Results on deeply virtual exclusive processes from COMPASS

Andrzej Sandacz

National Centre for Nuclear Research, Warsaw

Prospects for extraction of GPDs from global fits of current and future data

Heavy Ion Laboratory, Warsaw, 22-25 January 2019

Contents

- Introduction
- Transverse extension of partons in the proton
- Hard exclusive π^0 production
- SDMEs for exclusive ω meson production
- TTS asymmetries for exclusive ρ^0 and ω production
- Summary and outlook

Generalised Parton Distributions (GPDs)

- Provide comprehensive description of 3-D partonic structure of the nucleon one of the central problems of non-perturbative QCD
- GPDs can be viewed as correlation functions between different partonic states
- 'Generalised' because they encompass 1-D descriptions by PDFs or by form factors

(the simplest) example: Deeply Virtual Compton Scattering (DVCS)

Factorisation for large $Q^{\mathbf{2}}$ and $\mid \mathbf{t} \mid << Q^{\mathbf{2}}$

4 GPDs for each quark flavour

$$H^{q}(x,\xi,t) \qquad E^{q}(x,\xi,t) \\ \tilde{H}^{q}(x,\xi,t) \qquad \tilde{E}^{q}(x,\xi,t)$$

for DVCS **gluons** contribute at higher orders in α_s

GPDs and Hard Exclusive Meson Production

for VMs also gluon contribution

Chiral-even GPDs *helicity of parton unchanged*

$$\begin{aligned} H^{q,g}(x,\xi,t) & E^{q,g}(x,\xi,t) \\ \widetilde{H}^{q,g}(x,\xi,t) & \widetilde{E}^{q,g}(x,\xi,t) \end{aligned}$$

Chiral-odd GPDs helicity of parton changed (not probed by DVCS)

$H^q_T(x,\xi,t)$	$E_T^q(x,\xi,t)$
$oldsymbol{\widetilde{H}}^q_{\scriptscriptstyle T}(x,\xi,t)$	$\widetilde{E}_{T}^{q}(x,\xi,t)$

Flavour separation for GPDs example:

Diehl, Vinnikov, PLB 609 (2005) 286

COMPASS experiment at CERN

Basic ingredients of versatile COMPASS experimental setup

unique secondary beam line M2 from the SPS

delivers: • high energy polarised μ^+ or μ^- beams

• negative or positive hadron beams

two-stage forward spectrometer SM1 + SM2

≈ 300 tracking detectors planes – high redundancy variety of tracking detectors to cope with different particle flux from $\theta = 0$ to $\theta \approx 200$ mrad

+ calorimetry, µID, RICH

MuonWall

Physics programs

<u>Flexibility of the setup to carry out a diverse physics programs</u> by using different beams and modifying mainly the target region

- spin structure of the nucleons and TMD studies
- hadron spectroscopy in diffractive and central hadron production
- Primakoff reactions and test of chiral perturbative theory
- polarised and unpolarised Drell-Yan scattering
- GPD studies; DVCS and hard exclusive meson production

The COMPASS set-up for the GPD program (starting from 2012)

ECAL2

Main new equipments

2.5m-long Liquid H₂ Target

ECAL1

Target TOF System

24 inner & outer scintillators 1 GHz SADC readout goal: **310 ps** TOF resol **ECALO** Calorimeter

Shashlyk modules + MAPD readout $\sim 2 \times 2 \text{ m}^2$, $\sim 2200 \text{ ch}$.

Transverse Extension of Partons in the Proton probed by Deeply Virtual Compton Scattering

Selection of exclusive single photon events

sample for t-slope extraction

 μ , μ ' and vertex in the target volume1 GeV² < Q² < 5 GeV²,</td>10 GeV < v < 32 GeV</td>0.08 GeV² < |t| < 0.64 GeV²</td>+1 single photon with energy above DVCS threshold+ $E_{Ecal(0,1,2)} > (4,5,10)$ GeV

Overconstrained kinematics => a number of "exclusivity cuts" allows to select the exclusive sample

Exclusive single photon production cross section

cross-sections on proton for $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam with opposite charge & spin ($e_{\mu} \& P_{\mu}$)

$$d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Azimuthal distributions for single γ events

BH dominates excellent reference yield

BH and DVCS at the same level

access to DVCS amplitude through the interference

DVCS dominates study of do^{DVCS}/dt Extraction of $d\sigma^{DVCS}/dt$

• measure $d\sigma := \frac{d^4 \sigma^{\mu p}}{dQ^2 d\nu dt d\phi}$ for μ^+ and μ^- beams

• sum of μ^+ and μ^- cross sections $2d\sigma \equiv d\sigma^{+\leftarrow} + d\sigma^{-\rightarrow} = 2(d\sigma^{BH} + d\sigma^{DVCS} - |P_{\mu}|d\sigma^{I})$

 $P_{\rm u}$ beam polarisation

$$d\sigma^{DVCS} \propto \frac{1}{y^2 Q^2} (c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi)$$
$$d\sigma^I \propto \frac{1}{x_{\rm Bj} y^3 t P_1(\phi) P_2(\phi)} (s_1^I \sin \phi + s_2^I \sin 2\phi)$$

subtract calculable BH cross sections and integrate over ϕ

$$\frac{\mathrm{d}^3 \sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^2 \mathrm{d}\nu dt} = \int_{-\pi}^{\pi} \mathrm{d}\phi \, \left(\mathrm{d}\sigma - \mathrm{d}\sigma^{BH}\right) \propto c_0^{DVCS}$$

convert into cross section for virtual-photon scattering

$$\frac{\mathrm{d}\sigma^{\gamma^{\star}p}}{\mathrm{d}t} = \frac{1}{\Gamma(Q^{2},\nu,E_{\mu})} \frac{\mathrm{d}^{3}\sigma_{\mathrm{T}}^{\mu p}}{\mathrm{d}Q^{2}\mathrm{d}\nu dt}$$
$$\Gamma \text{ transverse virtual photon flux}$$

DVCS cross section and t-slope

from 4 weeks of 2012 commissioning data

Transverse imaging of the proton using $d\sigma^{\text{DVCS}}/dt$

$$r_{\perp}^2(x_{\rm Bj})\rangle \approx 2\langle B(x_{\rm Bj})\rangle\hbar^2$$

how good is this approximation ?

Strict determination of $\langle r_{\perp}^2 \rangle$ requires (M. Burkardt)

- i) measurement of t-dependence of the imaginary part of CFF ${\mathcal H}$
- ii) skewness $\xi = 0$

spin- and
$$\phi$$
-independent DVCS cross section $\propto c_0^{DVCS}$
for small $x_{\rm Bj} \ c_0^{DVCS} \propto 4(\mathcal{HH}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) + \frac{t}{M^2}\mathcal{E}\mathcal{E}^*$ (BMK)

<u>Systematic uncertainties</u> on $\langle r_{\perp}^2 \rangle$ when using (\star) ('model' uncertainty)

- a) correction due to contributions of real part of \mathcal{H} and other GPDs $\longrightarrow \pm 0.03$
- b) correction due to assumption ii) $\rightarrow \pm 0.02$

Estimates based on models

GK model in PARTONS framework Kumerički – Müller model

$$\sqrt{\langle r_{\perp}^2 \rangle} = (0.58 \pm 0.04_{\text{stat}} + \frac{0.01}{-0.02} \Big|_{\text{sys}} \pm 0.04_{\text{model}}) \,\text{fm}$$

Comparison to HERA and model predictions

Hard exclusive π^0 production on unpolarised protons and chiral-odd GPDs

GPDs in exclusive π^0 production on unpolarised protons

 $\frac{d^{2}\sigma}{dtd\phi} = \frac{1}{2\pi} \left[\frac{d\sigma_{T}}{dt} + \varepsilon \frac{d\sigma_{L}}{dt} + \varepsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi \frac{d\sigma_{LT}}{dt} \right]$

 $\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re}\left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\} \quad \begin{array}{l} \text{leading twist} \\ \text{at JLAB only few% of} \quad \frac{d\sigma_T}{dt} \end{array}$

other contributions arise from coupling of chiral-odd (quark helicity-flip) GPDs to twist-3 pion amplitude

$$\begin{aligned} \frac{d\sigma_T}{dt} &= \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2\right) \left| \langle H_T \rangle \right|^2 - \frac{t'}{8m^2} \left| \langle \bar{E}_T \rangle \right|^2 \right] & \text{def.} \quad \overline{E}_T = 2\tilde{H}_T + E_T \\ \\ \frac{\sigma_{LT}}{dt} &= \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re} \left[\langle H_T \rangle^* \langle \tilde{E} \rangle \right] \\ \\ \frac{\sigma_{TT}}{dt} &= \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left| \langle \bar{E}_T \rangle \right|^2 \\ \\ & \text{An impact of } \overline{E}_T \text{should be visible in } \frac{\sigma_{TT}}{dt} \\ & \text{and in a dip at small } t' \text{ of } \frac{d\sigma_T}{dt} \end{aligned}$$

Selection of exclusive π^0 production events

 μ , μ ' and vertex in the target volume

 $1~{\rm GeV^2} < {\rm Q^2} < 5~{\rm GeV^2}, \quad 8.5~{\rm GeV} < \nu < 28~{\rm GeV}$

 $0.08 \text{ GeV}^2 < |t| < 0.64 \text{ GeV}^2$

two photons with invariant mass consistent with π^0

Overconstrained kinematics => a number of "exclusivity cuts" allows to select the exclusive sample

background fraction $(29^+_{-6})^2_{\rm sys}$

kinematic fit applied to determine the most precise particle kinematics and enhance purity of the sample

Exclusive π^0 production cross sections as a function of |t|

 $\langle x_{Bj} \rangle = 0.093$ and $\langle -t \rangle = 0.256 \ (\text{GeV}/c)^2$

First measurement at low ξ

Exclusive π^0 production cross sections as a function of ϕ

$$\frac{d^2\sigma}{dtd\phi} = \frac{1}{2\pi} \left[\frac{d\sigma_T}{dt} + \varepsilon \frac{d\sigma_L}{dt} + \varepsilon \cos 2\phi \frac{d\sigma_{TT}}{dt} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi \frac{d\sigma_{LT}}{dt}\right]$$

Spin Density Matrix Elements

for exclusive $\boldsymbol{\omega}$ meson production on unpolarised protons

Vector meson spin-density matrix $\rho(V)$

- \succ test of s-channel helicity conservation ~~ ($\lambda_{\gamma}=\lambda_{V}$)
- decomposition into Natural (N) Parity and Unnatural (U) Parity exchange amplitudes

$$F_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}=T_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}+U_{\lambda_{V}\lambda_{N}^{\prime}\lambda_{\gamma}\lambda_{N}}$$

• in Regge framework NPE: $J^P = (0^+, 1^-, ...)$ (pomeron, $\rho, \omega, a_2 ...$ reggeons) UPE: $J^P = (0^-, 1^+, ...)$ (π, a_1, b_1 ... reggeons)

tests of GPD models

• e.g. for SCHC-violating transitions $\gamma_T \rightarrow V_L$ test sensitivity to GPDs with exchanged-quark helicity flip (transversity GPDs)

Experimental access to SDMEs

$$W^{U+L}(\Phi,\phi,\cos\Theta) = W^U(\Phi,\phi,\cos\Theta) + P_B W^L(\Phi,\phi,\cos\Theta) \propto \frac{d\sigma}{d\Phi \, d\phi \, d\cos\Theta}$$

SDMEs: "amplitudes" of decomposition of W^{U+L} in the sum of terms of different angular dependences

[K. Schilling and G. Wolf, Nucl. Phys. B61, 381 (1973)]

15 unpolarised SDMEs (in W^U) and 8 polarised (in W^L)

 $[\]omega$ –production–plane

Extraction of SDMEs

Unbinned ML fit to experimental W^{U+L} taking into account

- total acceptance
- fraction of background in the signal window
- anglar distribution of background W^{U+L}_{bkg} (determined either from LEPTO MC or real data side band)

Results on SDMEs for exclusive $\boldsymbol{\omega}$ production at COMPASS

SDME values

Tests of s-channel helicity conservation

SCHC ($\lambda_{\gamma} = \lambda_{V}$) +-- $\mathbf{A}: \gamma_{\mathbf{L}}^{*} \to \omega_{\mathbf{L}} \\ \gamma_{\mathbf{T}}^{*} \to \omega_{\mathbf{T}}$ r_{00} r_{1-1}^{1} Im r₁₋₁² SCHC implies: Re r⁵₁₀ **B**: Interference Im r⁶₁₀ $\gamma_{\mathbf{I}}^{*} \rightarrow \omega_{\mathbf{L}} \& \gamma_{\mathbf{T}}^{*} \rightarrow \omega_{\mathbf{I}}$ • $r_{1-1}^1 + \operatorname{Im} r_{1-1}^2 = 0$ $Im r_{10}^7$ Re r⁸₁₀ $= -0.010 \pm 0.032 \pm 0.047$ OK **Re** r_{10}^{04} $\mathbf{C}: \gamma_{\mathbf{T}} \rightarrow \omega_{\mathbf{T}}$ • Re r_{10}^5 + Im $_{10}^6$ = 0 Re r_{10}^1 SDMEs COMPASS Imr_{10}^2 $= 0.014 \pm 0.011 \pm 0.013$ PRELIMINARY OK r_{00}^{5} \mathbf{r}_{00} • $\operatorname{Im} r_{10}^7 - \operatorname{Re} r_{10}^8 = 0$ $Im r_{10}^3$ r_{00}^{8} $= -0.088 \pm 0.110 \pm 0.196$ OK r_{11}^5 **D**: $\gamma_{\mathbf{I}} \rightarrow \omega_{\mathbf{T}}$ r⁵ r₁₋₁ • all elements of classes C, D, E should be 0 Im r₁₋₁⁶ Im r₁₋₁⁷ for $\gamma^*_{L} \rightarrow \omega_T$ and $\gamma^*_{T} \rightarrow \omega_{-T}$ OK within errors r⁸ r₁₁ r_{1-1}^{8} not obeyed for transitions $\gamma^*_T \rightarrow \omega_L$ r_{1-1}^{04} $\mathbf{E}: \hat{\gamma_{T}} \rightarrow \omega_{-T}$ r_{11}^1 Im r_{1-1} -0.1 -0.2 0 0.1 0.2 0.3 0.4

SDME values

Transitions $\gamma^*_{\ T} \rightarrow \omega_L$

possible GPD interpretation **Goloskokov and Kroll, EPJC 74 (2014) 2725** contribution of amplitudes depending on transversity GPDs H_T , $\overline{E}_T = 2\widetilde{H}_T + E_T$

interplay of interference of transversity GPDs H_T , $\overline{E}_T = 2\widetilde{H}_T + E_T$ with GPDs H and E, respectively

Unnatural parity exchange contribution

decrease of UPE contribution with increasing W still non-negligible contribution from pion-pole exchange even at W = 10 GeV/c² Transverse target spin asymmetries for exclusive ρ^0 and ω production

COMPASS polarised target

Spin-dependent cross section for exclusive meson leptoproduction

$$\begin{split} \left[\frac{\alpha_{em}}{8\pi^3} \frac{y^2}{1-\epsilon} \frac{1-x_{Bj}}{x_{Bj}} \frac{1}{Q^2}\right]^{-1} \frac{\mathrm{d}\sigma}{\mathrm{d}x_{Bj}\mathrm{d}Q^2\mathrm{d}t\mathrm{d}\phi\mathrm{d}\phi_s} \\ &= \frac{1}{2} \left(\sigma_{++}^{++} + \sigma_{++}^{--}\right) + \varepsilon \sigma_{00}^{++} - \varepsilon \cos(2\phi) \operatorname{Re} \sigma_{+-}^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos\phi \operatorname{Re} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right) \\ &- P_\ell \sqrt{\varepsilon(1-\varepsilon)} \sin\phi \operatorname{Im} \left(\sigma_{+0}^{++} + \sigma_{+0}^{--}\right) \\ &- S_L \left[\varepsilon \sin(2\phi) \operatorname{Im} \sigma_{+-}^{++} + \sqrt{\varepsilon(1+\varepsilon)} \sin\phi \operatorname{Im} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right] \\ &+ S_L P_\ell \left[\sqrt{1-\varepsilon^2} \frac{1}{2} \left(\sigma_{++}^{++} - \sigma_{-+}^{--}\right) - \sqrt{\varepsilon(1-\varepsilon)} \cos\phi \operatorname{Re} \left(\sigma_{+0}^{++} - \sigma_{+0}^{--}\right)\right] \\ &- S_T \left[\sin(\phi-\phi_S) \left(\operatorname{Im} \left(\sigma_{+-}^{+-} + \varepsilon \sigma_{00}^{+-}\right) + \frac{\varepsilon}{2} \sin(\phi + \phi_S) \left(\operatorname{Im} \sigma_{+-}^{++}\right) + \sqrt{\varepsilon(1+\varepsilon)} \sin\phi \left(\operatorname{Im} \sigma_{+0}^{++}\right) + \sqrt{\varepsilon(1+\varepsilon)} \sin(2\phi - \phi_S) \left(\operatorname{Im} \sigma_{+0}^{-+}\right) \right] \\ &+ S_T P_\ell \left[\sqrt{1-\varepsilon^2} \cos(\phi-\phi_S) \operatorname{Re} \sigma_{++}^{+-}\right) \\ &- \sqrt{\varepsilon(1-\varepsilon)} \cos\phi_S \operatorname{Re} \sigma_{+0}^{++} - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi - \phi_S) \operatorname{Re} \sigma_{+0}^{++}\right]. \end{split}$$

 σ_{mn}^{ij} : helicity-dependent photoabsorption cross sections and interference terms

$$\sigma_{mn}^{ij}(x_B, Q^2, t) \propto \sum (M_m^i)^* M_r^j$$

 M_m^i : amplitude for subprocess $\gamma^* p \rightarrow V p'$ with photon helicity *m* and target proton helicity *i*

Transverse target spin asymmetries for exlusive ρ^0 production on p^{\uparrow}

PLB 731 (2014) 19

 $\langle x_{Bj} \rangle = 0.039, \langle Q^2 \rangle = 2.0 \text{ GeV}^2$ $\langle p_T^2 \rangle = 0.18 \text{ GeV}^2, \langle W \rangle = 8.1 \text{ GeV}^2$

asymmetries small, compatible with 0, except

 $A_{UT}^{\sin\varphi_s} = -0.019 \pm 0.008 \pm 0.003$

indication of transversity GPD H_T contribution

 $H_{\rm T}({\rm x},\,{\rm 0},\,{\rm 0})={\rm h_1}({\rm x})$

Transverse target spin asymmetries for exlusive ρ^0 production on p^{\uparrow}

Single spin asymmetries

predictions of GPD model of Goloskokov-Kroll

 reasonable agreement with GK model (also for not-shown double spin asym.)

 $\begin{array}{c} sin(\phi - \phi_s) \\ A_{UT} \end{array} \quad \text{contains twist-2 terms} \\ \text{depending on } E^{q,g} \end{array}$

its small values due to approximate cancellation of contributions from E^u and E^d , $E^u \approx -E^d$

larger effects expected for exclusive oproduction

Azimuthal asymmetries for exlusive () production on p[↑]

Single spin asymmetries

Nucl. Phys. B 915 (2017) 454

when 'global' comparison to the data no clear preference for any version

Comparison to HERMES asymmetries for ω production on p[↑]

✓ Note: contribution of pion pole decreases with W

-> each experiment to be compared to corresp. predictions

COMPASS uncertainties smaller by a factor > 2

✓ within large errors combined HERMES data compatible with all 3 scenarios

✓ Future measurements at JLab12 EPJ A48 (2012) 187 expected to resolve the issue of $\pi\omega$ transition form factor Prospects to separate GPDs E_u and E_d from TTS asymmetries

Section in PhD thesis of P. Sznajder, Warsaw 2015

In the framework of GK model an attempt to constrain $L^{u \ val}$ and $L^{d \ val}$ using COMPASS $A_{UT}^{sin(\phi - \phi_s)}$ for exclusive ρ^0 and ω production

- \odot -L^{u val} \approx L^{d val} > 0 (as expected)
- \odot adding ω result reduces allowed region in ($L^{u \text{ val}}$, $L^{d \text{ val}}$) space
- constraints are rather weak

due to limited statistics of COMPASS ω sample (1/40 of that of ρ^0)

A promissing alternative method

Future combined analysis of TTS asymmetries for exclusive ρ^0 production

on transversely polarised protons ⁽¹⁾ and deuterons ⁽²⁾

(1) existing measurements

(2) expected results from approved one-year data taking in 2021

Summary

Outlook

results expected from the large data sample collected in 2016+2017

with LH_2 target, RPD and wide-angle electromagneric calorimetry collected statistic ~ 10 times larger than from 2012 test run

Deeply Virtual Compton Scattering:

- t-dependence of DVCS cross section vs. x_{Bi} ("proton tomography")
- mapping GPD H by measurments of real and imaginary parts of DVCS
 via φ-dependence the μ⁺ and μ⁻ cross sections difference and sum

Hard Exclusive Meson Production:

- differential cross section for π^0 vs. Q², v (W), t(p_T^2), ϕ
- differential cross sections and SDMEs for VMs vs. Q², v (W), t (p_T^2)

results expected from the large data sample to be collected in 2021

Hard Exclusive Vector Meson Production on transversely polarised deuterons

Supplementary material

Estimate of π^0 background

Major source of background for exclusive photon events

Two cases:

- Visible; detected second γ (below DVCS threshold) => events rejected from final sample
- Invisible; one γ lost => estimated from MC normalised to π^0 peak for 'visible' sample

Relative contributions from both processes to π^0 background estimated from combined fits to the distributions of 'exclusivity variables' (M_x^2 , $\Delta \phi$, Δp_T) and $E_{miss} = v - E_{\gamma} + t/(2m_p^2)$

Mounting of Recoil Proton Detector ('CAMERA') in clean area at CERN

Extraction of DVCS cross section and amplitude

Beam Charge & Spin Sum

Beam Charge & Spin Difference

$$\mathcal{D}_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) = 2(\mathbf{e}_{\mu} \mathbf{a}^{\mathsf{BH}} \operatorname{Re} \mathsf{A}^{\mathsf{DVCS}} + \mathsf{P}_{\mu} \mathbf{d}\sigma^{\mathsf{DVCS}}_{pol})$$

$$c_{0}^{Int} + c_{1}^{Int} \cos \phi + c_{2}^{Int} \cos 2\phi + c_{3}^{Int} \cos 3\phi$$

$$s_{1}^{DVCS} \sin \phi$$

$$c_{0,1}^{Int} \rightarrow \operatorname{Re}(\mathcal{F}_{1}\mathcal{H})$$

$$\operatorname{Re} \mathcal{H}(\xi, t) = \mathcal{P} \int dx \operatorname{H}(x, \xi, t) = \mathcal{P} \int dx \operatorname{H}(x, x, t) + \mathcal{D}(t)$$

$$x - \xi$$