π and K SIDIS multiplicities, \(\bar{p}/p \) and \(K^-/K^+ \) ratios at large \(z \) measured at COMPASS

Fabienne KUNNE
CEA / IRFU Saclay, France

On behalf of COMPASS Collaboration
COnmon Muon Proton Apparatus for Structure and Spectroscopy

~240 physicists, 13 countries, 25 institutions

Fixed target experiment, multi-purpose set-up.
Secondary ~200 GeV muon and hadron beams from CERN SPS
Various targets
Motivation
Longitudinal spin- Impact of FF on Δs extraction

Δs extraction from SIDIS depends on value of D^K_S fragmentation function.

Δs vs R_{SF}

$R_{SF} = D^K_S / D^K_u$

Most Δs extractions from SIDIS used the old DSS value for R_{SF}. Could be revisited.
Quark Fragmentation Functions (FF)

FFs: - Non perturbative object; needed to describe various reactions
- Strange quark FF= **largest uncertainty in Δs extraction** from polarized SIDIS.

Data exist from e^+e^- and pp reactions, but insufficient and at too high Q^2

→ Measure hadron multiplicities in **SIDIS**: $\mu^+d \rightarrow \mu^+h^\pm X$

$$dM^h(x, Q^2, z) \over dz \text{ at LO} = \sum_q e_q^2 f_q(x, Q^2) D_q^h(z, Q^2)$$

PDFs depend on x, while FFs depend on z

→ With kaons, access typically: $s(x, Q^2).D^h_S(z, Q^2)$

Corrections for: acceptance, RICH purity & efficiency, radiative effects and vector meson contamination

Data obtained in a fine binning in x, z, Q^2

→ π and K multiplicities constitute an input to global NLO QCD analyses to extract quark FFs,
→ Especially, K will constrain strangeness
COMPASS π and K multiplicities vs z in (x,y) bins

- Isoscalar target (6LiD)
- More than 1200 points in total, various Q^2 staggered vertically for clarity
- Strong z dependence
- $M(\pi^+)$ \sim $M(\pi^-)$ and $M(K^+)$ $>$ $M(K^-)$
From multiplicities to quark Fragmentation Functions

Pions
Results from COMPASS LO fits assuming 2 independent FFs: D_{fav}^{π} D_{unf}^{π}

- As expected, $D_{\text{fav}}^{\pi} > D_{\text{unf}}^{\pi}$
- COMPASS LO fit results \(\sim\) agree with DSEHS and LSS NLO.

Kaons
Assuming 3 independent FFs: D_{fav}^{K} D_{str}^{K} D_{unf}^{K}

- LO fit not conclusive. Some difficulty in fitting high z data, even at NLO.
- Still, get constraints on FFs from sum of K^+ and K^- multiplicities (see later)

(\text{e.g. in } DSS17\text{ where half of data come from COMPASS, and also in combined fit of PDF and FF via iterative study})

\textbf{Borsa, Sassot, Stratmann, arXiv:1708.01630}
Longitudinal spin- Impact of FF on Δs extraction
Sum of z-integrated multiplicities \(\pi^+ + \pi^- \) & \(K^+ + K^- \)

For isoscalar target, simple dependence on FFs:

\[
M^{\pi^+ + \pi^-} = (1 - 2S/(5Q + 2S)) \left(D_{\text{fav}} + D_{\text{unf}} \right)
\]

where:

\[
\begin{align*}
Q &= u + \bar{u} + d + \bar{d}, \\
S &= s + \bar{s}, \\
D_Q^K &= 4D_{\text{fav}}^K + 6D_{\text{unf}}^K
\end{align*}
\]

At high \(x \), \(\sim \) no \(x \) dependence expected

COMPASS pion data:
- significantly below HERMES ones
- no \(x \) dependence as expected (as in EMC h, but not shown here)

COMPASS kaon data:
- significantly above HERMES ones
- Indicate larger \(D_Q^K \) than old NLO fits

\[5M^{K^+ + K^-} = D_Q^K + S/Q D_S^K \]

\(\text{high } x \) data \hspace{1cm} \(\text{low } x \) data

PLB 764 (2017) 001

PLB 767 (2017) 133
K Multiplicities on \(p \) target

- Preliminary result from 2016 run (2017 to come)
- Radiative corrections using DJANGOH event generator (Spiesberger) → reduces systematics

\[
M(K^-) + M(K^+) = \frac{d_N}{d_T} + \frac{d_N}{d_T} K^+ + \frac{d_N}{d_T} K^+
\]

- Results on \(p \) confirm discrepancy COMPASS vs HERMES (\(x,z \)) data set, observed on \(d \) target
- \(p \) results 5% above \(d \) ones, as expected
Kaons:

- Target hadron mass corrections could explain part of discrepancies.

For the very few points that have exactly the same kinematics in x,y,z variables, HERMES and COMPASS agree.

Guerrero, Accardi, PRD 97 (2018) 114012
M(K⁻)/ M(K⁺) kaon multiplicity ratio at high z

Motivation: High z region not studied so far
Most experimental and theoretical uncertainties cancel in ratio

Some simple estimation at LO, proton target with assumptions (D_{unf} neglected…):

$$\Delta K/\Delta K = \frac{4\bar{u}D_{\text{fav}} + sD_{\text{str}}}{4uD_{\text{fav}} + \bar{s}D_{\text{str}}}.$$

and assuming $s = \bar{s}$, gives limits:

$$R_K > \frac{\bar{u}}{u}$$
for a proton target

$$R_K > \frac{\bar{u} + \bar{d}}{u + d}$$
for a deuteron target
M(K⁻)/ M(K⁺) at high z – Results vs z

Ratio measured vs z in two x bins

M(K⁻) / M(K⁺) ratio well below expectations at high z

Compare to theory, bin x=0.03

PLB 786 (2018) 390
M(K⁻)/ M(K⁺) – Results vs $\nu = \frac{E_{h}}{z}$ in 5 z bins

Isoscalar target for bin $x=0.03$

Larger discrepancy with theory for smaller ν
High z kaon \rightarrow reduced phase space for other particles

Study missing mass behaviour

- $\frac{M(K^-)}{M(K^+)}$ shows unexpected strong rise with M_X
- Suggests to take into account the available phase space for hadronization, in the formalism
Recent developments

K^-/K^+ Does R_K reaches pQCD expectations at higher ν?

\rightarrow Extend ν range up to 70 GeV
done by improving kaon selection at high momenta $40 \rightarrow 55 \text{ GeV/c}$

\bar{p}/p Does R_p show similar unexpected behaviour as R_K?

\rightarrow Study antiproton/ proton case :
R_p vs lower LO limit, dependence on ν, dependence on M_X
Kaons (I): R_K vs ν in 5 z bins

New data with high K momenta cover higher ν range, up to 70 GeV

- Better compatibility with pQCD expectations at higher ν
- ... and at lower $z \sim 0.75$ - 0.85
- For lower energy experiments, could lower z regions be affected?
Kaons (II): R_K vs M_X

- New data slightly extend M_X range (closed points)
- At fixed M_X, no dependence on v nor z
 \Rightarrow confirms that M_X encompasses all dependences
Kaons and protons: R_K and R_p vs z

- R_p decreases vs z, as R_K
- Observe large difference between R_K and R_p, while only 15% expected from LO pQCD

→ Is discrepancy wrt theory larger for higher mass hadrons?

PoS (DIS2019) 207
Protons (II): R_p vs ν in 9 z bins

- Observe ν dependence for R_p (as seen for R_K) (beyond expected from $x(\nu)$)
- R_p closer to pQCD expectations at higher ν values
Protons (III): R_p vs M_X

For protons also, M_X encompasses all dependences (ν and z)
Protons (I): R_p vs z in two x bins

Lower LO limits for:
\begin{itemize}
 \item $<x>=0.02$
 \item $<x>=0.10$
\end{itemize}

R_p ratio below lower limit in whole z range
Summary – SIDIS π, K and p multiplicities

\bar{p}/p and K^-/K^+ multiplicity ratios at high z:
- Data **disagree** with current NLO QCD calculations at high z and low ν (At lower energy, larger region in z may be affected)
- Unexpected rise of ratios with missing mass, suggesting to take into account the available phase space for hadronization, in the formalism.

… Paper in preparation

Reminder: π and K SIDIS multiplicities

- **isoscalar target**: PLB 2017
- **hydrogen target**: prelim data DIS-2019
 - Largest kaon sample measured, to constrain kaon FFs (D^K_S)
 - Some hints on reasons for **large discrepancy** COMPASS vs HERMES

- Smaller D^K_S and larger D^K_U than previously leads to **slightly larger** ΔS from SIDIS, i.e. no longer strong incompatibility with ΔS from inclusive data.