Experimental overview of TMD PDFs from SIDIS and Drell-Yan data

Franco Bradamante

franco.bradamante@ts.infn.it

XVI International Workshop on Hadron Structure and Spectroscopy COMPASS Collaboration meeting 24-26 June, Aveiro, Portugal

The Nucleon Structure

the three collinear PDFs

- a chirally-odd distribution, hence not observable in DIS
- theoretically well known
- first experimental evidence in 2005

The Nucleon Structure

taking into account the quark **intrinsic transverse momentum** k_T , at leading order 8 Transverse Momentum Dependent PDFs are needed for a full description of the nucleon structure

all allowed correlations between nucleon spin, parton spin, parton transverse momentum

most of the information came from SIDIS

The Nucleon Structure

taking into account the quark **intrinsic transverse momentum** k_T , at leading order 8 Transverse Momentum Dependent PDFs are needed for a full description of the nucleon structure

The most famous new PDFs

h_1 transversity function

transversely polarized quarks in a transversely polarized nucleon *correlation between the transverse spins*

chiral-odd survives to integration over transverse momenta tensor charge

f_{1T}^{\perp} Sivers function

unpolarized quarks in a transversely polarized nucleon *correlation between the parton transverse momentum and the nucleon spin*

T-odd

h_1^{\perp} Boer-Mulders function:

transversely polarized quarks in an unpolarized nucleon *correlation between the transverse momentum and the transverse spin of the partons*

T-odd

measurable in SIDIS

Semi-Inclusive Deep Inelastic Scattering

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{1}{xy Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right] + S_{\parallel} \left[\sin(\phi_h - \phi_s) \left(F_{UT,T}^{\sin(\phi_h - \phi_s)} + \varepsilon \sin(3\phi_h - \phi_s) F_{UT}^{\sin(3\phi_h - \phi_s)} \right) + \varepsilon \sin(\phi_h + \phi_s) F_{UT}^{\sin(\phi_h + \phi_s)} + \varepsilon \sin(3\phi_h - \phi_s) F_{UT}^{\sin(3\phi_h - \phi_s)} \right] + |S_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_s) F_{LT}^{\sin(\phi_h - \phi_s)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_s F_{LT}^{\cos\phi_s} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_s F_{LT}^{\cos\phi_s} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_s F_{LT}^{\cos\phi_s} \right] \right\},$$

Semi-Inclusive Deep Inelastic Scattering π, K, \dots $\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} =$ $\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$ $h_1^{\perp} \otimes H_1^{\perp}$ $h_{1L}^{\perp} {\otimes} H_1^{\perp}$ $+\varepsilon\cos(2\phi_h)F_{UU}^{\cos 2\phi_h} + \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_hF_{LU}^{\sin\phi_h}$ $+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos \phi_h F_{LL}^{\cos \phi_h} \right]$ $f_{1T}^{\perp} \otimes D_1$ $+ |\mathbf{S}_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \mathbf{h_1} \otimes \mathbf{H_1^{\perp}} \right]$ $h_{1T}^{\perp} \otimes H_1^{\perp}$ $+\varepsilon\sin(\phi_h+\phi_S)F_{UT}^{\sin(\phi_h+\phi_S)}+\varepsilon\sin(3\phi_h-\phi_S)F_{UT}^{\sin(3\phi_h-\phi_S)}$ 14 independent $+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}$ azimuthal modulations $+ |\mathbf{S}_{\perp}|\lambda_{e} \left| \sqrt{1 - \varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1 - \varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}} \right|$ amplitudes of the + $\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)F_{LT}^{\cos(2\phi_h-\phi_S)}$, $g_{1T}\otimes D_1$ modulations \rightarrow TMD PDFs

MAJOR RESULT: in the past 15 years 2 of these new PDF's have been measured and shown to be different from zero by COMPASS and HERMES

A STEP TOWARDS THE 3-D STRUCTURE OF THE NUCLEON

Collins asymmetry $\sim h_1 \otimes H_1^{\perp}$

since 2005 evidence for non-zero Collins asymmetry on proton

Collins asymmetry $\sim h_1 \otimes H_1^{\perp}$

since 2005 evidence for non-zero Collins asymmetry on proton

accessing transversity in SIDIS

recent experimental developments

$\Lambda\,/\,\overline{\Lambda}\,$ polarisation

transversity induced Lambda polarisation

Λ / $\overline{\Lambda}$ polarisation

transversity induced Lambda polarisation

completely unknown

 $P_{\Lambda} = \frac{\sum_{q} e_{q}^{2} h_{1}^{q} H_{1}^{\Lambda/q}}{\sum_{q} e_{q}^{2} f_{1}^{q} D_{1}^{\Lambda/q}}$

statistically limited still the only existing measurement

with different assumptions, this measurement can give information either on h_1^s or on $H_1^{\Lambda/q}/D_1^{\Lambda/q}$

IWHSS19, Aveiro, 24 June 2019

F. Bradamante

$\Lambda / \overline{\Lambda}$ polarisation in e^+e^-

PRL122 2019

namely

the asymmetries in the difference of opposite charge hadrons distributions

they have been proposed a long time ago

L.L. Frankfurt et al., PLB 230 141 (1989) 141E. Christova and E. Leader, NPB 607 (2001) 369A.N. Sissakian, O.Yu. Shevchenko and O.N. Ivanov, PRD 73, (2006) 094026

- they are in the COMPASS Proposal (1996), for SIDIS off longitudinally and transversely polarised protons and deuterons
- they have been measured in SIDIS off longitudinally polarised deuterons
 - M. Alekseev et al [COMAPSS Coll] PLB 660 (2008) 458, HERMES
- they were never measured in SIDIS off transversely polarised nucleons

first extraction from the COMPASS measurement of the Collins asymmetries for h^+ and h^+ in SIDIS off transversely polarised protons and deuterons

V. Barone et al., PRD99 (2019)

Collins difference asymmetries

cross-sections for hadrons (pions) of opposite charge (\pm) transversely polarised nucleons

$$\sigma_t^{\pm}(\Phi_c) = \sigma_{0,t}^{\pm} + f P_T D_{NN} \sigma_{C,t}^{\pm} \sin \Phi_C + \cdots \qquad t = p, d$$

- Collins asymmetries $A_{C,t}^{\pm} = rac{\sigma_{C,t}^{\pm}}{\sigma_{0,t}^{\pm}}$
- **difference asymmetries** (two slightly different definitions)

$$A_{D,t} = \frac{\sigma_{C,t}^{+} - \sigma_{C,t}^{-}}{\sigma_{0,t}^{+} + \sigma_{0,t}^{-}}$$

$$A'_{D,t} = \frac{\sigma^{+}_{C,t} - \sigma^{-}_{C,t}}{\sigma^{+}_{0,t} - \sigma^{-}_{0,t}}$$

if the acceptances for h^+ and h^+ are the same, they can be obtained from the measured Collins asymmetries:

$$A_{D,t} = \frac{\sigma_{0,t}^{+}}{\sigma_{0,t}^{+} + \sigma_{0,t}^{-}} A_{C,t}^{+} - \frac{\sigma_{0,t}^{-}}{\sigma_{0,t}^{+} + \sigma_{0,t}^{-}} A_{C,t}^{-} \qquad \sigma_{0,t}^{\pm} \sim N_{t}^{\pm} \sim 1/\operatorname{var}(A_{C,t}^{\pm})$$
$$= \frac{\operatorname{var}(A_{C,t}^{-})}{\operatorname{var}(A_{C,t}^{+}) + \operatorname{var}(A_{C,t}^{+})} A_{C,t}^{+} - \frac{\operatorname{var}(A_{C,t}^{+})}{\operatorname{var}(A_{C,t}^{+}) + \operatorname{var}(A_{C,t}^{+})} A_{C,t}^{-}$$

in terms of PDFs

$$\frac{A_{D,d}}{A_{D,p}} = 3 \frac{\sigma_{0,p}^+ + \sigma_{0,p}^-}{\sigma_{0,d}^+ + \sigma_{0,d}^-} \frac{h_1^{u_v} + h_1^{d_v}}{4h_1^{u_v} - h_1^{d_v}}$$

$$\frac{A'_{D,d}}{A'_{D,p}} = \frac{4f_1^{u_v} - f_1^{u_v}}{f_1^{u_v} + f_1^{d_v}} \frac{h_1^{u_v} + h_1^{d_v}}{4h_1^{u_v} - h_1^{d_v}}$$

from standard PDFs and FFs parametrisations

\rightarrow they allow to extract $xh_1^{d_v}/xh_1^{d_v}$ without knowing H_1

- from A_D
- from A'_D
- from $xh_1^{d_v}$ and $xh_1^{u_v}$ A. Martin, F.B., V. Barone PRD91 2015

in terms of PDFs

$$\frac{A_{D,d}}{A_{D,p}} = 3 \frac{\sigma_{0,p}^+ + \sigma_{0,p}^-}{\sigma_{0,d}^+ + \sigma_{0,d}^-} \frac{h_1^{u_v} + h_1^{d_v}}{4h_1^{u_v} - h_1^{d_v}}$$

$$\frac{A'_{D,d}}{A'_{D,p}} = \frac{4f_1^{u_v} - f_1^{d_v}}{f_1^{u_v} + f_1^{d_v}} \frac{h_1^{u_v} + h_1^{d_v}}{4h_1^{u_v} - h_1^{d_v}}$$

from standard PDFs and FFs parametrisations

\rightarrow they allow to extract $xh_1^{d_v}/xh_1^{d_v}$ without knowing H_1

Longitudinal double-spin asymmetries of e^{\pm} on p and d

the Sivers function

Sivers asymmetry

as in the Collins case, since 2005 evidence for non-zero asymmetry on proton

Sivers asymmetry

as in the Collins case, since 2005 evidence for non-zero asymmetry on proton

 $\sim f_{1T}^{\perp} \otimes D_1$

Sivers asymmetry recent results

π,Κ,....

Sivers asymmetry recent results

F. Bradamante

π, Κ, ...

the P_T/zM weighted Sivers asymmetry

more results in NPB 940 (2019) 34

the trends of the weighted and unweighted asymmetries are similar both for positive and negative hadrons

positive hadrons: asymmetry clearly different from zero, in particular at large x

assuming u-dominance, $A_{Siv}^{w,+}(x) \simeq 2 f_{1T}^{\perp(1)u}(x) / f_1^u(x)$ \rightarrow first direct measurement of $f_{1T}^{\perp(1)u}(x)$

the P_T/zM weighted Sivers asymmetry

extraction of $f_{1T}^{\perp(1)}(x)$

neglecting the sea-quark Sivers distributions, it is

$$xf_{1T}^{\perp(1)u_{v}} = \frac{1}{8} \frac{\delta^{+}A_{Siv}^{w,+}\widetilde{D}_{1}^{d,-} - \delta^{-}A_{Siv}^{w,-}\widetilde{D}_{1}^{d,+}}{\widetilde{D}_{1}^{u,+}\widetilde{D}_{1}^{d,-} - \widetilde{D}_{1}^{d,+}\widetilde{D}_{1}^{u,-}}$$

$$xf_{1T}^{\perp(1)d_{v}} = \frac{1}{2} \frac{\delta^{-}A_{Siv}^{w,-}\widetilde{D}_{1}^{u,+} - \delta^{+}A_{Siv}^{w,+}\widetilde{D}_{1}^{u,-}}{\widetilde{D}_{1}^{u,+}\widetilde{D}_{1}^{d,-} - \widetilde{D}_{1}^{d,+}\widetilde{D}_{1}^{u,-}}$$

$$\widetilde{D}_{1}^{q,\pm} = \int_{z_{min}}^{z_{max}} dz D_{1}^{q,\pm}(z)$$
$$\delta^{\pm} = 9 \Sigma_{q} e_{q}^{2} x f_{1}^{q} \widetilde{D}_{1}^{q}$$

 f_1^q , $\widetilde{D}_1^{q,\pm}$ from parametrisations (CTEQ5D and DSS)

 previous point-by-point extraction A.Martin, F.B., V.Barone, PRD95, 2017 using pion Sivers asymmetries from the COMPASS p and d data,

no assumptions on the Sivers sea quarks, Gaussian ansatz

slightly different trend for $f_{1T}^{\perp(1)d_v}$, uncertainties on average larger by a factor ~1.5

the differences are mainly due to the use of the p data only and to the assumption on the sea-quarks

other non-zero signals in SIDIS

SIDIS off longitudinally polarised p

Q-suppressed, different "twist" contributions

IWHSS19, Aveiro, 24 June 2019

SIDIS off longitudinally polarised p

IWHSS19, Aveiro, 24 June 2019

Beam helicity asymmetries

Beam helicity asymmetries

Beam helicity asymmetries

unpolarised SIDIS

unpolarised SIDIS

Relevance for TMDs:

- the cross-section dependence on P_{hT} comes from:
 - intrinsic k_T of the quarks
 - p_{\perp} generated in the quark fragmentation $\langle P_{hT}^2 \rangle = \langle p_{\perp}^2 \rangle + z^2 \langle k_T^2 \rangle$

- the azimuthal modulations in the unpolarized cross-sections comes from:
 - intrinsic k_T of the quarks
 - Boer-Mulders PDF

combined analysis should allow to disentangle the different effects

measured on p and/or d at Jlab, HERMES, COMPASS

unpolarised SIDIS – *P*_{Th} distributions

NEW PRD99 2019

0.9

1

new: preliminary results from COMPASS proton data 2016-2017

IWHSS19, Aveiro, 24 June 2019

unpolarised SIDIS – azimuthal asymmetries

unpolarised SIDIS – azimuthal asymmetries

unpolarised SIDIS – azimuthal asymmetries

new: preliminary results from COMPASS 2016-2017 proton data

also, precise multiD results from JLab12 experiments expected soon

DRELL-YAN PROCESS

COMPLEMENTARY APPROACH TO SIDIS

DRELL-YAN PROCESS

COMPLEMENTARY APPROACH TO SIDIS

COMPASS is measuring for the first time the Drell-Yan process $\pi^- p \rightarrow \mu^+ \mu^- X$

on a transversely polarized proton target \rightarrow Sivers, ...

new results for $\overline{d}/\overline{u}$ from SeaQuest

SpinQuest in perspective (end 2019?) @ FNAL for sea-quark transversity and Sivers PDFs

$$+S_{T} \left[\left(A_{T}^{\sin(\varphi_{S})} + \cos^{2}\theta_{CS} A_{T}^{\sin(\varphi_{S})} \right) \sin \varphi_{S} \right]$$

$$+ \sin 2\theta_{CS} \left(A_{T}^{\sin(\varphi_{CS} + \varphi_{S})} \sin(\varphi_{CS} + \varphi_{S}) + A_{T}^{\sin(\varphi_{CS} - \varphi_{S})} \sin(\varphi_{CS} - \varphi_{S}) \right)$$

$$+ \sin^{2}\theta_{CS} \left(A_{T}^{\sin(2\varphi_{CS} + \varphi_{S})} \sin(2\varphi_{CS} + \varphi_{S}) + A_{T}^{\sin(2\varphi_{CS} - \varphi_{S})} \sin(2\varphi_{CS} - \varphi_{S}) \right) \right] + \cdots \right\}$$

$$\lambda = A_U^1, \mu = A_U^{\cos \varphi_{CS}}, \nu = 2 A_U^{\cos 2\varphi_{CS}}$$

190 GeV π^- beam, transversely polarised proton (NH3) target

DIS2019

190 GeV π^- beam, transversely polarised proton (NH3) target

190 GeV π^- beam, transversely polarised proton (NH3) target

Sivers asymmetry

COMPASS Drell-Yan $4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$ \odot 2015 PRL119 (2017)

• 2015+2018 (~50%) preliminary

190 GeV π^- beam, transversely polarised proton (NH3) target

COMPASS Drell-Yan $4.3 < M_{\mu\mu}/(\text{GeV}/c^2) < 8.5$

- O 2015 PRL119 (2017)
- 2015+2018 (~50%) preliminary

190 GeV π^- beam, transversely polarised proton (NH3) target

q_T/M weighted asymmetries

190 GeV π^- beam, transversely polarised proton (NH3) target

q_T -weighted asymmetries

unpolarised Drell-Yan

IWHSS19, Aveiro, 24 June 2019

flavor asymmetry of nucleon sea

•
$$\frac{\sigma_{pd}(x)}{2\sigma_{pp}(x)} \approx \frac{1}{2} \left(1 + \frac{\overline{d}(x)}{\overline{u}(x)} \right)$$

 $x_F >> 0$

- Significant deviation of $\, \bar{d}/\bar{u} \,$ from 1
- Asymmetry has a strong dependence on *x*
- Can x dependence be explained?

800 GeV protons

flavor asymmetry of nucleon sea

future

future

SIDIS

• COMPASS: transversely polarised deuteron 2021

future

SIDIS

- COMPASS: transversely polarised deuteron 2021
- JLab12: soon later; SoLID ~2026?

future

SIDIS

- COMPASS: transversely polarised deuteron 2021
- JLab12: soon later; SoLID ~2026?
- EIC
- ...

future

SIDIS

- COMPASS: transversely polarised deuteron 2021
- JLab12: soon later; SoLID ~2026?
- EIC
- ...

Drell-Yan

- SpinQuest ~2019?
- COMPASS++/AMBER ~2024?
- LHC
-

future

SIDIS

- COMPASS: transversely polarised deuteron 2021
- JLab12: soon later; SoLID ~2026?
- EIC
- ...

Drell-Yan

- SpinQuest ~2019?
- COMPASS++/AMBER ~2024?
- LHC
- ...

and soon many new results from already collected data SIDIS and Drell-Yan cross-sections, SeaQuest, ...