Precise measurement of the charged pion polarisability at COMPASS

Guskov Alexey JINR, Dubna

OMPAS

Dubna, JINR, 18.03.2015

Guskov Alexey, Joint Institute for Nuclear Research, Dubna

1.

CERN press office

Media visits

Press releases

Calendar Resources

Contact us

CERN experiment brings precision to a cornerstone of particle physics

11 Feb 2015

Geneva, 11 February 2015. In a paper published yesterday in the journal *Physical Review Letters*, the COMPASS experiment at CERN¹ reports a key measurement on the strong interaction. The strong interaction binds quarks into protons and neutrons, and protons and neutrons into the nuclei of all the elements from which matter is built. Inside those nuclei, particles called pions made up of a quark and an antiquark mediate the interaction. Strong interaction theory makes a precise prediction on the polarisability of pions – the degree to which their shape can be stretched. This polarisability has baffled scientists since the 1980s, when the first measurements appeared to be at odds with the theory. Today's result is in close agreement with theory.

"The theory of the strong interaction is one of the cornerstones of our understanding of nature at the level of the fundamental particles," said Fabienne Kunne and Andrea Bressan, spokespersons of the COMPASS experiment, "so this result, in perfect agreement with the theory, is a very important one."

Polarizabilities of a medium

Hydrogen atom - the simplest QED system

Polarizabilities of hadrons

Mass: Higgs boson vs. QCD

2.3 MeV 2.3 MeV = 938 MeV

6

4.8 MeV

QCD - true theory of strong interactions, but...

Since the constant of strong interactions as~1 at small energies, exact QCD formalism cannot make predictions with reasonable accuracy. Effective phenomenological models are needed

Chiral perturbation theory

Mass of light quarks (m,d) is much smaller than the typical scale M≈1 GeV

$$\mathcal{L}_{QCD} = \mathcal{L}^0 + \mathcal{L}_m \checkmark$$

_____ mass term a small perturbation

8

Chiral symmetric term

m_q/M, p/M - small parameters in expansion

Approximate chiral symmetry is in lagrangian but not in the mass spectrum of hadrons!

Pions are pseudo-Goldstone bosons in chiral theory.

Pion polarizabilities: prediction

~	Model	Parameter	10 ⁻⁴ fm ³	
	$\mathbf{PT}(1 \mathbf{I}_{0}, \mathbf{m})$	$a_{\pi}-eta_{\pi}$	5.4±0.8	~
	χΓΙ (1-ιοορ)	$a_{\pi}+\beta_{\pi}$	0	
	$\mathbf{vPT}(2 - \mathbf{loons})$	$a_{\pi}-\beta_{\pi}$	5.7±1.0	
	XII (2-100ps)	$a_{\pi}+\beta_{\pi}$	0.16	<
	Nambu-Nona-Lasinio model	$a_{\pi}-\beta_{\pi}$	9.8	-
	Quark confinement model	$a_{\pi}-eta_{\pi}$	7.05	
	Quark conjinement model	$a_{\pi}+\beta_{\pi}$	0.23	
Y	QCD sum rules	$a_{\pi}-\beta_{\pi}$	11.2±1.0	
	Disnarsion sum rulas	$a_{\pi}-\beta_{\pi}$	13.6±2.15	
	Dispersion sum rules	$a_{\pi}+\beta_{\pi}$	0.166±0.024	

The most of theoretical models are in agreement that a_{π} - $\beta_{\pi} \gg a_{\pi}$ + $\beta_{\pi} \approx 0.2 \times 10^{-4} \text{ fm}^3$. As for value a_{π} - β_{π} , predictions are quite different

Guskov Alexey, Joint Institute for Nuclear Research, Dubna

9

Experimental results for a_{π} , β_{π}

Reaction	Paramater	$[10^{-4} fm^3]$
$\pi Z \rightarrow \pi Z \gamma$	α_{π}	$6.8 \pm 1.4 \pm 1.2$
	$\alpha_{\pi} + \beta_{\pi}$	$1.4 \pm 3.1 \pm 2.8$
	β_{π}	$-7.1 \pm 2.8 \pm 1.8$
$\gamma N \rightarrow \gamma N \pi$	α_{π}	20±12
$\gamma p \rightarrow \gamma \pi^+ n$	$\alpha_{\pi} - \beta_{\pi}$	$11.6 \pm 1.5 \pm 3.0 \pm 0.5$
$\gamma\gamma \rightarrow \pi^{+}\pi^{-}$	α_{π}	$19.1 \pm 4.8 \pm 5.7$
$\gamma\gamma \rightarrow \pi^+\pi^-$	α_{π}	17.2 ± 4.6
$\gamma\gamma \rightarrow \pi^{+}\pi^{-}$	α_{π}	26.3 ± 7.4
$\gamma\gamma \rightarrow \pi^+\pi^-$	α_{π}	$2.2{\pm}1.6$
$\gamma \gamma \rightarrow \pi^+ \pi^-$	$\alpha_{\pi} - \beta_{\pi}$	$13.0^{+2.6}_{-1.9}$
	$\alpha_{\pi} + \beta_{\pi}$	$0.18^{+0.11}_{-0.02}$
$\gamma \gamma \rightarrow \pi^+ \pi^-$	$\alpha_{\pi} - \beta_{\pi}$	5.25 ± 0.95
	$\begin{array}{c} \text{Reaction} \\ \pi Z \rightarrow \pi Z \gamma \\ \hline \\ \gamma N \rightarrow \gamma N \pi \\ \gamma p \rightarrow \gamma \pi^+ n \\ \gamma \gamma \rightarrow \pi^+ \pi^- \\ \hline \\ \gamma \gamma \rightarrow \pi^+ \pi^- \end{array}$	$\begin{array}{c c} \mbox{Reaction} & \mbox{Paramater} \\ \hline \pi Z \rightarrow \pi Z \gamma & \mbox{α}_{\pi} \\ \hline & \mbox{α}_{\pi} + \mbox{β}_{\pi} \\ \hline & \mbox{α}_{\pi} + \mbox{β}_{\pi} \\ \hline & \mbox{γ} N \rightarrow \gamma N \pi & \mbox{α}_{\pi} \\ \hline & \mbox{γ} P \rightarrow \gamma \pi^+ n^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{α} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{β}_{\pi} \\ \hline & \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α}_{\pi} - \mbox{γ} \gamma \rightarrow \pi^+ \pi^- & \mbox{α} $

At the moment experimental uncertainty for pion polarizabilities is too high. New experiments are needed!

Primakoff reactions

Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson*

H. PRIMAKOFF[†] Laboratory for Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts January 2, 1951

I T has now been well established experimentally that neutral π -mesons (π^0) decay into two photons.¹ Theoretically, this two-photon type of decay implies zero π^0 spin;² in addition, the decay has been interpreted as proceeding through the mechanism of the creation and subsequent radiative recombination of a virtual proton anti-proton pair.³ Whatever the actual mechanism of the (two-photon) decay, its mere existence implies an effective interaction between the π^0 wave field, φ , and the electromagnetic wave field, **E**, **H**, representable in the form:

Interaction Energy Density = $\eta(\hbar/\mu c)(\hbar c)^{-\frac{1}{2}}\varphi \mathbf{E} \cdot \mathbf{H}.$ (1)

Here φ has been assumed pseudoscalar, the factors $\hbar/\mu c$ and $(\hbar c)^{-\frac{1}{2}}$ are introduced for dimensional reasons ($\mu \equiv \text{rest mass of } \pi^0$),

Coulomb field of a nucleus can be used as photon target

From Primakoff effect to Primakoff reactions

Equivalent photons approach

(Weizsaecker-Williams approximation)

Electromagnetic field of fast charged particle is similar to a field of flat electromagnetic wave

 $\sigma_{xy}(\omega, Q^2) \rightarrow \sigma_{xy}(\omega, 0)$

 $=\int n_{\gamma}(\omega)d\sigma_{x\gamma}(\omega)d\omega$ $d\sigma_{x}$

density of equivalent photons

Pion polarizabilities and Primakoff cross section

$$\frac{d\sigma}{ds \, dt \, dQ^2} = \frac{Z^2 \alpha}{\pi (s - m_\pi^2)} \cdot F_{\text{eff}}^2 (Q^2) \cdot \frac{Q^2 - Q_{\min}^2}{Q^4} \cdot \frac{d\sigma_{\pi\gamma}}{dt}$$

$$Q_{\min} = (s - m_\pi^2)/2E_{\text{beam}}$$

$$Compton \, cross \, section:$$

$$\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 (s^2 z_+^2 + m_\pi^4 z_-^2)}{s(sz_+ + m_\pi^2 z_-)^2} - \frac{\alpha \, m_\pi^3 \, (s - m_\pi^2)^2}{4s^2 (sz_+ + m_\pi^2 z_-)} \cdot \mathcal{P}$$

$$Z_{\pm} = 1 \pm \cos \theta_{cm}$$

$$\mathcal{P} = z_-^2 (\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} z_+^2 (\alpha_\pi + \beta_\pi)$$

$$Q^2 \ll m_{\pi}^2 \sigma Z^2$$

 a_{π} and β_{π} can be extracted separately from the measurement of the differential cross section

Polarizability effects

Simple case: $a_{\pi} = -\beta_{\pi}$

 $\mathbf{m}^{\mathbf{3}}_{\pi}$ $rac{\mathbf{3}}{\mathbf{2}} \cdot rac{\mathbf{x}_{\gamma}^{\mathbf{2}}}{\mathbf{1} - \mathbf{x}_{\gamma}}$ $\frac{\sigma}{2} \approx 1$ $\sigma_{\mathbf{p.l.}}$ α

x_y - relative energy of emitted photon in Lab system

Pion polarizability and JINR Retrospective review

Original proposal to measure pion polarizability via Primakoff reaction

A.G.Galperin, G.V.Mitselmakher, A.G.Olshevski and V.N.Pervushin. Yad.Fiz. 32 (1980) 1053

The first observation of the Compton scattering off pion at SIGMA spectrometer

The first measurement of pion polarizabilities

Dubna group brought their experience to the COMPASS experiment

Measurement at the SIGMA setup (Protvino, IHEP-JINR collaboration)

Measurement at the SIGMA setup (Protvino, IHEP-JINR collaboration)

COMPASS at CERN

The COMPASS setup

CEDAR detectors for beam particle identification
 Precise silicon detectors to measure small scattering angles
 Magnetic spectrometer for pion momentum measurement
 Electromagnetic calorimeter with good energy and spacial
 resolution for photon detection
 Muon identification system

Main advantage of COMPASS

We can use **pion** and **muon** beams of the same momentum with the same setup configuration.

 $\begin{array}{|c|c|} \pi^{-}(A,Z) \rightarrow \pi^{-}(A,Z) \gamma \\ \mu^{-}(A,Z) \rightarrow \mu^{-}(A,Z) \gamma \end{array}$

Muon is the point-like particle and corresponding cross section for muon is known with high precision. So, muon data can be used as reference to control our systematics.

Primakoff runs at COMPASS

Pilot data taking in 2004

Pion radiative scattering was observed, some preliminary studies were performed

Target: C→Pb→Ni

For high Z nuclei: we have better electromagnetic signal to nuclear background ratio but... we much stronger depends on calculation of numerous corrections

8.0 ⊈ 10,4 Compton ອ້°**0.6** Pb Nuclear form factor Screening Mult. exchange Vac. pol. 0.4 TOTAL Sn C AI TI Cu 0.2 -0.2 20 40 60 80 0 100 z

Hadron and muon beams

	Hadron	Muon
P, GeV/c	190	190
dP/P	1%	4%
σ the target, cm	0.5	0.8
Divergence, mrad	0.1	0.4
Intensity, 10 ⁷ /9.6 s spill	4	4
Composition	π ⁻ 96% K ⁻ 2.4% p ⁻ 0.8% μ ⁻ ~1% e ⁻ <0.01%	μ ⁻ ~100%

CEDAR detectors 2 differential Cherenkov counters upstream the target

kaon rejection efficiency: ~95% for parallel beam

Event selection

Primakoff1, Primakoff2 triggers
1 vertex with 1 outgoing negative track
No other tracks*
Beam track is parallel to the nominal beam axis

 Scattered track is not muon
 No activity in RPD
 Exactly 1 neutral cluster in ECAL2 (E>2 GeV)*

Beam particle is pion (CEDAR)

Kinematic cuts

Kinematic cuts

π⁰ background

ly lost

 $\pi^-Ni \rightarrow \pi^-Ni \pi^0 \rightarrow \pi^-Ni \gamma\gamma$

The same selection criteria were applied for this channel single cluster in ECAL2

Kaon decay K⁻→π⁻π⁰ out of the target is the reference process ∠ fraction of misreconstructed $\pi^-\pi^0$ events in $\pi^-\gamma$ sample

probability to mis-identify $\pi^-\pi^0$ state as $\pi^-\gamma$

Muon data

The same selection + muon beam momentum measurement

The measured x, distributions

The result?

Not yet!

on the the day of the bar has

High Z effects (Zα=0.2)
 Nuclear charge screening by atomic electrons

Pion polarizabilities at COMPASS

Systematic effects

Pion-electron elastic scattering	0.2
Contribution of muons in the beam	0.05

Ratio for muons

False polarizability for muon is consistent with zero within the error

The COMPASS result

2009

OMPA

Under assumption $a_{\pi} = -\beta_{\pi}$: $a_{\pi} = (2.0 \pm 0.6_{stat} \pm 0.7_{syst}) \times 10^{-4} \text{ fm}^{3}$ Phys. Rev. Lett. 114 (2015) 06002

Protvino: $a_{\pi} = -\beta_{\pi} = (6.8 \pm 1.4_{stat} \pm 1.2_{syst}) \times 10^{-4} \text{ fm}^3, \chi PT: a_{\pi} \approx 2.8 \times 10^{-4} \text{ fm}^3$

Pion polarizabilities and COMPASS

Is a_{π} really a constant in our kinematic range?

Yu. Bystritskiy, A. Guskov, V. Pervushin, M. Volkov Phys. Rev. D 80, 114001 (2009)

 $t = (P_{0\pi} - P_{\pi})^{2}$ $a_{\pi}(t) = a_{\pi ch} \chi(t)$ $a_{\pi ch} = 5.8 \times 10^{-4} \text{ fm}^{3}$ $m_{\sigma} - \text{parameter of the model}$

Pion polarizabilities at COMPASS

>200k of $\pi\gamma$ events with E_{γ}/E_{beam} >0.4

Primakoff data collected in 2012 provide possibility:

2012

to reduce uncertainty of a_{π} measurement to $\sim 0.4 \times 10^{-4}$ fm³ to measure $a_{\pi}+\beta_{\pi}$ with accuracy $\sim 0.04 \times 10^{-4}$

 $\frac{10 \text{ measure } a_{\pi} + p_{\pi} \text{ with accuracy } 0.04 \times 10}{\text{fm}^3 (\chi PT: 0.16)}$

to study dynamics of pion polarizabilities $a_{\pi} = a_{\pi}(s, t, ...)$

to access quadrupole polarizabilities of pion $a_{\pi 2}$ and $\beta_{\pi 2}$

Kaon polarizabilities

 a_{π} at [Lab (proposal) http://www.jlab.org/exp_prog/proposals/13/PR12-13-008.pdf **Existing detector GlueX** at Hall-D Polarized photons of ~6 GeV • 10⁷ tagged photons per second • > 0.6 mm ¹⁰⁶Sn target •> 20 days of data taking •> Accuracy 0.3×10-4 fm³ Main physical backgrounds: pion pair production in strong interaction • coherent ρ^0 production

• production of lepton pairs

Guskov Alexey, Joint Institute for Nuclear Research, Dubna

Approved by JLab PAC

The COMPASS experiment performed the most precise measurement of pion polarizability a_π under assumption a_π+β_π=0 basing on the data of 2009 year.
 The result is:

 $a_{\pi}=(2.0\pm0.6_{stat}\pm0.7_{syst})\times10^{-4}$ fm³ This result is published in Physical Review Letters: PRL 114 (2015) 06002

Contribution of JINR group to this result is determinative at each stage from planning to data taking and analysis

COMPASS Primakoff data of 2012 still are under analysis and new results for pion (and kaon) polarizabilities are expected

Backup slides

Guskov Alexey, Joint Institute for Nuclear Research, Dubna

47

Backup slides

Polarisability and Loop Contributions z=-1.0

