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Polarizabilities of  a medium
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Hydrogen atom 
 - the simplest QED system
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 Polarizabilities of  hadrons
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The electric and magnetic 
polarizabilities of  a hadron 

are the quantities 
characterizing the rigidity 

of  QCD system 
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Compton amplitude:

αX, 10-4 fm3 βX, 10-4 fm3

p 12.0±0.6 1.9∓0.6
n 12.5±1.7 2.7∓1.8

PDG data:

π, K ?

H = ... −(αXE2+βXH2)/2 
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Mass: Higgs boson vs. QCD
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2.3 MeV
2.3 MeV

4.8 MeV

= 938 MeV

?
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QCD - true theory of  strong 
interactions, but…
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Since the constant of  
strong interactions 
αS~1 at small 

energies, exact QCD 
formalism cannot 

make predictions with  
reasonable accuracy. 

Effective 
phenomenological 
models are needed
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Chiral perturbation theory
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𝓛QCD = 𝓛0+𝓛m

Chiral symmetric term

mass term -  
a small perturbation

Mass of  light quarks (m,d) is much smaller 
than the typical scale M≈1 GeV

Approximate chiral symmetry is in lagrangian 
but not in the mass spectrum of  hadrons!

Pions are pseudo-
Goldstone bosons in 

chiral theory.

mq/M , p/M - small parameters in expansion
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Pion polarizabilities: prediction
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The most of  theoretical models are in 
agreement that απ-βπ ≫ απ+βπ ≈ 0.2×10-4 fm3. As 
for value απ-βπ, predictions are quite different

Model Parameter 10-4 fm3

χPT (1-loop) απ−βπ 5.4±0.8
απ+βπ 0

χPT (2-loops) απ−βπ 5.7±1.0
απ+βπ 0.16

Nambu-Nona-Lasinio model απ−βπ 9.8

Quark confinement model
απ−βπ 7.05
απ+βπ 0.23

QCD sum rules απ−βπ 11.2±1.0

Dispersion sum rules
απ−βπ 13.6±2.15
απ+βπ 0.166±0.024
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Experimental results for απ, βπ 
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At the moment 
experimental uncertainty 
for pion polarizabilities is 
too high. New experiments 

are needed!
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Primakoff  reactions

11

Coulomb field of  a 
nucleus can be used 

as photon target

From Primakoff  effect 
to Primakoff  reactions 
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Equivalent photons approach
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(Weizsaecker-Williams approximation)

σxγ(ω,Q2) → σxγ(ω,0)  

density of  equivalent photons

Electromagnetic field of  fast charged 
particle is similar to a field of  flat 

electromagnetic wave

dσxZ=∫nγ(ω)dσxγ(ω)dω
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Pion polarizabilities 
 and Primakoff  cross section

απ and βπ can be extracted separately from the 
measurement of   the  differential cross section

Z2

Q2≪mπ2 

σ∼Z2

Compton cross section:
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Polarizability effects
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απ−βπ

απ+βπ

CM-system 
Pπ=190 GeV/c
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Simple case: απ=−βπ 
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xγ - relative energy of  
emitted photon in Lab 
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Pion polarizability and JINR 
Retrospective review
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A.G.Galperin, G.V.Mitselmakher, A.G.Olshevski and 
V.N.Pervushin. Yad.Fiz. 32 (1980) 1053 

Original proposal to measure pion polarizability
 via Primakoff reaction

The first observation of the Compton scattering off 
pion at SIGMA spectrometer

The first measurement of pion polarizabilities

Dubna group brought their experience to the 
COMPASS experiment 
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Measurement at the SIGMA setup 
(Protvino, IHEP-JINR collaboration)
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SIGMA 
spectrometer

Beam: π− , P=40 GeV/c 
Target: C (0.25 X0)  

(also Be, Al, Fe, Cu,Pb) 
Statistics: ~7 000 events  

with xγ>0.5 
Q2×102, GeV2/c2
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Measurement at the SIGMA setup 
(Protvino, IHEP-JINR collaboration)
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Under assumption  
απ=−βπ

απ=−βπ =(6.8±1.4stat±1.2syst)×10-4 fm3

απ+βπ =(1.4±3.1stat±2.8syst)×10-4 fm3 

απ=(7.8±2.8stat±1.8syst)×10-4 fm3

1985

Phys. Lett., B121, 445 (1983) 
Z.Phys. C26 (1985) 495
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The COMPASS experiment
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COMPASS (COmmon Muon Proton 
Apparatus for Structure and 

Spectroscopy) 
is the fixed target experiment on the secondary 

beam of  Super Proton Synchrotron at CERN

The purpose of  this experiment is the study of  
hadron structure and hadron spectroscopy with 
high intensity muon and hadron beams. 

1996 - Proposal 
2002-2011 - Physical data 

taking

11 countries,   
28 institutions,  
~240 physicists
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COMPASS at CERN
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CEDARS

Target  
and RPD

Spectrometer 
 magnet SM1

RICH 
detector

Electromagnetic and hadron  
calorimeters ECAL1, HCAL1

Muon  
Wall 1 

Spectrometer 
 magnet SM2

Muon  
Wall 2 

Electromagnetic and hadron  
calorimeters ECAL2, HCAL2

>350 plains

The COMPASS setup

Silicon  
detectors

 CEDAR detectors for beam particle identification  
 Precise silicon detectors to measure small scattering angles 
 Magnetic spectrometer for pion momentum measurement   
 Electromagnetic calorimeter with good energy and spacial 

resolution for photon detection 
 Muon identification system
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Main advantage of  COMPASS
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We can use pion and muon beams of  the same 
momentum with the same setup configuration. 

π− (A,Z) →π− (A,Z) γ 
μ− (A,Z) →μ− (A,Z) γ

Muon is the point-like particle and 
corresponding cross section for muon is 

known with high precision. So, muon data 
can be used as reference to control our 

systematics.
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Primakoff  runs at COMPASS
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Primakoff 
pilot run

2004

Primakoff 
run 2009

Primakoff 
run 2012

~ 1 week

~ 3 weeks

~ 3 months Time

~10k  
events 

0.5X0 Pb

63k  
events 

0.3X0 Ni

200-400k  
events 

0.3X0 Ni

Eγ/Ebeam >0.4
πγ

Topic of  my present talk
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Pilot data taking in 2004
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Pion radiative scattering was 
observed, some preliminary 

studies were performed
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Target: С→Pb→Ni
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For high Z nuclei: 
we have better electromagnetic 
signal to nuclear background 

ratio but... 
 we much stronger depends on 

calculation of  numerous 
corrections

but...
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Hadron and muon beams
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Hadron Muon

P, GeV/c 190 190

dP/P 1% 4%

σ the target, cm 0.5 0.8

Divergence, mrad 0.1 0.4

Intensity, 107/9.6 s spill 4 4

Composition

π− 96%
K− 2.4%
p− 0.8%
 μ− ~1% 

e− <0.01%

 μ− ~100% 
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CEDAR detectors
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Beam

kaon rejection efficiency: ~95% 
for parallel beam 

2 differential Cherenkov counters 
upstream the target 



Guskov Alexey, Joint Institute for Nuclear Research, Dubna

 Trigger

28

46 cm

Beam  
counter BC

Beam  
killer BK1

Beam  
killer BK2

ECAL2

killer 2killer 2

Undeflected  
beamNi target

Sandwich  
veto SW

TRIGGER = (BC & ECAL2)  
!SW !BK1 !BK2 

Trigger name
ECAL2 

threshold, 
GeV

Scale 
factor

Rate, 
kHz

Primakoff  1 ~40 2
~20

Primakoff  2 ~60 1
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Event selection
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 Primakoff1, Primakoff2 triggers  
1 vertex with 1 outgoing negative track  
 No other tracks* 
 Beam track is parallel to the nominal beam 

axis 
 Scattered track is not muon 
 No activity in RPD 
 Exactly 1 neutral cluster in ECAL2 (E>2 

GeV)* 
 Beam particle is pion (CEDAR) 
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Kinematic cuts
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pT-cut to reject low pT 
region related with 

multiple scattering in the 
material

Exclusivity cut on the 
level ±15 GeV to reject 

events with missed 
particles in the final state
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Kinematic cuts

Mπγ< 3.5 mπ to avoid  
ρ-meson production and 

decay to ππ0

Q2< 1.5×10-3 (GeV/c)2 to 
reject πγ state production 

via strong interaction
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π0 background
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π−Ni→π−Ni π0 →π−Ni γγ
single cluster  

in ECAL2
1γ lost 

Kaon decay K−→π−π0 

out of  the target is the 
reference process

The same 
selection criteria 
were applied for 

this channel

probability to mis-identify 
π−π0 state as π−γ 

fraction of  mis-
reconstructed π−π0 

events in π−γ sample
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Muon data
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The same selection + muon beam momentum measurement
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The measured xγ distributions
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The result? 

απ=(1.4±0.6stat)×10-4 fm3

Not yet!
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Corrections
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 pion rescattering 
 radiative corrections  

     (Compton vertex) 
 form factor of  the Ni nucleus 

 High Z effects (Zα=0.2) 
 Nuclear charge screening by atomic 

electrons
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Pion polarizabilities at COMPASS
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απ=(2.0±0.6stat)×10-4 fm3

2009 with
 corrections

Rπ
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Systematic effects
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απ=(2.0±0.6stat±0.7syst)×10-4 fm3
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Ratio for muons
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αfalse=(0.5±0.5stat)×10-4 fm3

False polarizability for muon is consistent with 
zero within the error

Rμ
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The COMPASS result
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2009 

απ=(2.0±0.6stat±0.7syst)×10-4 fm3

Under assumption απ=−βπ:

Phys. Rev. Lett. 114 (2015) 06002

Protvino: απ=−βπ =(6.8±1.4stat±1.2syst)×10-4 fm3, χPT: απ≈2.8×10-4 fm3 
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Pion polarizabilities and COMPASS
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2009 

COMPASS preliminary result for pion 
polarizability is the most precise among 

dedicated measurements
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Is aπ really a constant in 
our kinematic range?
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t=(P0π-Pπ)2 
απ(t) = απ ch χ(t) 

απ ch= 5.8×10-4 fm3  

mσ - parameter of  the model

χ(t/4mπ2)

Yu. Bystritskiy, A. Guskov, V. Pervushin, 
M. Volkov Phys. Rev. D 80, 114001 (2009)

NJL model:
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Pion polarizabilities at COMPASS
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2012 Primakoff  data collected in  
2012 provide possibility:

to reduce uncertainty of  απ measurement  
to ~0.4×10-4 fm3     

to measure απ+βπ  with accuracy ~0.04×10-4 
fm3  (χPT:  0.16) 

 to study dynamics of  pion polarizabilities 
 απ=απ(s,t,...) 

to access quadrupole polarizabilities of  
pion απ2 and βπ2  

>200k  of  πγ events with Eγ/Ebeam>0.4
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Kaon polarizabilities
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ᵪPT  prediction O(p4):
↵K + �K = 0

↵K = ↵⇡ ⇥ m⇡F 2
⇡

mKF 2
K

⇡ ↵⇡

5
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�Prim ⇠ 1

m2

αK=(−4±11)×10-4 fm3 

- from kaonic atoms spectra

Experimental results:

At COMPASS: 
•~2.4% of  kaons in hadron beam 
• CEDARs for beam kaons identification

1 Kγ event 
per 500 πγ 

Quark confinement model:

↵K + �K = 1.0⇥ 10�4fm3

↵K = 2.3⇥ 10�4fm3

⇡ 0.6⇥ 10�4fm3

Theoretical predictions:

Polarization effects  
~m3
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απ at JLab (proposal)
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γ*

γ

http://www.jlab.org/exp_prog/proposals/13/PR12-13-008.pdf

Polarized photons of ~6 GeV 
107 tagged photons per second 
0.6 mm 106Sn target 
20 days of data taking 
Accuracy 0.3×10-4 fm3

Existing detector  
GlueX at Hall-D

Main physical backgrounds: 
• pion pair production in strong interaction 
• coherent ρ0 production 
• production of  lepton pairs Approved by JLab PAC

http://www.jlab.org/exp_prog/proposals/13/PR12-13-008.pdf
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Summary

46

 The COMPASS experiment performed the most 
precise measurement of  pion polarizability απ under 
assumption απ+βπ=0 basing on the data of  2009 year. 

 The result is: 
                     απ=(2.0±0.6stat±0.7syst)×10-4 fm3 

 This result is published in Physical Review 
Letters:  PRL 114 (2015) 06002

 Contribution of  JINR group to this result is 
determinative at each stage from planning to data 
taking and analysis 

 COMPASS Primakoff  data of  2012 still are under 
analysis and new results for pion (and kaon) 
polarizabilities are expected 
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Backup slides 
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Backup slides 


