Fit of the $a_1(1420)$ as a Triangle Singularity

Mathias Wagner
HISKP, Bonn University
March 3, 2020
at the Arbeitstreffen Kernphysik in Schleching
On behalf of the COMPASS collaboration
supported by BMBF
The COMPASS Experiment
The COMPASS Experiment

- Secondary hadron beam, mostly π^- ($\sim 97\%$)
- $E_{\text{beam}} = 190\ \text{GeV}$
- Liquid hydrogen target (40 cm)
- $\pi^- + p \rightarrow \pi^- + \pi^- + \pi^+ + p$

[COMPASS, NIM A779, 69-115 (2015)]

Fit of the $a_1(1420)$ as a Triangle Singularity
Isobar model: $X^- \rightarrow \pi^- + \xi \rightarrow \pi^- + \pi^+ + \pi^-$

Data binned in 100 $m_{3\pi}$ and 11 $t' = |t| - |t|_{\text{min}}$ slices

PWA with 88 waves [COMPASS, PRD 95, 032004 (2017)]
3π PWA

- Isobar model: \(X^- \rightarrow \pi^- + \xi \rightarrow \pi^- + \pi^+ + \pi^- \)
- Data binned in 100 \(m_{3\pi} \) and 11 \(t' = |t| - |t|_{\text{min}} \) slices
- PWA with 88 waves [COMPASS, PRD 95, 032004 (2017)]

\[\begin{array}{c}
\pi^- \\
\downarrow t' \\
p \\
\uparrow \pi^+
\end{array} \quad \begin{array}{c}
X(J^{PC}) \\
L
\end{array} \quad \begin{array}{c}
\pi^- \\
\downarrow \pi^+
\end{array} \quad \begin{array}{c}
p \\
\uparrow \pi^-
\end{array} \]

\(\text{P}: \) Pomeron
\(X: \) Resonance with \(J^{PC} \)
\(\xi: \) Isobar

Fit of the \(a_1(1420) \) as a Triangle Singularity
3π PWA

- Isobar model: \(X^- \rightarrow \pi^- + \xi \rightarrow \pi^- + \pi^+ + \pi^- \)
- Data binned in 100 \(m_{3\pi} \) and 11 \(t' = |t| - |t|_{\text{min}} \) slices
- PWA with 88 waves [COMPASS, PRD 95, 032004 (2017)]

\[\begin{align*}
\text{P: Pomeran} \\
\text{X: Resonance with } J^{PC} \\
\xi: \text{Isobar}
\end{align*} \]

The $a_1(1420)$ signal
What makes this signal exotic? Only seen in the $J^{PC} = 1^{++}$ $f_0(980)$ πP channel. Very close to the ground state $a_1(1260)$. Too narrow: 150 MeV (ground state has 250-600 MeV).

Fit of the $a_1(1420)$ as a Triangle Singularity.

[COMPASS, PRL 115, 082001 (2015)]
What makes this signal exotic?

- Only seen in the $J^{PC} = 1^{++}$ $f_0(980)\pi P$-wave
- Very close to the ground state $a_1(1260)$
- Too narrow: 150 MeV (ground state has 250-600 MeV)
Possible scenarios

- 4-quark state
 [H.-X. Chen et al. (2015)],
 [T. Gutsche et al. (2017)]

The $a_1(1420)$ signal
Possible scenarios

- **4-quark state**
 [H.-X. Chen et al. (2015)],
 [T. Gutsche et al. (2017)]

- **$K^*\bar{K}$ molecule (similar to XYZ)**
 [T. Gutsche et al. (2017)]
Possible scenarios

- **4-quark state**
 [H.-X. Chen et al. (2015)],
 [T. Gutsche et al. (2017)]

- **$K^*\bar{K}$ molecule (similar to XYZ)**
 [T. Gutsche et al. (2017)]

- **Dynamic effect of interference with Deck-amplitude**
 [Basdevant & Berger, PRL 114, 192001 (2015)]
Possible scenarios

- **4-quark state**
 - [H.-X. Chen et al. (2015)],
 - [T. Gutsche et al. (2017)]

- **$K^*\bar{K}$ molecule (similar to XYZ)**
 - [T. Gutsche et al. (2017)]

- **Dynamic effect of interference with Deck-amplitude**
 - [Basdevant & Berger, PRL 114, 192001 (2015)]

- **Triangle singularity**
 - [Mikhasenko et al., PRD 91, 094015 (2015)],
 - [Aceti et al., PRD 94, 096015 (2016)]

Fit of the $a_1(1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
The $a_1(1420)$ signal

- The Triangle Diagram -
Include spin via partial-wave projection:

1. Look at the partial wave for $a_1(1260) \rightarrow K\bar{K}\pi$ with isobar K^*
Include spin via partial-wave projection:

1. Look at the partial wave for $a_1(1260) \rightarrow K\bar{K}\pi$ with isobar K^*
2. Project it onto the 3π final state with isobar $f_0(980)$
Include spin via partial-wave projection:

1. Look at the partial wave for $a_1(1260) \to K\bar{K}\pi$ with isobar K^*
2. Project it onto the 3π final state with isobar $f_0(980)$
3. Obtain the first order approximation of the Khuri-Treiman approach
The Triangle Diagram

The $a_1(1420)$ signal

Kaons in the loop produce peak and phase motion at 1.4 GeV
The Triangle Diagram

The $a_1(1420)$ signal

- Ground state rescatters through other intermediate isobar ξ
- Using Feynman calculation treating everything as scalars

Fit of the $a_1(1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
The Triangle Diagram

The $a_1(1420)$ signal

- Other triangles similar to direct decay
- Phenomenological background is able to describe them

Fit of the $a_1(1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
The Fit

- Model -
Select interesting components from the pool of 88 partial waves:

1. $J^{PC} = 1^{++} \rho\pi S$-wave
 - Contains the ground state $a_1(1260)$
Select interesting components from the pool of 88 partial waves:

1. $J^{PC} = 1^{++} \rho \pi S$-wave
 - Contains the ground state $a_1(1260)$

2. $J^{PC} = 1^{++} f_0(980) \pi$ P-wave
 - Contains the signal of interest, the $a_1(1420)$
Select interesting components from the pool of 88 partial waves:

1. \(J^{PC} = 1^{++} \rho \pi \) S-wave
 - Contains the ground state \(a_1(1260) \)

2. \(J^{PC} = 1^{++} f_0(980) \pi \) P-wave
 - Contains the signal of interest, the \(a_1(1420) \)

3. \(J^{PC} = 2^{++} \rho \pi \) D-wave
 - Contains the \(a_2(1320) \)
 - Clean signal, small background
 - Interferometer
From PWA: #events per $m_{3\pi}$ and t' slices for a given partial wave

Intensity: $\frac{d^2 N}{dm_{3\pi} dt'} \propto \frac{d^2 \sigma}{dm_{3\pi} dt'} \propto m_{3\pi} |M_{tot}|^2 \tilde{\Phi}_2,$

$\tilde{\Phi}_2$: quasi-2-body PS
From PWA: \#events per $m_{3\pi}$ and t' slices for a given partial wave

Intensity: \[
\frac{d^2N}{dm_{3\pi} dt'} \propto \frac{d^2\sigma}{dm_{3\pi} dt'} \propto m_{3\pi} |M_{\text{tot}}|^2 \tilde{\Phi}_2,
\]

$\tilde{\Phi}_2$: quasi-2-body PS

Interferences between waves $\sim m_{3\pi} M_{\text{tot}}^{(1)*} M_{\text{tot}}^{(2)} \sqrt{\tilde{\Phi}_2^{(1)} \tilde{\Phi}_2^{(2)}}$

$M_{\text{tot}} = M_{\text{signal}} + M_{\text{bgd}}$
\[\mathcal{M}_{\text{signal}} \propto \frac{1}{M_X^2 - m_{3\pi}^2 - i M_X \Gamma_X(m_{3\pi})} \]

- Propagator with energy-dependent width
- Multiplied by triangle amplitude for \(f_0 \pi \) \(P \)-wave
\[M_{\text{signal}} \propto \frac{1}{M_X^2 - m_{3\pi}^2 - i M_X \Gamma_X(m_{3\pi})} \]

- Propagator with energy-dependent width
- Multiplied by triangle amplitude for \(f_0 \pi \) \(P \)-wave

\[M_{\text{bgd}} \propto \left(\frac{m_{3\pi} - m_{\text{thr}}}{m_{\text{thr}}} \right)^b e^{-c(t')\tilde{p}^2} \]

- Phenomenological parametrization for Deck background
- \(\tilde{p} = 4\pi m_{3\pi} \tilde{\Phi}_2 \)
Fit model
Signal
Background

\[\rho \pi S \rightarrow a_1(1260) \]

\[f_0 \pi P \rightarrow a_1(1260) \cdot \text{Triangle} \]

\[\rho \pi D \rightarrow a_2(1320) \]

Intensities

Interferences (fitted via real and imaginary part)

\(0.100 < t' / (\text{GeV/c})^2 < 0.113 \)

\(\pi p \rightarrow \pi \pi' p \) (COMPASS 2008)

Mass-independent fit

Fit model

Signal

Background

Fit of the \(a_1(1420) \) as a Triangle Singularity (15/19)

Mathias Wagner (Uni Bonn, HISKP)
$0.100 < t' / (\text{GeV}/c)^2 < 0.113$

$\pi^+ p \rightarrow \pi^- \pi^+ \pi^- p$ (COMPASS 2008)

Mass-independent fit

Fit model

Signal

Background

Fit of the $a_1 (1420)$ as a Triangle Singularity
Comparison with Breit-Wigner Fit

Fit of the $a_1 (1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)

$J^{PC} M^\epsilon = 1^{++} 0^+ f_0 \pi P$ - Intensity

$J^{PC} M^\epsilon = 1^{++} 0^+ (\rho \pi S - f_0 \pi P)$ - Interference

Relative phases (deg)

Intensity / (20 MeV)

$0.100 < t'/(GeV/c)^2 < 0.113$

mass-independent fit

$0.100 < t'/(GeV/c)^2 < 0.113$

0.100 < $t'/(GeV/c)^2$ BW-model - model

Δ signal

background
Conclusion

- It is possible to fit $a_1(1420)$ with the Triangle-Model.

- The inclusion of spins is done via the partial-wave-projection method.

- Spin only affects the shape, not the position of peak.

- The Scalar-Triangle-Model is sufficient for first studies.

- Many systematic studies have been performed.
 - Very stable w.r.t. manipulations of the data and the fit model.

- Comparison of Triangle-Model and BW-Model:
 - Competitive fit quality between both models.
 - In the Triangle-Model: No free fit parameters are present to describe the peak position and width of the signal.
 - Rescattering has to be present!
Thank you for your attention!
Back-Up
Fit of the $a_1 (1420)$ as a Triangle Singularity

Structure of Complex Plane

$\text{Im} (\sqrt{s_1})$

$\text{Re} (\sqrt{s_1})$

- $K^* K \bar{K}$
- $\sigma \pi \pi$
- $\rho \pi \pi$
- $f_2 \pi \pi$
- $f_0 \pi \pi$

- branch point
- log-sing. on 2nd sheet
- log-sing. on ≥3rd sheet
- unitarity cut on 1st sheet
- branch cut on 2nd sheet
- branch cut on ≥3rd sheet
All Scalar Amplitudes

Fit of the $a_1 (1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
Fit of the $a_1 (1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
Comparison with Scalar-Triangle

$J^P C^M = 1^{++} 0^+ f_0 \pi^0 P - $ Intensity

$J^P C^M = 1^{++} 0^+ (\rho \pi S - f_0 \pi^0 P) - $ Interference

Fit of the $a_1 (1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
Fit of the a_1 (1420) as a Triangle Singularity
Comparison with Direct Decay

$J^{PC}M^ε = 1^{++}0^+ f_0 π P$ - Intensity

$J^{PC}M^ε = 1^{++}0^+ (ρπ S - f_0 π P)$ - Interference

Fit of the $a_1 (1420)$ as a Triangle Singularity (7/10)

Mathias Wagner (Uni Bonn, HISKP)
Systematic Studies

Fit of the $a_1 (1420)$ as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
\[A(\tau) = \sum_{w=(JMLS)} \left[F_w(s_{12})Z_w^*(\Omega_{3,12}) + F_w(s_{23})Z_w^*(\Omega_{1,23}) \right] \]

Simple model: \[F_w(s_{12}) = C_{a_1} \cdot t_{K^*}(s_{12}) \]
\[A(\tau) = \sum_{w=(JMLS)} \left[F_w(s_{12})Z_w^*(\Omega_{3,12}) + F_w(s_{23})Z_w^*(\Omega_{1,23}) \right] \]

Projection to channel (23):

\[A_w(s_{23}) = \int d\Omega_{1,23} Z_w(\Omega_{1,23})A(\tau) \]

\[= F_w(s_{23}) + \hat{F}_w(s_{23}) \]

with \(\hat{F}_w(s_{23}) := \int dZ_w(s_{23}) \sum_{w'} F_{w'}(s_{12})Z_{w'}^*(\Omega_{3,12}) \)
PWP - Calculations

\[A(\tau) = \sum_{w=(JMLS)} \left[F_w(s_{12}) Z_w^*(\Omega_{3,12}) + F_w(s_{23}) Z_w^*(\Omega_{1,23}) \right] \]

Projection to channel (23):

\[A_w(s_{23}) = \int d\Omega_{1,23} Z_w(\Omega_{1,23}) A(\tau) = F_w(s_{23}) + \hat{F}_w(s_{23}) \]

with \(\hat{F}_w(s_{23}) := \int dZ_w(s_{23}) \sum_{w'} F_{w'}(s_{12}) Z_{w'}^*(\Omega_{3,12}) \)

unitarity for PW amplitude \(A_w \):

\[\Rightarrow F_w(s_{23}) = t_\xi(s_{23}) \left[C_w + \frac{1}{2\pi} \int_{s_{th}}^{\infty} \frac{\rho(\tilde{s}_{23}) \hat{F}_w(\tilde{s}_{23})}{\tilde{s}_{23} - s_{23}} d\tilde{s}_{23} \right] \]
\[A(\tau) = \sum_{w=(JMLS)} \left[F_w(s_{12})Z_w^*(\Omega_{3,12}) + F_w(s_{23})Z_w^*(\Omega_{1,23}) \right] \]

Projection to channel (23):

\[A_w(s_{23}) = \int d\Omega_{1,23} Z_w(\Omega_{1,23}) A(\tau) \]
\[= F_w(s_{23}) + \hat{F}_w(s_{23}) \]

with \(\hat{F}_w(s_{23}) := \int dZ_w(s_{23}) \sum_{w'} F_{w'}(s_{12})Z_{w'}^*(\Omega_{3,12}) \)

unitarity for PW amplitude \(A_w \):

\[\Rightarrow F_w(s_{23}) = t_\xi(s_{23}) \left[C_w + \frac{1}{2\pi} \int_{s_{th}}^{\infty} \frac{\rho(\tilde{s}_{23})\hat{F}_w(\tilde{s}_{23})}{\tilde{s}_{23} - s_{23}} d\tilde{s}_{23} \right] \]

Problem: \(\hat{F} \) depends on \(F \) as well! \(\Rightarrow \) solve iteratively
\[F(s_{23}) = t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} \rho(\tilde{s}_{23}) \int d\tilde{s}_{23} \frac{C_{a_1} t_{K^*}(s_{12}) Z_{K^*}^*(\Omega_{3,12})}{\tilde{s}_{23} - s_{23}} \]

Fit of the a_1 (1420) as a Triangle Singularity
\[F(s_{23}) = t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} d\tilde{s}_{23} \rho(\tilde{s}_{23}) \int dZ_{f_0}(\tilde{s}_{23}) C_{a_1} t_{K^*}(s_{12}) Z_{K^*}^*(\Omega_{3,12}) \]

Fit of the $a_1 (1420)$ as a Triangle Singularity
\[F(s_{23}) = t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} d\tilde{s}_{23} \frac{\rho(\tilde{s}_{23})}{\tilde{s}_{23} - s_{23}} \int dZ_{f_0}(\tilde{s}_{23}) C_{a_1} t_{K^*}(s_{12}) Z_{K^*}^*(\Omega_{3,12}) \]

Fit of the \(a_1 (1420) \) as a Triangle Singularity

Mathias Wagner (Uni Bonn, HISKP)
\[F(s_{23}) = t_0(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} d\tilde{s}_{23} \rho(\tilde{s}_{23}) \int dZ_0(\tilde{s}_{23}) C_{a_1} t_{K^*}(s_{12}) Z_{K^*}^*(\Omega_{3,12}) / (\tilde{s}_{23} - s_{23}) \]

Fit of the \(a_1 (1420) \) as a Triangle Singularity
PWP - Iterative Procedure

\[F(s_{23}) = t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} d\tilde{s}_{23} \rho(\tilde{s}_{23}) \int dZ_{f_0}(\tilde{s}_{23}) C_{a_1} t_{K^*}(s_{12}) Z_{K^*}^*(\Omega_{3,12}) \]

\[\tilde{s}_{23} - s_{23} \]

Fit of the \(a_1 (1420) \) as a Triangle Singularity (10/10)

Mathias Wagner (Uni Bonn, HISKP)
PWP - Iterative Procedure

\[F(s_{23}) = t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_K^2}^{\infty} d\tilde{s}_{23} \rho(\tilde{s}_{23}) \int dZ_{f_0}(\tilde{s}_{23}) \ C_{a_1} \ t_{K^*}(s_{12}) \ Z_{K^*}(\Omega_{3,12}) \]

\[\tilde{s}_{23} - s_{23} \]

Fit of the \(a_1 \) (1420) as a Triangle Singularity
PWP - Iterative Procedure

\[F(s_{23}) = C_{a_1} t_{f_0}(s_{23}) \frac{1}{2\pi} \int_{4m_{K}^2}^{\infty} d\tilde{s}_{23} \rho(\tilde{s}_{23}) \int dZ_{f_0}(\tilde{s}_{23}) t_{K^*}(s_{12}) Z_{K^*}^{*}(\Omega_{3,12}) \]

\[\tilde{s}_{23} - s_{23} = a_1 f_{0} \]

Fit of the \(a_1 (1420) \) as a Triangle Singularity