

The World Wide Experimental Programs to Decode Generalized Parton Distributions (GPDs)

Nicole d'Hose, CEA, Univeristé Paris-Saclay

The proton is a fascinating objet

The nucleons (proton and neutron) are the most important building block of our universe. They are complex system of strongly interacting quarks and gluons. They make up nearly 90% of the (normal) matter in the universe. Elementary quarks contribute only few percent to the proton's mass. Test the fundamental theory: Quantum ChromoDynamics (QCD)

What is the origin of its mass? What is the origin of confinement ? Where does the spin of the nucleon come from? How are the forces distributed in space to make the proton a stable particle?

Proton picture: from 1D to (1+2)D

GPDs and 3D imaging

M. Burkardt, PRD66(2002)

mapping in the transverse plane Impact parameter distribution

and the longitudinal momentum fraction

GPDs and Energy-Momentum Tensor and Confinement

GPDs and Energy-Momentum Tensor and Confinement

GPDs can provide an experimental answer by exploiting their equivalence to the gravitational form factors of the nucleon energy-momentum-tensor (fundamental nucleon properties) $= \lim \int x \left(\mathbf{H}^{q} \left(x, \xi, t \right) + \mathbf{E}^{q} \left(x, \xi, t \right) \right) dx$ 2**J**q imes cited E

2000

2005

Relation to OAM

Ji sum rule: PRL78 (1997)

cited 1664 times

2015

2010

0.5

Distribution

r in fm

Deeply virtual Compton scattering (DVCS)

D. Mueller et al, Fortsch. Phys. 42 (1994)
 X.D. Ji, PRL 78 (1997), PRD 55 (1997)
 A. V. Radyushkin, PLB 385 (1996), PRD 56 (1997)

DVCS: $\ell p \rightarrow \ell' p' \gamma$ the golden channel because it interferes with the Bethe-Heitler process

also meson production $\ell p \rightarrow \ell' p' \pi, \rho, \omega \text{ or } \phi \text{ or } J/\psi...$

The GPDs depend on the following variables:

- x: average long. momentum
- ξ : long. mom. difference
- t: four-momentum transfer related to b_{\perp} via Fourier transform

The variables measured in the experiment: $E_{\ell}, Q^2, x_B \sim 2\xi / (1+\xi),$ $t (or \theta_{\gamma^*\gamma}) and \phi (\ell \ell' plane/\gamma\gamma^* plane)$

Deeply virtual Compton scattering (DVCS)

The past and future DVCS experiments

The past and present experiments

Collider mode e-p forward fast proton

HERA: H1 and ZEUS Polarised 27 GeV e-/e+

Unpolarized **920 GeV** proton ~ *Full event reconstruction*

Fixed target mode slow recoil proton

HERMES: Polarised **27** GeV e-/e+ Long, Trans polarised p, d target *Missing mass technique* 2006-07 with recoil detector

Jlab: Hall A, C, CLAS High Luminosity Polar. 6 & 12 GeV e-Long, (Trans) polarised p, d target Missing mass technique (A,C) and complete detection (CLAS)

COMPASS @ CERN: Polarised 160 GeV μ+/μ-

p target, (Trans) polarised target with recoil detection

Rejection of background: SIDIS, exclusive π^0 /DVCS, *dissociation of the proton*

Deeply Virtual Compton Scattering

2001: First DVCS Beam Spin Asymmetries at Hermes and Jlab

Validate the dominance of the handag contribution

Fit and VGG model: Vanderhaeghen, Guichon, Guidal,...

PRL80(1998), PRD60(1999), PPNP47(2001), PRD72(2005)

2001-2012: A complete set of DVCS asymmetries at Hermes

HERMES 27 GeV provided a complete set of observables 2001: 1st DVCS publication as CLAS & H1 2007: end of data taking 2012: still important publications JHEP 07 (2012) 032 A_c A_{LU} JHEP10(2012) 042 A_{LU} with recoil detection (2006-7)

Note: the neutron allows✓ flavor decomposition

 \checkmark access to E

2004-2016: Beam Spin Sum and Diff of DVCS - HallA

2010-2017: Beam Spin Sum and Diff of DVCS - HallA

E07-007 Hall-A experiment in 2010 with magnetic spectrometer

Defurne et al., Nature Communications 8 (2017) 1408

Unpolarized cross section

nature

$$d\sigma \leftarrow + d\sigma \rightarrow \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + \operatorname{Re} I$$

$$\longrightarrow d\sigma^{BH} + c_0^{DVCS} + c_1^{DVCS} \cos \phi + c_2^{DVCS} \cos 2\phi$$

$$+ c_0^I + c_1^I \cos \phi + c_2^I \cos 2\phi + c_3^I \cos 3\phi$$

Helicity Dependent cross section

$$\Delta^{4}\sigma \quad d\sigma \leftarrow -d\sigma \rightarrow \propto d\sigma_{vol}^{DVCS} + \operatorname{Im} I$$
$$\longrightarrow s_{1}^{DVCS} \sin \phi + s_{1}^{I} \sin \phi + s_{2}^{I} \sin 2\phi$$

2 solutions: higher-twist OR next-to-leading order

2005-2015: Beam **Spin** Sum and Diff of DVCS - CLAS

21 bins in (x_B, Q^2) or 110 bins $(x_B, Q^2 t)$ 3 months data taken in 2005 Girod et al. PRL100 (2008) 162002, Jo et al. PRL115, 212003 (2015)

KM10a – – – **(KM10**) Kumericki, Mueller, NPB (2010) 841 Flexible parametrization of the GPDs based on both a Mellin-Barnes representation and dispersion integral which entangle skewness and t dependences

Global fit on the world data ranging from H1, ZEUS to HERMES, JLab

 $\overleftarrow{e} p \rightarrow e \gamma p$

models:

VGG Vanderhaeghen, Guichon, Guidal PRL80(1998),PRD60(1999), PPNP47(2001), PRD72(2005) 1rst model of GPDs improved regularly

KMS12 Kroll, Moutarde, Sabatié, EPJC73 (2013) using the GK model Goloskokov, Kroll, EPJC42,50,53,59,65,74 for GPD adjusted on the hard exclusive meson production at small x_B "universality" of GPDs

nucleon tomography in the valence domain

Fit of 8 CFFs at L.O and L.T. (Im \mathcal{H} , Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E} , Im \mathcal{H} , Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E})

$$H(x, 0, 0) = q(x)$$

 $\int_{-1}^{+1} H dx = F_1$

----- VGG model

----- Fit $Im \mathcal{H} = A e^{-B|t|}$

B gives information on the transverse extension of the partons

B becomes smaller at higher x_{Bj}

Valence quarks at centre Sea quarks spread out towards the periphery

2009-2015: Single Spin and Double Spin - CLAS

nucleon tomography in the valence domain

Fit of 8 CFFs at L.O and L.T. (Im \mathcal{H} , Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E} , Im \mathcal{H} , Re \mathcal{H} , Im \mathcal{E} , Re \mathcal{E})

$$H(x, 0, 0) = q(x) \qquad \tilde{H}(x, 0, 0) = \Delta q(x)$$
$$\int_{-1}^{+1} H dx = F_1 \qquad \int_{-1}^{+1} \tilde{H} dx = G_A$$

 $Im(H) \rightarrow$ electromagnetic charge distribution $Im(\tilde{H}) \rightarrow$ axial charge distribution

Axial charge is more concentrated than electromagnetic charge

Seder et al. PRL114, 032001 (2015) Pisano et al. PRD91, 052014 (2015)

nucleon tomography in the valence domain

DVCS at higher beam energy

nucleon tomography in the gluon domain at HERA

nucleon tomography in the sea quark domain at COMPASS

nucleon tomography in the sea quark domain at COMPASS

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

At COMPASS: $< x_{Bj} >= 0.056; < Q^2 >= 1.8 \text{ GeV}^2;$ *t* varies from 0.08 to 0.64 GeV² At small x_{Bj} and small *t*:

$$\mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) - \frac{t}{M^2}\mathcal{E}\tilde{\mathcal{E}}^*$$

Dominance of ImH (with respect of ReH and other CFF)

nucleon tomography in the sea quark domain at COMPASS

$$d\sigma^{DVCS}/dt = e^{-B'|t|} = c_0^{DVCS}$$

At COMPASS: $< x_{Bj} >= 0.056; < Q^2 >= 1.8 \text{ GeV}^2;$ *t* varies from 0.08 to 0.64 GeV² At small x_{Bj} and small *t*:

$$\mathbf{C_0}^{DVCS} \propto 4(\mathcal{H}\mathcal{H}^* + \tilde{\mathcal{H}}\tilde{\mathcal{H}}^*) - \frac{t}{M^2}\mathcal{E}\tilde{\mathcal{E}}^*$$

Dominance of ImH (with respect of ReH and other CFF)

D-term and Pressure distribution in the proton

D^Q(0) < 0

This is a critical result, required for dynamical stability of the proton. Deeply rooted in chiral symmetry breaking. $D^{Q}(0) = -1.47 \pm 0.10 \pm 0.22$ $M^{2} = 1.06 \pm 0.10 \pm 0.15$ $\alpha = 2.76 \pm 0.25 \pm 0.50$

D-term and Pressure distribution in the proton

Comparison of D^Q(t) with theories

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

Global properties of the Proton

Em:	$Q_{\rm prot}$	=	$1.602176487(40) \times 10^{-19}$ C	
	μ_{prot}	=	$2.792847356(23)\mu_N$	
Weak:	<i>g</i> _A	=	1.2694(28)	
	g_p	=	8.06(0.55)	
Gravity:	<i>M</i> _{prot}	=	938.272013(23) MeV/c ²	
	J	=	$\frac{1}{2}$	
	D	=	-1.47 (10) (22)	

D-term and Pressure distribution in the proton

M.V. Polyakov and C. Weiss, Phys.Rev.D60, 114017 (1999)

$$\begin{split} D(t) &= \frac{1}{2} \int_{-1}^{1} \mathrm{d}z \frac{D(z,t)}{1-z} & -1 < z = \frac{x}{\xi} < 1 \\ \text{Expansion in Gegenbauer polynomials} \\ D(z,t) &= (1-z^2) \left[d_1(t) C_1^{3/2}(z) + \cdots \right] \\ \text{next order terms} < 0 \end{split}$$

M.V. Polyakov, Phys. Lett. B555 (2003) 57 With the first spherical Bessel integral $d_1(t) \propto \int \mathrm{d}^3 \mathbf{r} \; \frac{j_0(r\sqrt{-t})}{2t} \; p(r)$

Repulsive pressure near center **p(r=0)** ~ 10³⁵ Pa **Confining** pressure at r > 0.6 fm

Atmospheric pressure: 10^5 Pa Pressure in the center of neutron stars ~ 10^{34} Pa

V.Burkert, L. Elouadrhiri, F.X. Girod Nature 557 (2018) no.7705, 396-399

next future: Beam Charge and Spin Diff @ COMPASS

next future: Beam Spin Sum and Diff @ JLab12

next future: Beam Spin Sum and Diff @ JLab12

The Bills of the Windst Brechere' First Almolane Fight

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

Transverse profile

Pressure Distribution E12-06-119 E12-16-010 World data model fit result Pressure r²p(r) (GeV fm⁻¹) 0.01 Predicted error band χQSM 0.005 Stability requires forces compensate -0.005 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 r (fm)

Projection for Jlab 12 GeV

next future: GPD E @ JLab12 with CLAS12

polarized HD-Ice target Pol H = 60% Pol D = 35%

$$\Delta \sigma_{\rm UT}^{\sin(\phi-\phi s)\cos\phi} = -t/4m^2 \operatorname{Im}(F_{2p} \mathcal{H} - F_{1p}\mathcal{E})$$

$$\Delta \sigma_{\rm LT}^{\sin(\phi-\phi s)\cos\phi} = -t/4m^2 \operatorname{Re}(F_{2p} \mathcal{H} - F_{1p}\mathcal{E})$$

next future: GPD Egluon @ RHIC in 2017 and 2023

11k J/\psi in 2017 (p[†] p @ 510 GeV) analysis on going **13k J/\psi in 2023 (p[†] Au @ 200 GeV) Important input for the photoproduction of J/\psi at EIC**

Ultra Peripheral Collisions to access the Generalized Parton Distribution Egluon

Two key questions, which need to be answered to understand overall nucleon properties like the spin structure of the proton, can be summarized as:

- How are the quarks and gluons, and their spins distributed in space and momentum inside the nucleon?
- What is the role of orbital motion of sea quarks and gluons in building the nucleon spin?

..... RHIC, with its capability to collide transversely polarized protons at $\sqrt{s}=500$ GeV, has the unique opportunity to measure A_N for exclusive J/ψ in ultra-peripheral p[†]+p collisions (UPC) [99]. The measurement is at a fixed Q^2 of 9 GeV² and 10⁻⁴ < $x < 10^{-1}$. A nonzero asymmetry would be the first signature of a nonzero GPD *E* for gluons, which is sensitive to spin-orbit correlations and is intimately connected with the orbital angular momentum carried by partons in the nucleon and thus with the proton spin puzzle. Detecting one of the scattered polarized protons in "Roman Pots" (RP) ensures an elastic process.

GPDs and Hard Exclusive Meson Production

Quark contribution

Gluon contribution at the same order in α_s

The meson wave function Is an additional non-perturbative term

4 chiral-even GPDs: helicity of parton unchanged

$$H^q(x, \xi, t)$$
 $E^q(x, \xi, t)$ For Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ For Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array}$$

$$\overline{\mathbf{E}_{\mathbf{T}}^{q}} = \mathbf{2} \ \widetilde{\mathbf{H}}_{\mathbf{T}}^{q} + \mathbf{E}_{\mathbf{T}}^{q}$$

Factorisation proven only for σ_{L}

 σ_{T} is asymptotically suppressed by $1/Q^2$ but large contribution observed model of σ_{T} with transversity GPDs - divergencies regularized by k_{T} of qand \overline{q} and Sudakov suppression factor

GPDs and Hard Exclusive Meson Production

GK Goloskokov, Kroll, EPJC42,50,53,59,65,74 GPD model constrained by HEMP at small x_B (or large W) dominant (longitudinal) $\gamma_L^* p \rightarrow M p$ and transv. polar. $\gamma_T^* p \rightarrow M p$ quark and gluon contributions (GPDs H, E, H_T) and beyond leading twist

GPDs and Hard Exclusive π^0 Production

And other paths to get GPDs

Study of protons and neutrons

Time Like Compton Scattering

Double DVCS

Projects which start to be explored with the high lumnosity of JLab12 (in Hall-C or with CLAS12 and Solid)

Study of nuclei

(HERMES, JLab6, JLab12)

First measurement on He4: Hattawy, PRL119 (2017) Spin 0 target, one chiral even GPD

Off bound protons: Hattawy, arXiv:1812.07628, sub to PRL

Future: Key measurements for imaging partons with EIC

Stage 2	
Ee=20 GeVEp=250 G	eV

Stage 1 Ee=5 GeVEp=100 GeV

Deliverables	Observables	What we learn	Requirements
GPDs of	DVCS and $J/\Psi, \rho^0, \phi$	transverse spatial distrib.	$\int dt L \sim 10 \text{ to } 100 \text{fb}^{-1};$
sea quarks	production cross section	of sea quarks and gluons;	Roman Pots;
and gluons	and polarization	total angular momentum	polarized e^- and p beams;
	asymmetries	and spin-orbit correlations	wide range of x_B and Q^2 ;
GPDs of	electroproduction of	dependence on	range of beam energies;
valence and	π^+, K and ρ^+, K^*	quark flavor and	e^+ beam
sea quarks		polarization	valuable for DVCS

Exclusive J/ψ production

Transverse distance of the gluon from the center of the proton in femtometers

Conclusions

Jlab 12 GeV with the high luminosity electron beam at the beginning of a very exciting time For high precision era For valence quarks at large x_B

COMPASS, with high energy muon beams at CERN and RHIC will provide first results of sea quarks and gluons at small x_B

All these facilities are physics opportunities prior EIC

- to preserve knowledge on state of the art techniques
- to prepare the next generation of leading new experiments at EIC

Jlab 12 GeV

E12-06-114: HallA DVCS diff energies E12-06-119: CLAS12 DVCS p, pol NH3 E12-12-001: CLAS12 Time Like Compton and J/ ψ E12-06-108: CLAS12 π^0 , η E12-11-003: CLAS12 DVCS n E12-12-007: CLAS12 DVCS n C12-12-010: CLAS12 HDice E12-13-010: HallC DVCS E12-16-010: CLAS12 DVCS 2 energies

RHIC (STAR/sPHENIX)

COMPASS DVCS: 2x6 months

M2 beam line @ CERN

COMPASS++/AMBER

FI(