similar to the AB scheme,
was used.

Since the ∆ΣAB (or ∆ΣJet) does not depend on Q2 it can be compared
to results obtained in quark models. One solution of the spin puzzle would
be that the small measured value of a0 is explained by a cancellation of
∆Σ ≈ 0.6−0.7 as expected from quark models and analysis of baryon decays,
and a large gluonic contribution ∆G. Fig. 3.1 shows ∆Σ and ∆s + ∆̄s as a
function of ∆G. It turns out that for a very large contribution, ∆G ≈ 2.5,
one would recover the naive expectation ∆Σ ≈ 0.6 and ∆s + ∆s̄ ≈ 0. This
is one of the motivations to determine the helicity contribution of the gluon,
∆G, to the nucleon spin.

3.5.1 Determination of ∆G from NLO QCD analysis

As shown in chapter 2, eq. (2.17) at NLO QCD the structure function g1

depends on the polarized gluon distribution ∆G which allows in principle
to determine ∆G. The NLO analysis [11] quoted above finds for the first
moment:

∆G = 0.23 ± 0.28 . (3.20)
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Figure 3.1: ∆Σ and ∆s + ∆s̄ in the AB or JET scheme as a function of ∆G.
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∆Σ ∆G Lq Lg

static QM 1 0 0 0
relativistic QM 0.75 0 0.125 0
baryon decays 0.58 − − −
(assuming ∆s = 0)
LO DIS 0.2 − − −
NLO DIS 0.23 −0.5 − +0.5 − −

Table 3.2: Contributions of the quark and gluon spin and orbital angular mo-
mentum from different models and measurements.

at Q2 = 1 GeV2. A recent NLO analysis of the world data performed by
the COMPASS collaboration [12] finds two possible solutions for the first
moment ∆G at Q2 = 3 GeV2, with an equally good χ2. One is slightly
positive (∆G = 0.34), the other is slightly negative (∆G = −0.31) with an
(experimental) error of the order of 0.1. Note that this error does not take
into account uncertainties coming from the choice of the factorization and
renormalization scale and other theoretical uncertainties. These can be much
larger than the experimental error. This statement is also true for the error
on ∆G in eq. (3.20). This shows that with the present available inclusive
data it is difficult to determine ∆G and underlines the necessity for a direct
measurement.

3.6 Summary

Tab. 3.2 summarizes the results of this chapter. After the surprising result
that ∆Σ is small, it seems evident that the other terms in the sum rule

1

2
=

1

2
∆Σ(Q2) + ∆G(Q2) + Lq(Q

2) + Lg(Q
2) (3.21)

should be measured. Especially the value of ∆G is interesting since a large
value would explain the smallness of ∆Σ.



Chapter 4

How to measure ∆G?

With deep inelastic lepton nucleon scattering as a tool, how can ∆G be
measured? First of all one has to tag the partonic sub-process in which the
gluon participates, shown in Fig. 4.1. This can be done by selecting some
specific hadronic final states. The corresponding methods will be described
in this chapter.

4.1 Open Charm Method

The intrinsic charm contribution of the proton is negligible at center of mass
energies considered here, and the production of charm - anti-charm pairs
out of the vacuum during the fragmentation process is highly suppressed
compared to the production of lighter quark - anti-quark pairs. Charm quarks
are thus almost exclusively produced via the photon-gluon-fusion process.
Charm quarks fragment mainly into charmed mesons, which can be detected
via their various decay channels. The observation of a charmed hadron is
thus an ideal tag of the photon-gluon-fusion process. The measurement of
open charm double spin asymmetries provides the most direct and model
independent way to determine ∆G/G.

In the analysis the following decay channel of the D0 -meson with a
branching ratio of 3.38% is used:

D0 → K− + π+ . (4.1)

Since most of the D0 are produced via the decay of their vector meson part-

22
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Figure 4.1: A deep inelastic event shown in the photon-nucleon CMS where the
photon interacts via the photon-gluon fusion process with a gluon
inside the nucleon.

ners, the decay

D∗+ → D0 + π+
soft → K− + π+ + π+

soft (4.2)

is also considered. Experimentally this gives a better signal to background
ratio. In the following, even if not explicitely mentioned, the charge conjugate
decay channels are always implied.

4.2 High pT Method

In this method one selects pairs of hadrons in the final state with large
transverse momentum with respect to the virtual photon, in order to enhance
the contribution of the photon-gluon-fusion process [13]. This considerably
suppresses the contribution from the leading order process where hadrons
are preferentially produced along the axis of the virtual photon as shown in
Fig. 4.2 (left).

Compared to the open charm method the tagging of the photon-gluon-
fusion process is less clean, because in the QCD Compton process (Fig. 4.2,
center) hadrons are produced with a similar topology. One has to use Monte
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Figure 4.2: The main contributions to the cross section: Leading Order, QCD
Compton and photon-gluon-fusion process.

Carlo event generators to estimate the contributions form the various sub-
processes shown in Fig. 4.2. This will be discussed in more detail in chapter 6.

4.3 Comparison of the two methods

In both methods one has to measure a double spin asymmetry to extract
∆G/G. The relation between the raw asymmetry, Araw and ∆G/G is given
by (see eq. (B.28))

Araw =
N↑↓ −N↑↑

N↑↓ +N↑↑
= PB PT f aLL

σPGF

σPGF + σB

∆G

G
+ AB . (4.3)

Tab. 4.1 explains the variables used in eq. (4.3). With respect to eq. (B.28)
the additional diluting factor σPGF/(σPGF + σB) and the background asym-
metry, AB, have been added. σPGF (σB) is the cross section of the photon-
gluon-fusion (background) process.

The polarization of the target and beam and the dilution factor are the
same in both methods. The partonic asymmetry is defined as

aLL =
σ↑↓

µg − σ↑↑
µg

σ↑↓
µg + σ↑↑

µg

and depends on the following variables: ŝ, the center of mass energy of the
γ∗g system, cos θ∗, the angle of one outgoing quark with respect to the γ∗−g
axis in the center of mass system, Q2 and y. In Fig. 4.3 aLL is shown as
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a function of ŝ for y = 0.5, Q2 = Q2
min = m2y2/(1 − y) ≈ 5.5 · 10−3GeV2

integrated over cos θ∗. The values obtained for light quark production and
for cc̄ production are very different.

For heavy quarks, the asymmetry is positive at threshold (= 4m2
c) and

turns to negative values at large ŝ. For light quarks, the asymmetry is nega-
tive for all values of ŝ. Leading order expressions for the partonic asymmetry
aLL used in the analysis can be found in [14]. Note that the term “Leading
order” is confusing here, since at leading order in the sense of αs = 0 there
is no PGF process. Leading order thus means here the first non-vanishing
order.

We now turn to the fraction of signal events, σPGF/(σPGF + σB). In the
high pT analysis it has to be determined from a MC simulation and is of the
order of 0.3 (see chapter 6). In the open charm analysis it depends on the
experimental resolution of the D0 reconstruction. It is of the order of 0.1 for
the direct D0 decay and of the order of 0.5 for the decay via a D∗ as will be
shown in chapter 6. More important than these numerical differences is the
fact that in the open charm method the signal fraction can be determined
directly from the data in a model independent way, whereas in the high pT

method one has to trust the underlying model of the MC generator.

4.3.1 Gluon momentum fraction xg

In the leading process order the Bjorken variable x is identical to the mo-
mentum fraction carried by the struck quark in the nucleon. This can be
seen from the left picture in Fig. 4.2 by looking at the energy-momentum
conservation at the vertex:

xqP + q = pq′

⇒ m2
q + 2xqP · q −Q2 = m2

q

⇒ xq =
Q2

2P · q ≡ x . (4.4)

The last equation shows that the momentum fraction of the quark (xq) is
identical to the Bjorken variable x.

In a NLO process, like photon-gluon-fusion, one does not have direct
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Figure 4.3: The partonic asymmetry aLL as a function of the CMS energy of the
photon-gluon system. The values of the other variables are Q2 = 0.01
GeV2, y = 0.5. An integral over cos θ∗ is performed.
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high pT open-charm
N↑↓(N↑↑) number of

high pT open charm
events with beam and target
spin parallel (antiparallel)

PB ≈ −0.8 beam polarization
PT ≈ 0.5 target polarization
f ≈ 0.4 dilution factor (6LiD target)
aLL asymmetry of partonic process

≈ −0.6 −0.6 to 0.6
σPGF

σPGF +σB
fraction of photon-gluon fusion process

0.3 0.5(D∗) 0.1 (D0)
estimated from

LEPTO/PYTHIA MC invariant mass spectrum
AB background asymmetry

Table 4.1: Definition of the variables used in eq. (4.3) and their meaning.

access to the momentum fraction carried by the gluon, xg:

xgP + q = pq + pq̄ = ŝ

⇒ 2xgP · q −Q2 = ŝ

⇒ xg =
ŝ+Q2

2P · q =
ŝ+Q2

2Mν
. (4.5)

The CMS energy of the partonic subprocess, ŝ, cannot be calculated from
the kinematics of reconstructed particles. This means that the measurements
of ∆G/G presented here always measure ∆G/G in a certain range of xg

which has to be determined from a MC simulation. The kinematics of the
reconstructed hadrons can be used to get an approximate value of xg as was
shown in [13].

4.4 Other ways to measure ∆G

Another possibility to determine the gluon polarization is to use polarized
proton-proton scattering. Here the partonic subprocesses are



28 How two measure ∆G?

• quark-quark,

• quark-gluon and

• gluon-gluon

scattering. As in deep inelastic scattering, various final states are considered
to tag subprocesses where the gluon participated. Double spin asymmetries
are sensitive to ∆G (or even ∆G2 in case of the gluon-gluon subprocess). Such
experiments are performed at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory (BNL) in New York.

One advantage with respect to deep inelastic scattering is the higher avail-
able center of mass energy (up to

√
s = 200 GeV at the moment) compared

to
√
s =

√
2ME =

√
2 · 0.938 · 160 = 17 GeV for the COMPASS muon

beam. This makes the perturbative QCD analysis of the data more reliable.
On the other hand, the presence of two hadrons in the initial state makes the
interpretation of the data more difficult compared to deep inelastic scattering
where the nucleon is probed with a point-like particle.



Chapter 5

The COMPASS Experiment

The previous chapters showed that in order to study the spin structure of
the nucleon, in particular the gluon spin contribution, the requirements are

• a high energy polarized lepton beam

• a polarized nucleon target

• a detector with good particle identification to detect the scattered lep-
ton and the produced final state hadrons

COMPASS uses a polarized 160 GeV muon beam. Advantages as com-
pared to an electron beam for example are the higher available energies and
the natural polarization. As target material serves 6LiD. To cover a large
momentum range of the final state particles, COMPASS uses a two stage
spectrometer with good particle identification. In this chapter the various
components of the COMPASS experiment will be presented.

5.1 History

The COMPASS (COmmon Muon and Proton Apparatus for Structure and
Spectroscopy) collaboration was formed in 1996 from the merge of two pro-
posed experiments at the CERN M2 beam-line. The first one, CHEOPS, pro-
posed to study physics with hadron beams, like the measurement of pion and
kaon polarizabilities and the search for glueballs, hybrids and double charmed
baryons. The other one, called HMC (Hadron Muon Collaboration) at the
time (in line with the predecessor experiments EMC, NMC, SMC) proposed

29
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to study the nucleon spin structure. In 1997 CERN approved the COMPASS
proposal [15] as CERN experiment NA58. The collaboration comprises about
200 physicists. Construction took place in the years 1998-2000. A commis-
sioning run was performed in 2001. This work describes the results from
physics runs with a muon beam in 2002, 2003 and 2004. The experiment was
upgraded in 2005 and data taking was continued in 2006.

5.2 Beam

The Super-Proton-Synchrotron (SPS) accelerates protons to a momentum of
400 GeV. Every 15s approximately 1013 protons are extracted during 5 s and
hit a beryllium target. A magnet system selects pions and kaons produced
at this target within a given momentum range. In a 600 m long decay line
a fraction of these hadrons decays into muons which are naturally polarized
due to the parity violating character of the decay. Remaining hadrons are
absorbed at the end of the decay channel. The produced muons are selected
according to their momentum. Muon momenta up to 280 GeV can be chosen.
COMPASS runs with a 160 GeV µ+ beam with a momentum spread of
σp/p ≈ 5%. The intensity is 2 × 108 muons/spill of 5s. The momentum of
single beam muons is measured to a precision of ∆p/p = 0.8% with help
of scintillator hodoscopes placed before and behind the last vertical bending
magnet. The polarization of the muon beam was determined by a Monte
Carlo simulation. In 2004 it was found to be in average PB = −0.80 ± 0.04.
In the analysis the beam polarization is calculated event by event according
to the beam momentum.

Only 70% of these muons hit the 3 cm diameter target cells. The remain-
ing 30% consist of particles far away from the beam axis, with momenta
lower than the nominal beam momentum and large angles with respect to
the beam axis. This so called halo is typical for a tertiary beam like a muon
beam.

5.3 Polarized Target

Until the end of 2004 COMPASS has used a polarized solid state target al-
ready in operation in the predecessor experiment SMC. Its main components
are (Fig. 5.1):
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Figure 5.1: The polarized target.

• two cylindrical target cells filled with 6LiD,

• a 3He-4He dilution refrigerator,

• a solenoid and dipole magnet,

• a microwave system to polarize the nucleons, by dynamic nuclear po-
larization (DNP),

• an NMR system to measure the polarization.

The two cells have a diameter of 3 cm and are 65 cm long. The cells
are separated by 10 cm. They are oppositely polarized in order to limit the
systematic error in the asymmetry extraction. As target material 6LiD is
used since it maximizes the figure of merit, i.e. the square of the product of
dilution factor f and target polarization PT . The dilution factor f is defined
as the fraction of polarizable nucleons in the target material. The 6Li nucleus
can be considered as spin 0 4He nucleus plus a deuteron. With the additional
D in 6LiD the dilution factor is 50%. Additional material like liquid helium
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and NMR coils lead to a further dilution, so that the final dilution factor is
about 40%. The target material is polarized via dynamic nuclear polarization
(DNP) to approximately 55%. The polarization is measured with NMR coils
inside the target cells. The relative error of the measurement is 5%. Because
of the D-state contribution of ωD = 5% [16] in the deuteron wave function,
the polarization of the nucleons inside the deuteron is reduced by a factor of
1/(1−1.5ωD) with respect to the deuteron polarization (see App. A). In the
following this correction is included in the values for the target polarization
PT used in the analysis.

A 3He-4He dilution refrigerator allows to cool down the system to 50 mK.
A superconducting solenoid provides a 2.5T magnetic field along the beam
direction with a axial homogeneity better than 20ppm. In this longitudinal
mode the target material can constantly be repolarized during data taking.
A transverse 0.5T field is produced by a dipole magnet. It allows running
in a transverse mode and changing the orientation of the target spins with
respect to the beam in approximately 20 min without repolarizing the target
material. These field reversals are performed approximately every 8 h.

5.4 Spectrometer

COMPASS uses a two stage spectrometer shown in Fig. 5.2. The large an-
gle spectrometer (LAS) covers an aperture of ±180 mrad, whereas the small
angle spectrometer (SAS) covers ±30 mrad. Both stages consist of a spec-
trometer magnet with field integrals of 1 and 4.4 Tm for the LAS and SAS,
respectively. The spectrometer magnets are preceeded and followed by vari-
ous tracking detectors listed in Tab. 5.1. The LAS is equipped with a Ring
Imaging Cherenkov Counter (RICH) as well as a hadronic calorimeter. The
SAS includes an electromagnetic and hadronic calorimeter. Both stages are
equipped with hadron absorbers allowing muon identification in tracking de-
tectors located downstream. The trigger system, based on the detection of
the scattered muon, will be described in detail in the next section.

Tracks from approximately 1 GeV up to the incident beam momentum
can be reconstructed. The relative momentum resolution σp/p is 0.5% for
high momentum tracks (p > 10 GeV) reconstructed in both spectrometers
and approximately 1.2% for low momentum tracks. The RICH allows a
pion/kaon separation at the 2.5 σ level up to 40 GeV. The threshold for kaon
detection is at 9 GeV.
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Detector purpose: tracking of . . .
Scintillator Hodoscopes incoming muon

(Beam Momentum Station)
Silicon incoming muon

Scintillator hodoscopes particles downstream
of the target in the beam region

Gaseous Electron Multiplier (GEM) small angle tracks
MICRO MEsh GAseous Structure

(Micro Megas)
MWPC large angle tracks

Drift Chamber
Straws (large area drift tubes)

Muon Walls (drift tubes) muon behind
hadron absorbers

Table 5.1: Tracking detectors used in the COMPASS experiment.

A detailed description of the spectrometer can be found in [17].

5.5 Trigger System

As described in section 5.2 the muon beam has an intensity of 2 × 108/spill
with a considerable halo component. The rate of useful scattering events is
about 104/spill. The task of the trigger system is to identify these events
within a decision time below 500 ns, in order to start the detector readout
system and to provide a time reference for other detectors.

Two types of reactions are of interest:

µ+N → µ′ +X inclusive reaction
µ+N → µ′ + h+X semi-inclusive reaction

Common to both is the appearance of a muon in the final state. It seems
thus natural to base the trigger decision on the detection of the scattered
muon, especially because the muon can easily be identified online by hits in
detectors located behind the hadron absorber. COMPASS uses scintillator
hodoscope pairs where at least one hodoscope of the pair is placed behind
a hadron absorber to identify the scattered muon. The location of these
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Figure 5.2: The COMPASS spectrometer.
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Figure 5.3: Position of the hodoscopes in the spectrometer. There are in total
four subsystems: H4I & H5I, H4M & H5M, H4L & H5L and H3O &
H4O.

hodoscopes is shown in Fig. 5.3. The granularity of the hodoscopes allows
to select muons pointing back to the target region in the non-bending plane
or to select muons with a minimal energy loss in the bending plane. Not
all combinations of hits in the first and the second plane lead to a trigger
signal. Fig. 5.4 shows a simplified picture in the non bending plane. The
muon labeled µ1 interacts in the target and hits both hodoscopes. The same
is true for the halo muon µ2, which can however be eliminated by accepting
only those combinations of strips in the two hodoscopes which point back to
the target. This is realized by so called coincidence matrices shown on the
right in Fig. 5.4. The gray matrix elements stand for the allowed coincidences.
Note that in reality the hodoscopes have 16-32 strips and the matrices have
32 rows and columns and allow thus to select up to 1024 coincidences.

Unfortunately it is impossible to base the trigger decision on the scattered
muon alone. The trigger rates are about two orders of magnitude higher
than expected from the cross section of the interesting events if one just
asks for an allowed coincidence in a pair of hodoscopes. This is because a
considerable fraction of the halo muons like µ3 and µ4 in Fig. 5.4 cause a
trigger signal as well, without interacting in the target. Fig. 5.4 also shows
how these unwanted signals can be eliminated: by placing additional veto
hodoscopes in front of the target and demanding that no signal was present.
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Figure 5.4: µ1 interacts in the target and fulfills the trigger condition by hitting
both hodoscopes and the matrix condition. The halo muons µ2, µ3

and µ4 are vetoed by causing a signal in one of the veto hodoscopes
placed upstream of the target.

This eliminates trigger signals from the muons µ3 and µ4. Fig. 5.4 illustrates
as well the need for two veto hodoscopes placed at two different z-positions
along the beam-line. One hodoscope is not sufficient to eliminate both µ3

and µ4. One disadvantage of such a veto system is the dead time associated
with it. A halo muon hitting one of the veto counters, even if it does not
cause an allowed coincidence in the trigger hodoscopes (like µ2), will prohibit
a trigger signal for typically 15 ns. The total rate seen by the veto system is
approximately 15 MHz. This results in a dead time of the order of 15ns ×
15 MHz ≈ 20%.

A second possibility to reduce the contribution from trigger signals caused
by halo events is to demand, in addition to the hodoscope signal, a signal
above a certain threshold (typically 3 times the most probable energy loss
of a minimal ionizing particle) in the hadron calorimeters. This has also the
advantage to suppress unwanted events like elastic muon electron scattering:

µ+ e− → µ′ + e− ,

or radiative events

µ+N → µ′ +N + γ .
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The disadvantage of this method is, that it may introduce some bias in the
selection of inclusive events. The hadron calorimeters do for example have
different detection probabilities for positive, negative or neutral hadrons.
It is thus desirable to avoid using this information for the measurement of
inclusive asymmetries.

The trigger system is set up in such a way that the 3 subcomponents

• Hodoscope system,

• veto system,

• Calorimeter trigger

can be combined individually for every hodoscope subsystem. Hodoscope sys-
tems in a kinematic region with large contributions from background events
are complemented by the calorimeter trigger. Hodoscopes which cover the
acceptance at large Q2, where the inclusive asymmetries are of special inter-
est, use only the veto system. The veto system itself is subdivided in two
subsystems: In Vtot all veto counters are included (also a veto hodoscope
further upstream in the beam-line not shown in Fig. 5.4) in V ′ only part of
the veto counters are included, resulting in a reduced dead time of about 6%.
To trigger also on events at very large Q2 where no hodoscope is available,
a so called pure calorimetric trigger is used. Here the threshold is set to
approximately 10 GeV. The kinematic regions covered by the various trigger
subsystems are shown in Fig. 5.5.

Table 5.2 shows the trigger rates obtained with different settings of the
hodoscope systems and the pure calorimeter trigger. The settings used dur-
ing the data taking are shown in bold face. This choice was driven by the
limit of the data acquisition system of about 50000 triggers/spill. The pu-
rity of the trigger, i.e. the ratio of “good triggered” events and triggered
events is approximately (15%) 35% for triggers (not) including calorimetric
information.

More technical details about the trigger system can be found in [18].
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Trigger V ′ Vtot Calo Calo ×V ′ Calo × Vtot
Inner 1049 513 219 11 8 5
Ladder 564 114 34 26 6 3
Middle 1400 120 20 50 4 1

Outer 899 28 8 54 2 0.6
pure Calo. 106 27 5 - - -

Table 5.2: Trigger rates in 1000/spill for different trigger settings. The actually
chosen trigger settings are shown in bold face. The beam intensity
was 2×108 muons per spill. The middle trigger was once recorded in
coincidence with the calorimeter and once without. The latter was
prescaled by a factor 2.



Chapter 6

Analysis & Results

COMPASS collects a few hundred Terabyte of raw data every year. After
calibration and alignment procedures so called mini data summary tapes
(mDST) are produced. They amount to approximately 1 TB/year and con-
tain all the relevant information to perform a physics analysis. This chapter
describes the steps from the reconstructed events to the extraction of ∆G/G.
Data from the years 2002, 2003 and 2004 are included in this analysis.

6.1 Open Charm Analysis

6.1.1 Event Selection

Only events with a reconstructed primary vertex are considered. This implies
the reconstruction of the beam muon and the scattered muon. In addition
the vertex position has to be inside one of the two target cells.

As mentioned in section 4.1, one has to identify events with charmed
hadrons in the final state. COMPASS looks at the following decay channels
(including their charge conjugates):

D0 → K− + π+ (6.1)

and, since most of the D0 are produced via the decay of the vector meson
partners,

D∗+ → D0 + π+
soft → K− + π+ + π+

soft . (6.2)

After applying cuts specified in Tab. 6.1 to optimize the statistical signif-
icance of the measurement one obtains the mass spectra shown in Figs. 6.1

40
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D0 D∗

zD0 > 0.2 > 0.25
cos θ∗ < 0.85 < 0.5
δm – 3.1 MeV < (δm−mπ) < 9.1 MeV

Kaon identified in RICH

Table 6.1: Cuts used to select the D0 and D∗ sample: δm is the difference be-
tween the reconstructed D∗ and D0 masses, i.e. δm = MD∗ − MD0

and θ∗ the angle of one of the decay particles in the D0 rest-frame
with respect to the direction of the D0 in the laboratory system.

and 6.2. A discussion on optimizing these cuts can be found in [19, 20].
Events appearing in Fig. 6.2 don’t enter the spectrum in Fig. 6.1.

The D0 mass spectrum is fitted to

f(m) =
A1√
2πσ1

e
−(m−m1)2

2σ2
1 + A2 e

−m
s2 + (1 + p1m+ p2m

2) , (6.3)

and the D∗ mass spectrum to

f(m) =
A1√
2πσ1

e
−(m−m1)2

2σ2
1 +

A2√
2πσ2

e
−(m−m2)2

2σ2
2 + A3 e

−m
s (6.4)

where the second Gaussian accounts for the bump centered atm ≈ −250MeV
originating from decays

D0 → K− + π+ + π0

where the π0 was not reconstructed.

6.1.2 Determination of ∆G/G

The following section describes in detail how the value for ∆G/G is extracted
from the reconstructed charmed mesons. This seems to be straightforward
using eq. (4.3):

Araw =
N↑↓ −N↑↑

N↑↓ +N↑↑

= PB PT f aLL
σPGF

σPGF + σB

∆G

G
+ AB ,
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Figure 6.1: Invariant mass spectrum of K−π+ and K+π− pairs of 2004 data with
cuts as given in the second column (D0) of Tab. 6.1.
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Figure 6.3: To extract the asymmetry four measurements of event rates
(Nu, Nd, Nu′ and Nd′) are used. The double arrows indicate the di-
rection of the polarization vector.

knowing all the factors in front of ∆G/G and the background asymmetry,
AB, but acceptance effects and flux normalization were ignored in eq. (4.3).

Extracting ∆G/G without knowledge of flux and acceptance

To extract ∆G/G using only minimal assumptions on the beam flux Φ and
the acceptances a, four sets of data are used as shown in Fig. 6.3. First data
are taken for approximately 8 hours with the first setting of target polariza-
tion resulting in two rates Nu and Nd of events with the vertex reconstructed
in the up and downstream target cell, respectively. Then the magnetic field
of the target is reversed, resulting in a change of sign of the target polariza-
tions with respect to the beam. In this setting data are again taken for about
8 hours. The corresponding event rates are Nu′ and Nd′ . For each of these
so called configurations of about 16 hours the asymmetry can be extracted.
The high pT analysis follows this procedure. In the open charm analysis, due
to the limited statistics, data are grouped together in larger configurations
of about one week. A detailed description of the data selection and grouping
used in this analysis can be found in [20].

The relation between the event rates Nt and AS ≡ ∆G/G is given by
eq. (C.1) in App. C:

Nt = αt (1− <βt> AS) t = u, d, u′, d′ (6.5)
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with

αt =

∫

atΦtntσtd
nx and (6.6)

βt = PBPT,tftaLL
σPGF

σPGF + σB

.

In eq. (6.6) nt denotes the number of target nucleons and σt = σPGF +σB the
unpolarized cross section. The integral dnx extends over all accepted events.

If we ignore for the moment a possible contribution from the background
asymmetry AB, the asymmetry AS can be extracted from

δ =
NuNd′

Nu′Nd
=
αuαd′

αu′αd

(1− <βu> AS)(1− <βd′> AS)

(1− <βu′> AS)(1− <βd> AS)
, (6.7)

with the assumption that

κ =
αuαd′

αu′αd

= 1 . (6.8)

Eq. (6.8) only implies that if the acceptance changes with time, it changes in
the same way for both target cells. The fluxes cancel in κ since both target
cells are subject to the same flux (Φu = Φd and Φu′ = Φd′). The number
of target particles nt and the unpolarized cross section σt drop out, because
they are the same before and after a field reversal (nt = nt′ and σt = σt′ ,
t = u, d). For a more detailed discussion see App. C. A possible deviation
of κ from 1 is a source of systematic error. If the factors <βt> are known,
eq. (6.7) provides a quadratic equation in AS ≡ ∆G/G.

This can be formulated in a different way. With 4 equations:

Nt = αt(1− <βt> AS) (6.9)

with t = u, d, u′, d′ , (6.10)

one can extract 4 unknowns:

AS, αu, αd, αu′ , (6.11)

(αd′ is fixed through the condition eq. (6.8)).
We now turn to the determination of the factor <β>. Its value is taken

as the average over the event sample:

<β>=

∑N
i=1 βi

N
. (6.12)
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Figure 6.4: The true vs. reconstructed aLL.

The difficulty in calculating <β> is that not all factors are known event by
event. The target and beam polarization and the dilution factor f are known
event by event. The partonic asymmetry aLL is not, because it depends on
the parton kinematics which is not directly accessible from the kinematics
of the reconstructed particles. For the same reason the gluon momentum
fraction xg is not known event by event. Here one uses a neural network
parameterization of aLL as a function of known kinematic variables y, pT and
zD obtained with the help of an AROMA-MC simulation([21],[19] section
6.3.2). Fig. 6.4 shows the true analyzing power vs. the parameterized one.
The correlation reaches 82%. Fig. 6.5 shows a comparison of data and MC for
the three variables y, pT and zD. The MC contains only signal events. In the
data the background was subtracted using the sidebands in the mass spectra.
The agreement is satisfactory, so that one can trust the MC simulation for
the parameterization of aLL.

The fraction of signal events σPGF/(σPGF + σB) is known from Figs. 6.1
and 6.2 only as a function of the reconstructed D0 mass. In principle it would
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Figure 6.5: Data to MC comparison for y, pT zD. The MC contains only sig-
nal events. In the data the background was subtracted using the
sidebands in the mass spectra.

be possible to produce these mass distributions in bins of other kinematic
variables like y, pT and z, but the available statistics does not allow a binning
in all these variables. To solve this problem the ratio σPGF/(σPGF + σB) is
determined in bins of fPBaLL as shown in Fig. 6.6 for the D∗ case, i.e. for an
event in a given bin of fPBaLL the signal fraction is taken from a fit to the
corresponding histogram in Fig. 6.6. Within one target cell the parameters
σ1, m1, σ2, m2 and s in eq. (6.4) are the same for the different fPBaLL bins,
i.e. there is one fit performed for all the five histograms in one target cell. A
similar method is applied for the D0 case. Unfortunately the most favorable
signal to background ratio is reached in the first bin where aLL is close to 0.
Ignoring this correlation would be equivalent to calculate

< PBPTfaLL ><
σPGF

σPGF + σB
>

rather than the correct factor

< β >=< PBPTfaLL
σPGF

σPGF + σB
> .

Extracting ∆G/G with smallest statistical error.

Another issue to consider is the way to extract ∆G/G with the smallest
possible statistical error. From eq. (6.7) one finds for the statistical error or
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Figure 6.6: Invariant mass spectrum of K−π+ and K+π− pairs of 2004 data with
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the figure of merit (FOM):

FOM =
1

σ2
AS

=

(

∂AS

∂δ

)−2

(σδ)
−2

= 16 < β >2 Ntot

16
= < β >2 Ntot (6.13)

where Ntot = Nu +Nd +Nu′ +Nd′ is the total number of events. To simplify
the discussion we assumed in eq. (6.13)

Nu ≈ Nd ≈ Nu′ ≈ Nd′

and
< β >:=< βu >≈< βd′ >≈ − < βu′ >≈ − < βd > .

An expression for the FOM dropping these assumptions can easily be derived,
but is irrelevant for the following discussion.

In section 4 we saw that aLL has positive and negative values. Thus
< β > may be close to 0 and the FOM even vanishes for the case < β >= 0!
One can of course divide the event sample in bins of β and extract ∆G/G
separately in every bin. Since these measurements are independent the FOM
is now given by

FOM = ΣNbin

i=1 β
2
iNi (6.14)

or in the limit of an infinite number of bins:

FOM =< β2 > Ntot , (6.15)

which results in a gain in the FOM of

< β2 >

< β >2
(6.16)

with respect to the case without binning.
Dividing the sample in bins is inconvenient because of possible problems

with low or 0 number of events in certain bins. App. D shows that one
reaches the same FOM by weighing every event with an appropriate factor.
This optimal weight factor turns out to be just the diluting factor β. The
target polarization PT is not included in the weight because it would lead to
an increase in the systematic error, as explained in App. B.
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In the weighting procedure, instead of using the event rates

Nu, Nd, Nu′ and Nd′ ,

one considers the sum over event weights

pu = ΣNu

i=1wi, pd = ΣNd

i=1wi, pu′ = Σ
Nu′

i=1wi and pd′ = Σ
Nd′

i=1wi (6.17)

with wi = PBfaLL
σPGF

σPGF +σB
and proceeds in the same way as in the un-

weighted case, i.e. one calculates the double ratio

δ =
pupd′

pu′pd
=
αuαd′

αu′αd

(1− <βu>w AS)(1− <βd′>w AS)

(1− <βu′>w AS)(1− <βd>w AS)
(6.18)

with

<βt>w =

∫

βtwdnx
∫

wdnx
≈
∑

βtw
∑

w
,

αt =

∫

w at Φt nt σt dnx

t = u, d, u′, d′ .

In this case one finds for the FOM:

FOM =
1

σ2
AS

=

(

∂AS

∂δ

)−2

(σδ)
−2

= 16 < βw >2
w

<w>2

16 <w2>
Ntot

w≡β
= < β2 > Ntot . (6.19)

Thus with the choice w = β, the FOM is the same as for the case of dividing
the sample in an infinite number of bins. App. D even shows that this choice
of weight corresponds to the minimal statistical error one can reach.

Taking into consideration the background asymmetry AB

Up to now the background asymmetry AB has been neglected. One could
correct for it by taking events in the sidebands of the mass distributions in
Fig. 6.1 and 6.2. This is not the most efficient solution as will be shown in the
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following. In the case of a non vanishing background asymmetry eq. (B.24)
is extended to

N = α̃ (1 − βSAS − βSAB) (6.20)

with α̃ = aΦnσ , (6.21)

βS = PBPTfaLL
σPGF

σPGF + σB

, (6.22)

βB = PBPTfa
B
LL

σB

σPGF + σB
. (6.23)

Now one introduces two weight factors, one for the signal,

wS = PBfaLL
σPGF

σPGF + σB

,

and one for the background,

wB = PBfa
B
LL

σB

σPGF + σB
.

The expectation value of
∑Nt

i=1w
i
S,B is given by multiplying eq. (6.20) with

the weight factor and integrating over dnx. This leads to the following 8
equations:

Nt
∑

i=1

wi
S = αt,S (1+ <βt,S>wS

AS+ <βt,B>wS
AB) ,

Nt
∑

i=1

wi
B = αt,B (1+ <βt,S>wB

AS+ <βt,B>wB
AB) ,

with

αt,C =

∫

α̃twCdnx , (6.24)

<βt,C>wC′ =

∫

βCwC′αtd
nx

∫

wCαtdnx
, (6.25)

t = u, d, u′, d′ , C = S,B , C ′ = S,B .

With these 8 equations the 8 parameters

AS, AB, αu,S, αd,S, αu′,S, αu,B, αd,B and αu′,B
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can be extracted. This method allows thus the simultaneous extraction of
AS and AB.

αd′,S and αd′,B are fixed through the acceptance conditions

αu,S αd′,S

αu′,S αd,S
= 1 ,

αu,B αd′,B

αu′,B αd,B
= 1 . (6.26)

One can try to reduce the number of unknowns further, by assuming that

αu,S

αu,B
=
αu′,S

αu′,B
. (6.27)

This will reduce the number of unknowns from 8 to 7 (Because of eq. (6.26)
this implies also that αd,S/αd,B = αd′,S/αd′,B). This assumption is weaker
than the assumption in eq. (6.26) since it only demands that if the acceptance
changes, it changes in the same way for the signal and the background.

Since the system is over-constrained (8 equations for 7 unknowns) it allows
even to verify the underlying assumptions by looking at the χ2 distribution.
More details are presented in App. E.

Fig. 6.7 shows the results obtained for AS ≡ ∆G/G and AB for the two
decay channels and the different years of data taking. With the method
described above ∆G/G is extracted with the highest statistical accuracy. As
explained after eq. (6.19) the same results can in principle be obtained by
binning the event sample. This will be discussed in the following. Fig. 6.8
shows the muon-nucleon asymmetry of the open charm events in four bins of
aLL for the two decay channels. The muon-nucleon asymmetry is obtained
by excluding aLL from the weighting factor. According to eq. (B.14):

AµN =< aLL >
∆G

G
,

∆G/G is given by the slope of a straight line going through the origin of the
coordinate system, assuming a constant ∆G/G. At the present accuracy of
the data the assumption that ∆G/G is constant seems to be justified. In
Tab. 6.2 the results obtained by this method are compared to the results
obtained by including aLL in the weight.

Systematic Errors

The relative errors of the beam, target polarization and the dilution factor
are 5% for each of these factors. Varying the charm mass mc in the range
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of aLL. The lines are fits to the data using eq. (B.14). The slope of
the lines is ∆G/G.

method D∗ D0

aLL bins −1.17 ± 0.58 0.57 ± 0.79
aLL in weight −0.93 ± 0.54 0.38 ± 0.72

difference −0.24 ± 0.21 0.19 ± 0.33

Table 6.2: Comparison of results on ∆G/G obtained by analyzing the data in bins
of aLL and including aLL in the weight. The error on the difference is
given by: σ2

diff = σ2
aLL bins − σ2

aLL in weight [22].
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source contribution
PB 5%
PT 5%
f 5%
aLL 0.05

σPGF

(σPGF +σB)
0.09

binning in fPaLL 0.04
κ 6= 1 0.10
total (for ∆G/G = −0.46) 0.15

Table 6.3: Contribution to the systematic error of ∆G/G.

1400–1600 GeV results in a change of 0.05 for ∆G/G due to a different
aLL. Trying different fitting procedures to describe the mass spectra, used
to determine the factor σPGF/(σPGF + σB), results in a contribution of 0.09.
Varying the binning in fPBaLL yields a contribution of 0.04.

In addition to these contributions there is another one due to false asym-
metries by a possible violation of the relation (6.26). This was estimated by
looking at the deviation of a result obtained in one configuration, (∆G/G)i,
from the average result ,<∆G/G>, divided by the statistical error σi:

(∆G/G)i− <∆G/G>

σi
.

This distribution is centered around 0 with an RMS of 1, if relation (6.26) is
fulfilled. No deviation from 1 was observed. As an upper limit one finds a
contribution of 0.10 to the systematic error.

Adding all contributions listed in Tab. 6.3 in quadrature results in a total
systematic error of 0.15. Note that all systematic studies were performed
independently for the two decay channels. The various contributions were
found to be very similar for both decay channels, such that only one value is
given in Tab. 6.3.

The final result

It remains to clarify at which momentum fraction xg and scale µ the gluon
polarization is measured. As for aLL, a MC simulation is used to determine
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< xg >. One finds a value of < xg >= 0.15 with an RMS of 0.08. The scale
is approximately given by µ2 = 4(m2

c + p2
T ) ≈ 13 GeV2.

The combined value (both decay channels, all years) is

∆G

G
= −0.46 ± 0.43 ± 0.15 , (6.28)

at < xg >= 0.15

and µ2 = 13GeV2 .

6.2 High pT analysis

The event sample with two hadrons of large transverse momentum is divided
into two subsamples, Q2 < 1GeV2 and Q2 > 1 GeV2. The reason is that
different Monte Carlo generators are used to estimate the various background
contributions. For the events with Q2 < 1 GeV2 the generator PYTHIA [23]
and for events Q2 > 1 GeV2 the generator LEPTO [24] is used. Events
with Q2 < 1GeV2 correspond to 90% of the total sample. Concerning the
scattered muon, the event selection is similar to the open charm analysis.

6.2.1 High pT , Q2 < 1 GeV2

For this sample the cuts listed in Tab. 6.4 were applied. They were optimized
to find a good balance between clear tagging of the PGF process (tight cuts)
and high statistics (loose cuts). These cuts result in contributions R for the
various partonic subprocesses shown in Fig. 6.9. The first three are the PGF,
the QCD Compton (QCDC) and the LO process. The virtual photon can
also fluctuate in a hadron and a parton of the resolved photon interacts with
a parton in the nucleon. These are the next three contributions shown in the
figure. Finally the low pT contribution reflects resolved photon events where
no hard scale is present.

The raw asymmetry Araw is related to ∆G/G in the following way:

Araw = f PB PT (RPGF a
PGF
LL

∆G

G
+ AB) . (6.29)
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Q2 < 1GeV 2

0.3 < y < 0.9
m(h1, h2) > 1.5 GeV

xF > 0.1

ph1
T , p

h2
T > 0.7 GeV

(ph1
T )2 + (ph2

T )2 > 2.5 GeV2

Table 6.4: Cuts used to enhance the PGF sample in the Q2 < 1 GeV2 sample.

qq→g*γ
qg→q*γ

q→q*γ

qq’→qq’
qg→qg
gg→gg

T
low p

qq→g*γ
qg→q*γ

q→q*γ

qq’→qq’
qg→qg
gg→gg

T
low p

R

0

0.1

0.2

0.3

QCDC

PGF

Leading

Figure 2: Relative ontributions R of the dominant PYTHIA proesses to the Monte Carlosample of high-pT events. Left: diret proesses; right: resolved-photon proesses.parton f  from a resolved photon. Realling that we use a deuteron target, A1 is theinlusive virtual-photon{deuteron asymmetry and �f=f (�f =f ) is the polarization ofquarks or gluons in the deuteron (photon). The ontributions of the leading and low-pTproesses annot be alulated in the same way, sine there is no hard sale allowing thefatorization of their asymmetries Aleading and Alow�pT (low transverse momentum, andQ2 < 1 (GeV=)2 events). However, the asymmetry for this kind of events is small asindiated by previous measurements of A1 at low Q2 [17℄. Moreover, the leading and low-pT proesses together aount for only 7% of the high-pT sample. For these two reasons,we negleted their ontributions.The fration of photon{gluon fusion events in the sample is of the order of 30%,see Fig. 2. The analyzing power âPGFLL is alulated using the leading-order expressions forthe polarized and unpolarized partoni ross-setions and the parton kinematis for eahPGF event in the high-pT Monte Carlo sample. In average, we obtain 
âPGFLL =D� = �0:93,so that the ontribution of PGF to the high-pT asymmetry is �0:29��G=G.The ontribution of QCD Compton events to the high-pT asymmetry is evaluatedfrom a parametrization of the virtual-photon{deuteron asymmetry A1 based on a �t tothe world data [2, 18℄. This asymmetry is alulated for eah event at the momentumfration xq of the quark, known in the simulation. The estimated ontribution of theQCD Compton sattering to the high-pT asymmetry is 0.006.The parton from a resolved photon interats either with a quark or a gluon from thenuleon. In the latter ase, the proess is sensitive to the gluon polarization �G=G. Theanalyzing powers âffLL are alulated in pQCD at leading order [19℄. The polarizations ofthe u, d and s quarks in the deuteron �f=f are alulated using the polarized partondistribution funtions from Ref. [20℄ (GRSV2000) and the unpolarized parton distributionfuntions from Ref. [21℄ (GRV98, also used as an input for PYTHIA), all at leading order.The polarizations of quarks and gluons in the virtual photon �f =f  are unknown be-6

Figure 6.9: The various partonic subprocesses contributing to the cross section
for the cuts listed in Tab. 6.4.
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The background asymmetry receives the following contributions:

AB = RQCDC a
QCDC
LL AQCDC

+ RLO a
LO
LLA

LO

+ RlowpT
alowpT

LL AlowpT

+ Σf,f ′=u,d,s,ū,d̄,s̄,GRff ′aff ′

LL

∆f

f

∆f ′

f ′
. (6.30)

The factors R designate the fraction of the corresponding process to the cross
section. The partonic asymmetries are denoted by aLL. RPGF is approxi-
mately 30% and aPGF

LL ≈ −0.6 at y = 0.5 (see Fig. 4.3).

The contribution of the LO and low pT process amounts only to about 7%.
Moreover their contribution is multiplied by an asymmetry which is known to
be very small in the kinematic region considered [25, 26]. Therefore these two
contributions are neglected. The QCDC contribution can be estimated from
the measured inclusive deuteron asymmetry Ad

1. To evaluate the resolved
photon contributions, one has to know the polarization of the partons in a
resolved photon. Unfortunately these are unknown and only limits can be
given [27], which leads to a contribution to the systematic error.

Systematic Error

In this analysis the fraction of signal events RPGF must be extracted from
the generated MC sample. It is thus mandatory to find a good agreement
between data and MC. The level of agreement is shown in Fig. 6.10. Several
PYTHIA parameters relevant to the amount of transverse momentum ac-
quired by hadrons were varied in a range in which the agreement between
data and MC remains satisfactory. The resulting variation of ∆G/G gives a
contribution to the systematic error of 0.035. Higher order QCD effects were
estimated by varying the factorization and renormalization scale by a factor
of 2 resulting in a contribution of 0.008. The uncertainty in the polarized
parton distribution of the photon results in a contribution of 0.015. Together
with other experimental systematic error sources, similar to the open charm
analysis, the total systematic error is 0.055.

The scale is approximately given by µ2 ≈ (ph1
T )2 +(ph2

T )2 ≈ 3 GeV2. From
the MC simulation the average gluon momentum fraction was determined to
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Figure 1: Comparison between data and Monte Carlo for Q2, y, and for the total (trans-verse) momentum p (pT) of the hadron with highest pT. The upper part of eah plot showsthe real data (points) and simulation (line), normalized to the same number of events.The lower part shows the orresponding data/Monte Carlo ratio.to the ross-setion heliity asymmetry, provided that a transverse photon is exhanged.The asymmetry an then be approximately expressed as�AkD � = RPGF� âPGFLLD � �GG +RQCDC* âQCDCLLD A1++ Xf;f=u;d;s;�u; �d;�s;GRff �âffLL �ff �f f  �+Rleading � Aleading +Rlow�pT � Alow�pT : (6)Here, RQCDC is the fration of QCD Compton events, and Rff is the fration of eventsin the whole high-pT sample for whih a parton f from the nuleon interats with a5

Figure 6.10: Data vs. MC comparison for Q2,y,p and pT . The upper part of each
plot shows the simulated (line) and the data (points) normalized to
the number of events. The lower part shows the ratio data/MC.
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m(h1, h2) > 1.5 GeV
xF > 0.1
z > 0.1
pT > 0.7 GeV

(ph1
T )2 + (ph2

T )2 > 2.5 GeV2

Table 6.5: Cuts used to enhance the PGF sample in the Q2 > 1GeV2 analysis.

be < xg >= 0.085 with an RMS of 0.05. The final result is

∆G

G
= 0.016 ± 0.058 ± 0.055 , (6.31)

at < xg >= 0.085

and µ2 = 3 GeV2 .

A more detailed description of this analysis can be found in [28]. An analysis
including only the 2002 and 2003 data is published in [26].

6.2.2 High pT , Q2 > 1 GeV2

For events with Q2 > 1 GeV2 the contribution of resolved photons can be
neglected. Here the cross section is described by three processes:

• Leading order (31%)

• QCD Compton (32.5%)

• Photon Gluon Fusion (36.5%)

For this analysis the event generator LEPTO [24] was used to estimate the
contributions of these three subprocesses to the cross section. After optimiz-
ing the cuts given in Tab. 6.5 the event fractions given in parentheses are
obtained. The level of agreement between data and MC can be judged in
Fig. 6.11. The total systematic error is 0.06. It contains contributions from
experimental systematic errors and from the MC generator.

The final result is:

∆G

G
= 0.06 ± 0.31 ± 0.06 , (6.32)

at < xg >= 0.13

and µ2 = 2.4 GeV2 .
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largest pT [29].
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This result includes only data from 2002 and 2003. The analysis of the 2004
data is still ongoing. A more detailed description of this analysis can be
found in [29].

6.3 Summary of Results on ∆G/G

Fig. 6.12 and Tab. 6.6 show the results obtained by the COMPASS collab-
oration and other experiments and compare them with predictions obtained
from NLO analyses of inclusive data. The direct measurements are incom-
patible with parameterizations predicting a large first moment of ∆G = 2−3.

Fig. 6.13 shows results from the PHENIX and STAR collaboration at the
polarized proton-proton collider RHIC. These results confirm that scenarios
with a large ∆G are ruled out.

gx-210 -110

G
/G

 
∆

-0.6

-0.4

-0.2

-0

0.2

0.4

0.6

0.8

GRSV
max

std 

min

 (this analysis)2=13GeV/2µCOMPASS, open charm, 
2<1 GeV2, Q

T
COMPASS, high p

2>1 GeV2, Q
T

COMPASS, high p
2>1 GeV2, Q

T
SMC, high p

, published (2000).2 hadron pairs, all Q
T

HERMES, high p

, prel.2 hadrons, all Q
T

HERMES, single high p
2=3GeV2µ scheme, MSG>0,  ∆fit with  
2=3GeV2µ scheme, MSG<0,  ∆fit with  

2=3 GeV2µGRSV at 

Figure 6.12: Results on ∆G/G from different experiments. The two dotted
curves are results from the COMPASS NLO fits to inclusive asym-
metries [12]. The corresponding first moments are 0.26 and −0.31
at µ = 3GeV2. The three solid curves labeled max, std and min
are parameterizations from GRSV [30]. They correspond to first
moments at µ = 3GeV2 of 2.5, 0.6, 0.2 respectively.
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Experiment Method ∆G/G± stat. err ± sys. err. scale µ/GeV2 < xg > ref.

COMPASS hadron pairs,Q2 < 1 GeV2 0.016 ± 0.058 ± 0.0551) 3 0.085 [33]
COMPASS hadron pairs,Q2 > 1 GeV2 0.06 ± 0.31 ± 0.061) 2.4 0.13 [33]
COMPASS open charm −0.46 ± 0.43 ± 0.15 13 0.15
HERMES hadron pairs 0.41 ± 0.18 ± 0.032) 2 0.17 [34]
HERMES single hadrons 0.071 ± 0.034+0.105

−0.127 1.35 0.22 [35]
SMC hadron pairs,Q2 > 1 GeV2 −0.20 ± 0.28 ± 0.10 3 0.07 [25]

Table 6.6: Results on ∆G
G from various experiments. 1) These results do not include the correction for the

D-state probability in the deuteron mentioned in section 5.3. 2) Only the experimental systematic error
is given.



Summary of Results on ∆G/G 635underlying event and out-of-one hadronization. We es-timate that suh orretions would inrease the measureddi�erential ross setion by �25% for pT > 10GeV=.The asymmetry ALL was extrated for 5 < pT <17GeV= from a HT data sample of about 110 � 103jets in 2003 and 210 � 103 in 2004. The sample size islarger than in the ross setion analysis, sine no BEMCenergy threshold was required. The jet yields N weresorted by equal (++) and opposite (+�) beam heliityon�gurations. The asymmetry was extrated as:ALL = P(P1P2)(N++ �RN+�)P(P1P2)2(N++ +RN+�) (3)where P1;2 are the measured proton beam polarizations,R ' 1:1 is the ratio of measured luminosities for equaland opposite proton beam heliities, and parity violatingdi�erenes . O(10�4) in the ross setions for di�erentbeam heliities are not onsidered. The sums are per-formed over runs typially lasting 20 minutes.The results for ALL from 2003 and 2004 data are ingood agreement (�2=ndf = 0:3). Figure 3 shows theombined ALL versus jet pT, together with the statis-tial (bars) and systemati (bands) unertainties.A 25% ombined sale unertainty arises from the CNIbeam polarization measurement (22% in 2003 and an un-orrelated 16% in 2004) and from the CNI absolute ali-bration (18% ommon to both years).The unertainty in R was estimated to be 0:003 usingnarrow and wide timing requirements for the BBC oini-dene. It takes into aount di�erenes in sampling of thelongitudinal vertex distribution in the jet analysis and inthe relative luminosity measurement, and orresponds to0:009 unertainty in ALL. An independent measurementwith the zero degree alorimeters (ZDC) [8℄ gave onsis-tent results to within statistial unertainties. No doubleheliity asymmetry of the BBC measurement relative tothe ZDC measurement was observed.Residual nonlongitudinal proton beam polarizationat the STAR IR ould ontaminate the ALL measure-ment through an azimuthally uniform two-spin asymme-try [19℄. A limit of 0:010 on suh ontamination was setfrom loal polarimetry data and from two-spin asymme-try measurements with vertially polarized beams.Beam bakground oasionally aused BEMC signalsnot assoiated with ollisions at the IR. Its e�et on thejet yields was redued with the aforementioned seletionon ETPC=Etot. Residual yields were estimated to be nolarger than 8% (5%) in the 2003 (2004) data from thevariation of jet spetra with beam-bakground onditionsmonitored with the BBCs when �lled and empty beambunhes rossed at the IR. These, ombined with asym-metry estimates from beam bakground dominated sam-ples, resulted in 0:003 unertainty in ALL.The bias toward hard fragmentation proesses ausedby the HT trigger requirement was simulated, as werepossible biases introdued by jet reonstrution and jet
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Chapter 7

Summary & Outlook

This work describes the measurement of the gluon polarization in the nu-
cleon performed by the COMPASS collaboration. The motivation for such
a measurement is the fact that a large first moment of the polarized gluon
distribution ∆G =

∫ 1

0
∆G(xg) dxg ≈ 2 − 3 would reconcile predictions for

the quark spin contribution from quark models and deep inelastic scattering.
COMPASS data show that ∆G/G is small at xg ≈ 0.1 and not compatible
with parameterizations that predict large values for ∆G. These direct mea-
surements only determine ∆G/G in a limited momentum range. NLO QCD
analysis, which provide an indirect measurement of the first moment, confirm
a small value of ∆G. Although all the results presented here are compatible
with ∆G = 0, with the present precision of the experimental data, it is still
possible that the spin of the gluons is responsible for 100% of the nucleon
spin, i.e. ∆G = 1

2
. Thus the question about the origin of the nucleon spin

remains open.
In the near future new data from COMPASS and the pp collider RHIC

will further reduce the uncertainty on ∆G/G. In the long term a new elec-
tron proton collider like eRHIC[36] would provide an ideal tool for a precise
determination of the shape of ∆G(xg). Finally, deep virtual Compton scat-
tering (DVCS) was proposed [37] to measure the contribution of the orbital
angular momentum to the nucleon spin.
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Appendix A

D-state probability in the

Deuteron wave function

The deuteron wave function is given by:

|d >= αS|S > +αD|D > (A.1)

with αD = 0.05 [16] and α2
S + α2

D = 1.
For a deuteron with total angular momentum J = 1 and MJ = 1 the |S >

and the |D > states are given in terms of the orbital angular momentum L
and the spin S by:

|S > = |0, 0, 1, 1 >= |L,ML, S,MS >

|D > = < 1, 1|2, 2, 1,−1 > |2, 2, 1,−1 >

+ < 1, 1|2, 1, 1, 0 > |2, 1, 1, 0 >
+ < 1, 1|2, 0, 1, 1 > |2, 0, 1, 1 >

=

√

3

5
|2, 2, 1,−1 > −

√

3

10
|2, 1, 1, 0 > +

√

1

10
|2, 0, 1, 1 >,

where in the state vectors the quantum numbers are |L,ML, S,MS > and in
the Clebsch-Gordan coefficients they are < J,MJ |L,ML, S,MS >.

How large is the polarization of the two nucleons in the deuteron in the
state |J = 1,MJ = 1 >?
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66 D-state probability in the Deuteron wave function

This polarization is given by:

< 1, 1|Ŝz|1, 1 > = α2
S · 1 + α2

D

(

3

5
· (−1) +

3

10
· 0 +

1

10
· 1
)

= 1 − α2
D + α2

D

(

− 6

10
+

1

10

)

=

(

1 − 3

2
α2

D

)

,

i.e. in a totally polarized deuteron the nucleons are only polarized to

(

1 − 3

2
α2

D

)

= 92.5%

for a D-state probability of ωD = α2
D = 0.05.



Appendix B

Relation between counting rate

and asymmetry

The number of events can be written as:

N = aΦ(ΣAnAσA + n↑↑
P σ

↑↑
P + n↑↓

P σ
↑↓
P ) . (B.1)

The variables used in eq. (B.1) are explained in Tab. B.1.

The product of the target and beam polarization can be expressed in
terms of n↑↑

P and n↑↓
P :

PTPB =
n↑↑

P − n↑↓
P

n↑↑
P + n↑↓

P

. (B.2)

Note that only the relative orientation between beam and target spin matters.

Replacing

n↑↑
P =

1 + PTPB

2
nP and n↑↓

P =
1 − PTPB

2
nP (B.3)

in eq. (B.1) yields

N = aΦ

[

ΣAnAσA + np

(

1 + PBPT

2
σ↑↑

p +
1 − PBPT

2
σ↑↓

p

)]

= aΦ

[

ΣAnAσA + np

(

σ↑↓
P + σ↑↑

P

2
− PBPT

σ↑↓
P − σ↑↑

P

2

)]

.
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Variable definition meaning
a acceptance
Φ muon flux
n = nP +

∑

A nA total number of nuclei in target

n↑↑
P (n↑↓

P ) number of nuclei with beam and target polarization parallel (anti-parallel).

nP , (nA) nP = n↑↑
P + n↑↓

P number of polarizable (non-polarizable) nuclei
σP , (σA) unpolarized cross section of polarizable (non-polarizable) nuclei

σ =
nP σP +

P

A nAσA

n
average unpolarized cross section

f = nP σP

nP σP +
P

A nAσA
dilution factor

PB, (PT ) beam (target) polarization
AµN Muon-Nucleon - asymmetry

Table B.1: Definition of the variables used in eq. (B.1).
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We now introduce the muon-nucleon asymmetry, AµN , and the unpolar-
ized cross section σP

AµN =
σ↑↓

P − σ↑↑
P

σ↑↓
P + σ↑↑

P

=
σ↑↓

P − σ↑↑
P

2σP
. (B.4)

This leads to

N = aΦ
[

ΣAnAσA + npσP

(

1 − PBPTA
µN
)]

. (B.5)

Finally, the introduction of the dilution factor

f =
nPσP

nPσP + ΣAnAσA

(B.6)

gives
N = aΦ (ΣAnAσA + npσP )

(

1 − PBPTfA
µN
)

(B.7)

with the definition of the average unpolarized cross section

σ =
nPσP + ΣAnAσA

nP + ΣAnA

=
nPσP + ΣAnAσA

n
(B.8)

one finally finds
N = aΦnσ

(

1 − PBPTfA
µN
)

. (B.9)

We now turn to the relation between the muon-nucleon asymmetry, AµN

and the parton distributions ∆q = q↑ − q↓ and ∆G = G↑ − G↓ we finally
want to measure. The muon-nucleon cross section is related to the muon-
gluon cross section in the following way:

σµ(↑)N(↓) ∝
∫

σµ(↑)G(↓)G↑ + σµ(↑)G(↑)G↓ dxg , (B.10)

σµ(↑)N(↑) ∝
∫

σµ(↑)G(↑)G↑ + σµ(↑)G(↓)G↓ dxg . (B.11)

The integral indicates that for a fixed event kinematics the gluon polar-
ization is probed in a given range of the gluon momentum fraction xg.

For the muon-nucleon asymmetry one finds

AµN =
σµ(↑)N(↓) − σµ(↑)N(↑)

σµ(↑)N(↓) + σµ(↑)N(↑)

=

∫ (

σµ(↑)G(↓) − σµ(↑)G(↑)
)

(G↑ −G↓)dxg
∫

(σµ(↑)G(↓) + σµ(↑)G(↑)) (G↑ +G↓)dxg

=

∫

∆G
G
aLL σ

µGG dxg
∫

σµGG dxg

(B.12)
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where the partonic asymmetry

aLL =
σµ(↑)G(↓) − σµ(↑)G(↑)

σµ(↑)G(↓) + σµ(↑)G(↑)
(B.13)

has been introduced. It depends on the photon-gluon kinematics. A leading
order QCD expression can be found in [14].

To proceed further we assume that ∆G/G is constant 1 over the kinematic
range considered.

and finally arrive at

AµN = < aLL >
∆G

G
(B.14)

with

< aLL >=

∫

aLL σ
µGGdxg

∫

σµGGdxg

.

In the case of the inclusive asymmetry it is convenient to introduce the
photon-nucleon asymmetry:

AγN =
σT

1/2 − σT
3/2

σT
1/2 + σT

3/2

(B.15)

where σT
1/2 (σT

3/2) is the γ∗-nucleon absorption cross section for antiparal-

lel (parallel) spin configuration of the photon-nucleon system. The relation
between muon-nucleon and photon-nucleon cross section is given by

σµ(↑)N(↓) ∝ (PσT
1/2 + (1 − P )σT

3/2 + ǫ σL) , (B.16)

σµ(↑)N(↑) ∝ ((1 − P )σT
1/2 + PσT

3/2 + ǫ σL) (B.17)

where

ǫ =
2(1 − y)

2(1 − y) + y2
(B.18)

1Actually, it can easily be shown that it is sufficient to assume a linear behavior:
∆G/G(xg) = a(xg− < xg >)+b. In this case ∆G/G is measured at a momentum fraction

< xg >=

∫

xg w aLL σµGGdnx
∫

w aLL σµGGdnx

where w is a weight factor introduced in App. D. In this appendix w = 1.
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is the ratio of longitudinally to transversally polarized virtual photon fluxes
and

P =
1

1 + (1 − y)2
(B.19)

is the fraction of transverse photons with spin projection antiparallel to the
nucleon spin.

This leads to the following relation between muon-nucleon and photon-
nucleon asymmetry:

AµN =
σµ(↑)N(↓) − σµ(↑)N(↑)

σµ(↑)N(↓) + σµ(↑)N(↑)

=
(2P − 1)(σT

1/2 − σT
3/2)

(σT
1/2 + σT

3/2) + 2ǫ σL

=
2P − 1

1 + ǫR
AγN

=
y(2 − y)

y2 + 2(1 − y)(1 +R)
AγN

= DAγN

(B.20)

where

R =
2σL

σT
1/2 + σT

3/2

=
σL

σT

is the ratio of longitudinal to transverse virtual photon absorption cross sec-
tions. Note that throughout this derivation the muon mass was neglected
and we used Q2 ≪ ν2.

In eq. (B.20) the depolarization factorD has been introduced. It describes
the polarization transfer from the muon to the virtual photon. In leading
order QCD the Quark Parton Model expression for AγN simply reads

AγN(x) =

∑

q e
2
q∆q(x)

∑

q e
2
qq(x)

. (B.21)

If one analyses the muon-nucleon asymmetry in terms of various subpro-
cesses (Leading order, QCD-Compton, photon-gluon-fusion, . . . ) it is incon-
venient to work with a photon-nucleon asymmetry. The reason is that the
depolarization factor depends on the cross section ratio R which is different
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for different subprocesses. For the leading order process for example, we have
R = 0 because a point-like quark cannot absorb a longitudinal photon.

With the definitions

α̃ = aΦnσ and (B.22)

β = PBPTfaLL or PBPTfD (B.23)

eq. (B.9) reads now
N(~x) = α̃(~x) (1 − β(~x)A) (B.24)

where A stands for either AγN or ∆G/G. In eq. (B.24) the explicit depen-
dence of α and β on kinematic variables like Q2, pT , . . . and other variables
like the vertex position ~v, time t, . . . was introduced. All these are combined
in a vector ~x = (Q2, pT , ~v, t, . . . ). We assume to work in kinematic bins where
the physics asymmetry A (≡ AγN or ∆G/G) does not depend on ~x. For the
inclusive asymmetry, AγN , which depends in principle on both Q2 and xBj ,
the Q2 dependence is negligible within one bin of the Bjorken variable xBj .
∆G/G is measured in a narrow momentum fraction range, where it can be
assumed to be constant. Note that in principle it is possible to drop the
assumption of a constant ∆G/G and allow for example for a linear depen-
dence in the momentum fraction range considered. At the present statistical
precision this seems not to be necessary.

Integration over dnx = dQ2 dpTd3v . . . leads to

< N >=

∫

N(~x)dnx = α (1− <β> A) , (B.25)

with α :=

∫

α̃ dnx =

∫

aΦnσ dnx

and <β> :=

∫

α̃βdnx
∫

α̃dnx
. (B.26)

Consider now two data sets, N↑↓ and N↑↑ with parallel and antiparallel
beam and target spin. The raw counting rate asymmetry

Araw =
N↑↓ −N↑↑

N↑↓ +N↑↑
(B.27)

is related to the physics asymmetry A by

Araw =
N↑↓ −N↑↑

N↑↓ +N↑↑
= βA = PTPBfaLLA , (B.28)
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assuming
−β↑↓ = β↑↑ =: β

and
α↑↓ = α↑↑ . (B.29)

Note that experimentally it is difficult to fulfill eq. (B.29) because it requires
very good acceptance stabilization and flux normalization. For this reason
the asymmetry A is extracted in a different way described in App. C. Nev-
ertheless eq. (B.28) serves to discuss some basic aspects of the measurement
of ∆G/G.



Appendix C

Asymmetry Extraction

This appendix shows in detail how the asymmetry is extracted from the event
yield. We start from eq. (B.24). Consider four measurements as shown in
Fig. C.1. Replacing the expectation values < Nt > in eq. (B.25) by the
actually measured event rates Nt, t = u, d, u′, d′ we have

Nt = αt (1− <βt> A) . (C.1)

Next consider the double ratio

δ :=
NuNd′

NdNu′

=
αuαd′

αu′αd

(1− <βu> A)(1− <βd′> A)

(1− <βu′> A)(1− <βd> A)
. (C.2)

Now we write for αt :

αt = { at }
∫

Φtntσtd
nx (C.3)

with { at } =

∫

atΦtntσtd
nx

∫

Φtntσtdnx
(C.4)

where { at } is the average acceptance.
The first factor on the right hand side in eq. (C.2) can now be factorized:

αuαd′

αu′αd
=

∫

Φnuσud
nx
∫

Φ′ndσdd
nx

∫

Φ′nuσudnx
∫

Φndσddnx

{ au }{ a′d }
{ a′d }{ ad }

. (C.5)

Note that the two target cells are subject to the same flux during data
taking, thus we can define Φ = Φu = Φd and Φ′ = Φu′ = Φd′ . The
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µ
uN dN

u’N d’N

 8h≈

 8h≈

 20 min≈field reversal 

Φ

’Φ

Figure C.1: To extract the asymmetry, four measurements of event rates
(Nu, Nd, Nu′ and Nd′) are used. The double arrows indicate the
direction of the polarization vector.

terms
∫

Φntσtd
nx can approximately be written as

∫

Φdn1x1 ·
∫

ntσtd
n2x2

with dn1x1 = d3v dt (d3v is the integration over the vertex position) and
dn2x2 = (all other integration variables), because Φ and Φ′ depend only on
the integration variables ~v and t whereas ntσt depends only on kinematic
variables, if the target is homogeneously filled and does not move. Thus:

∫

Φnuσud
nx
∫

Φ′ndσdd
nx

∫

Φ′nuσudnx
∫

Φndσddnx
=

∫

Φdnx1

∫

Φ′dnx1
∫

Φ′dnx1

∫

Φdnx1

∫

nuσud
nx2

∫

ndσdd
nx2

∫

nuσudnx2

∫

ndσddnx2

= 1 .

(C.6)

To extract the asymmetry one has to assume that the double ratio of
acceptances is 1:

κ :=
{ au }{ a′d }
{ a′d }{ ad }

= 1 ⇔ { au }
{ ad }

=
{ au′ }
{ ad′ }

. (C.7)

In words this means that before and after a field reversal the acceptances are
allowed to vary, if they vary by the same amount for the two target cells. A
possible deviation of κ from 1 is a source of systematic error.

The factors <β> can be calculated from the event sample:

<β>=
ΣN

i=1βi

N
. (C.8)

Thus eq. (C.2) provides a quadratic equation for the asymmetry A.
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The error calculation is straightforward but lengthy. For the discussion
here we assume < β > A ≪ 1 and < β >:=< βu >≈< βd′ >≈ − < βu′ >≈
− < βd >. In this case eq. (C.2) simplifies to

δ = (1 − 4 < β > A) (C.9)

⇒ A =
1 − δ

4 < β >
. (C.10)

We assume further Nu ≈ Nd ≈ Nu′ ≈ Nd′ =: Ntot/4, so that

σ2
δ =

16

Ntot

. (C.11)

The figure of merit (FOM) or the statistical error on A is then given by:

FOM =
1

σ2
AS

=

(

∂A

∂δ

)−2

(σδ)
−2

= <β>2 Ntot . (C.12)



Appendix D

Event Weighting

We will now consider a different way to determine the asymmetry A by giving
each event a weight w(~x). This can provide a higher figure of merit (FOM).
We start for the moment with an arbitrary weight. The observables are now

pt := ΣNt

i=1wi t = u, u′, d, d′ . (D.1)

The statistical error on ΣN
i=1wi is given by ΣN

i=1w
2
i . For wi ≡ 1 this is equiv-

alent to the asymmetry determination discussed in App C.
Multiplying eq. (B.24) with w and integrating over dnx yields

< p > =

∫

wα (1 − βA) dnx

=

∫

waΦnσdnx (1− <β>w A) (D.2)

where

<β>w=

∫

wαβdnx
∫

wαdnx
. (D.3)

This again leads to a second order equation for A:

δ =
pupd′

pu′pd

=
(1− <βu>w A)(1− <βd′>w A)

(1− <βu′>w A)(1− <βd>w A)
. (D.4)

The statistical error on δ is:

σ2
δ =

16
∑Ntot

i=1 w
2
i

(
∑Ntot

i=1 wi)2
=

16 < w2 >

< w >2

1

Ntot
,
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assuming

Nu ≈ Nd ≈ Nu′ ≈ Nd′ =:
Ntot

4

and that the average weights, <wt>, are approximately the same.
The FOM is now:

FOM =
1

σ2
AS

=

(

∂A

∂δ

)−2

(σδ)
−2

= <β>2
w

Ntot <w>
2

<w2>
(D.5)

=
<βw>2

<w>2

<w>2

<w2>
Ntot (D.6)

=
<βw>2

<w2>
Ntot . (D.7)

Up to now the weight factor w was arbitrary. Let us assume that the
weight w0 maximizes the FOM. Consider a deviation from this minimum of
the form:

w(~x) = w0(~x) + ǫη(~x) (D.8)

with an arbitrary function η(~x).
The condition

∂FOM

∂ǫ
|ǫ=0 =

∂

∂ǫ

<βw0 + ǫβη>2

<(w0 + ǫη)2>
Ntot = 0

⇔ < w0β >< βη >< w2
0 > − < w0η >< w0β >

2= 0 (D.9)

is, for an arbitrary η(~x), fulfilled for w0 = β which means that the choice
w = β minimizes the statistical error. Applying this to eq. (D.7) results in a
FOM

FOM =< β2 > Ntot . (D.10)

Compared to eq. (C.12) the gain in the FOM is

<β2>

<β>2
. (D.11)

Fig. D.1 shows the β distribution for the D∗ event sample. The gain in
the FOM is 47%. For the D0 one reaches 40%.
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Figure D.1: The β distribution for the D∗ event sample.

It is not always advisable to use the statistical optimal weight w = β =
PBPTfaLL. In the case of event weighting one has to assume

κw :=
{ au }w{ ad′ }w

{ au′ }w{ ad }w
= 1 (D.12)

with

{ a }w =

∫

awΦnσdnx
∫

wΦnσdnx
. (D.13)

The target polarization PT depends on time because of repolarization or
relaxation. The time dependence may even be different for the two target
cells. This means that κw may deviate from 1 even if the acceptances are
perfectly stable in time, if PT is included in the weight. To include the target
polarization PT in the weight more care has to be taken not to introduce
an additional systematic error. For this reason w = PBfaLL is used. Note
that the beam polarization varies event by event because of the spread of the
beam momentum. It does thus make sense to include PB in the weight.

This appendix is in large parts extracted from the COMPASS internal
note[38] which contains more details.



Appendix E

Asymmetry Determination in

Presence of a Polarized

Background

In case of the open charm analysis eq. (B.24) has to be extended to

N = α̃ (1 − βSAS − βSAB) (E.1)

with α̃ = aΦnσ = aΦn(σPGF + σB) , (E.2)

βS = PBPTfaLL
σPGF

σPGF + σB
, (E.3)

βB = PBPTfa
B
LL

σB

σPGF + σB
. (E.4)

The reason is that the events under the mass peak of the D0 in Figs. 6.1
and 6.2 may also carry an asymmetry AB.

A poor man’s solution would of course be to consider only events in a
certain region around the mass peak (e.g. ±2σ), determine the asymmetry
in this mass region and then determine the asymmetry of the background
from the side bands in the mass spectrum and correct for it.

A better method is presented in this appendix. One has simply to consider
two types of weights, one for the signal and one for the background. The
corresponding weights are

wS = PBfaLL
σPGF

σPGF + σB
, (E.5)

wB = PBfD
σB

σPGF + σB
, (E.6)
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i.e. the weights are essentially the factors βS and βB appearing in front of AS

and AB in eq. (E.1) except for the target polarization PT for the same reasons
as explained in App. D. aB

LL was chosen to be equal to the depolarization
factor D. (A different choice would lead to a different AB, the important fact
is that AS is not affected by the choice of aB

LL). One arrives at the following
8 equations:

<
Nu
∑

i=1

wi
S> = αu,S (1+ <βu,S>wS

AS+ <βu,B>wS
AB) =: fu,S (E.7)

<

Nd
∑

i=1

wi
S> = αd,S (1+ <βd,S>wS

AS+ <βd,B>wS
AB) =: fd,S (E.8)

<

Nu′
∑

i=1

wi
S> = αu′,S (1+ <βu′,S>wS

AS+ <βu′,B>wS
AB) =: fu′,S (E.9)

<

Nd′
∑

i=1

wi
S> = αd′,S (1+ <βd′,S>wS

AS+ <βd′,B>wS
AB) =: fd′,S (E.10)

<
Nu
∑

i=1

wi
B> = αu,B (1+ <βu,S>wB

AS+ <βu,B>wB
AB) =: fu,B (E.11)

<

Nd
∑

i=1

wi
B> = αd,B (1+ <βd,S>wB

AS+ <βd,B>wB
AB) =: fd,B (E.12)

<

Nu′
∑

i=1

wi
B> = αu′,B (1+ <βu′,S>wB

AS+ <βu′,B>wB
AB) =: fu′,B(E.13)

<

Nd′
∑

i=1

wi
B> = αd′,B (1+ <βd′,S>wB

AS+ <βd′,B>wB
AB) =: fd′,B.(E.14)

with the following definitions

αt,C =

∫

α̃twCdnx ,

<βt,C>wC′ =

∫

βCwC′αt d
nx

∫

wC′αtdnx
, (E.15)

t = u, d, u′, d′ , C = S,B , C ′ = S,B .
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As for the background free case we assume that the double ratio of ac-
ceptances equals 1. This yields the following two conditions:

αu,S αd′,S

αu′,S αd,S
= 1 ,

αu,B αd′,B

αu′,B αd,B
= 1 . (E.16)

One arrives at 8 equations (E.7 - E.14) for 8 unknowns

AS, AB, αu,S, αd,S, αu′,S, αu,B, αd,B, αu′,B .

In order to reduce the number of unknowns, one can try to make more
assumptions. For example:

αu,S

αu,B
=
αu′,S

αu′,B
. (E.17)

This will reduce the number of unknowns from 8 to 7. The condition
eq. (E.17) is even safer than the assumptions made in eq. (E.16). It only
assumes that signal and background events are affected in the same way by
an acceptance change before and after a field reversal. Note that eq. (E.17)
implies

αd,S

αd,B
=
αd′,S

αd′,B
(E.18)

as well, because of eqs. (E.16).
To further reduce the number of unknowns, one can for example try to

determine the ratios

ru :=
αu,S

αu,B

=
αu′,S

αu′,B

and rd :=
αd,S

αd,B

=
αd′,S

αd′,B

(E.19)

from data. This reduces the number of unknowns from 7 to 5. Here this was
done by taking

ru =
Σ

Nu+N ′
u

i=1 wS,i

Σ
Nu+N ′

u

i=1 wB,i

, (E.20)

rd =
Σ

Nd+N ′
d

i=1 wS,i

Σ
Nd+N ′

d

i=1 wB,i

. (E.21)

One value for ru and rd was determined per decay channel and year, thus
assuming that ru and rd doesn’t change from period to period over one year.
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The reduced number of unknowns allows us to check the χ2 as the good-
ness of the fit, or to introduce new unknowns, for example a background
asymmetry which depends on the reconstructed mass.

The unknowns can be obtained by a χ2 minimization:

χ2 = ( ~N − ~f)T Cov−1( ~N − ~f) , (E.22)

with

~N = (

Nu
∑

i=1

wS
i,

Nd
∑

i=1

wS
i,

N ′
u

∑

i=1

wS
i,

N ′
d

∑

i=1

wS
i,

Nu
∑

i=1

wB
i,

Nd
∑

i=1

wB
i,

N ′
u

∑

i=1

wB
i,

N ′
d

∑

i=1

wB
i) ,

(E.23)

and

~f(AS, AB, αu,S, αd,S, αu′,S, αu,B, αd,B, αu′,B)

= (fu,S, fd,S, fu′,Sfd′,S, fu,B, fd,B, fu′,B, fd′
B
) . (E.24)

Since one is using the same events, once weighted with wS and once with
wB, the 8 measurements are of course correlated. Defining pt,C =

∑Nt

i=1w
i
C ,

the covariance matrix Cov has the form shown in table E.1. The covariance
between

∑

i w
i
S and

∑

j w
j
B is given by:

cov(
∑

i

wi
S,
∑

j

wj
B)

= <
∑

i

wi
S

∑

j

wj
B > − <

∑

i

wi
S ><

∑

j

wj
B >

= <
∑

i=j

wi
Sw

i
B +

∑

i6=j

wi
Sw

j
B > − <

∑

i

wi
S ><

∑

j

wj
B >

= < N >< wSwB > + < N(N − 1) >< wS >< wB > − < N >2< wS >< wB >

= < N >< wSwB > +(< N2 > − < N > − < N >2) < wS >< wB > . (E.25)

If N is Poisson distributed

< N2 > − < N > − < N >2= σ2
N− < N >= 0

we are left with

cov(
∑

i

wi
S,
∑

j

wj
B) = < N >< wSwB >≈

∑

wS
iwB

i . (E.26)
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δ2pu,S 0 0 0 cov(pu,S , pu,B) 0 0 0
0 δ2pd,S 0 0 0 cov(pd,S , pd,B) 0 0
0 0 δ2pu′,S 0 0 0 cov(pu′,S , pu′,B) 0
0 0 0 δ2pd′,S 0 0 0 cov(pd′,S , pd′,B)

cov(pu,S , pu,B) 0 0 0 δ2pu,B 0 0 0
0 cov(pd,S, pd,B) 0 0 0 δ2pd,B 0 0
0 0 cov(pu′,S , pu′,B) 0 0 0 δ2pu′,B 0
0 0 0 cov(pd′,S , pd′,B) 0 0 0 δ2pd′,B

























Table E.1: The covariance matrix for the 8 measurements.
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D0 D∗ combined
AS 2nd order method, (AB = 0) 0.261 ± 0.700 −1.109 ± 0.547 −0.590 ± 0.431

8 parameters 0.350 ± 0.724 −1.136 ± 0.556 −0.585 ± 0.441
7 parameters 0.376 ± 0.721 −0.928 ± 0.539 −0.461 ± 0.431
5 parameters 0.313 ± 0.719 −1.075 ± 0.521 −0.597 ± 0.422

Table E.2: The results of ∆G/G for D0 and D∗ for the different methods. Only
the statistical error is given.

The diagonal elements are given by

δ2pt,C =
Nt
∑

i=1

(wi
C)2 , t = u, d, u′, d′ , C = S,B . (E.27)

Results on ∆G/G are presented below

• for the normal 2nd order weighted method assuming AB = 0 (App. C)

• fit method with 8 parameters

• fit method using assumption eq. (E.17) (7 parameters)

• fit method using values for ru and rd in eqs. (E.20,E.21) (5 parameters)

Fig. E.1 and Tab. E.2 show the results for D0 and D∗ for the different
methods. The results differ only by a small fraction of the statistical error.
Fig. E.2 shows the χ2 probability distribution for the fit with 7 and 5 param-
eters. There is one entry per period and decay channel (D0 or D∗). They
are not incompatible with the expected flat distribution.

As can be seen in Tab. E.2 the fit with 5 parameters leads to the smallest
statistical error. But here the required values for ru and rd are taken from the
same events which are used later to extract the asymmetry. Taking values
for ru,d period per period, instead of the values for the whole year, results in
a χ2 probability distribution with abnormal high values for the probabilities.
This is clear since one uses exactly the same data to determine ru,d as used
in the fit. If one takes one value per year this effect gets diluted. In the final
result the method with 7 parameters is retained.

Up to now the full mass spectrum in the range ±400 MeV was used in
the fits. Figs. E.3 and E.4 show the result on ∆G/G and AB for different
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Figure E.1: The upper plot shows the results on ∆G/G for D∗ and D0 for dif-
ferent years and different methods (2nd order, 8,7, and 5 parameter
fits). The lower plot shows the corresponding background asymme-
tries. The horizontal axis is the same for both histograms. Note that
in the lower histogram the left vertical scale is for the D∗ background
asymmetry and the right scale for the D0 background asymmetry.
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Figure E.2: The χ2 probability distribution for the fit with 7 and 5 parameters.
There is one entry per period and decay channel (D0 or D∗).
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mass ranges down to ±50 MeV for the D0 and the D∗. The lines show the
expected 1 σ deviations from the point with the smallest statistical error at
400 MeV which was used in the analysis. No peculiar behavior is observed
in these plots.

This appendix is based on a COMPASS internal note[39] which contains
more details.
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Figure E.3: Dependence of ∆G/G and AB on the mass range of the 7 parameter
fit for D0. The lines in the plots show the expected 1 σ deviations
from the point with the smallest statistical error at 400 MeV.
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Figure E.4: Dependence of ∆G/G and AB on the mass range of the 7 parameter
fit for D∗. The lines in the plots show the expected 1 σ deviations
from the point with the smallest statistical error at 400 MeV.
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Ich möchte hier nur Gerhard Mallot nennen, mit dem ich schon zu
Zeiten des SMC Experimentes eng zusammengearbeitet habe.

• Ein letztes Dankeschön geht an meine Frau Anke und unsere Kinder
Corinne und Pascal, die immer für den nötigen Ausgleich gesorgt haben.

95


