Introduction to Kaon Spectroscopy

Known States

PDG (2016)

- PDG lists 28 strange mesons
- Well known kaon states, e.g. $K^*(892)$, $K_1(1270)$, $K_1(1400)$, $K_2(1770)$
- States that require further confirmation, e.g. $K_2(1580)$, $K_2^*(1980)$, ...

![Diagram of kaon spectroscopy]

PDG confirmed
PDG un-confirmed
Model (IG)
Introduction to Kaon Spectroscopy

Known States

PDG (2016)
- PDG lists 28 strange mesons
- Well known kaon states, e.g. $K^*(892)$, $K_1(1270)$, $K_1(1400)$, $K_2(1770)$
- States that require further confirmation, e.g. $K_2(1580)$, $K_2^*(1980)$, ...

Appear in heavy-meson decays
- Kaonic resonances appear as intermediate states in heavy meson decays $B, D \rightarrow$ light mesons
 - Used in studies of CP violation
- Resonance parameters often required as input for these analysis
 - Isobar model

Measured in diffractive production
- Access to all kaonic states
- Decaying into many final states
- Large mass range accessible
Introduction to Kaon Spectroscopy

Known States

PDG (2016)

- PDG lists 28 strange mesons
- Well known kaon states, e.g. $K^*(892)$, $K_1(1270)$, $K_1(1400)$, $K_2(1770)$
- States that require further confirmation, e.g. $K_2(1580)$, $K_2^*(1980)$, ...

Appear in heavy-meson decays

- Kaonic resonances appear as intermediate states in heavy meson decays $B, D \rightarrow$ light mesons
 - Used in studies of CP violation
- Resonance parameters often required as input for these analysis
 - Isobar model

Measured in diffractive production

- Access to all kaonic states
- Decaying into many final states
- Large mass range accessible
Introduction to Kaon Spectroscopy

Previous Measurements

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ CERN SPS WA03 experiment</td>
<td></td>
</tr>
<tr>
<td>▶ $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$</td>
<td></td>
</tr>
<tr>
<td>▶ 200 000 events</td>
<td></td>
</tr>
<tr>
<td>▶ 63 GeV/c K^- beam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ LASS spectrometer at SLAC</td>
<td></td>
</tr>
<tr>
<td>▶ 34 000 $K^-p \rightarrow \bar{K}^0\pi^+\pi^-n$ events</td>
<td></td>
</tr>
<tr>
<td>▶ 100 000 $K^-p \rightarrow K^-\omega p$ events</td>
<td></td>
</tr>
<tr>
<td>▶ 11 GeV/c beam energy</td>
<td></td>
</tr>
</tbody>
</table>

Further measurements

- τ decay (e.g. CLEO)
- Heavy meson decays, e.g. J/π, χ_{cJ}, or B
Introduction to Kaon Spectroscopy

Previous Measurements

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ CERN SPS WA03 experiment</td>
<td></td>
</tr>
<tr>
<td>▶ $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$</td>
<td></td>
</tr>
<tr>
<td>▶ 200,000 events</td>
<td></td>
</tr>
<tr>
<td>▶ 63 GeV/c K^- beam</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ LASS spectrometer at SLAC</td>
<td></td>
</tr>
<tr>
<td>▶ 34,000 $K^-p \rightarrow \bar{K}^0\pi^+\pi^-n$ events</td>
<td></td>
</tr>
<tr>
<td>▶ 100,000 $K^-p \rightarrow K^-\omega p$ events</td>
<td></td>
</tr>
<tr>
<td>▶ 11 GeV/c beam energy</td>
<td></td>
</tr>
</tbody>
</table>

Further measurements

| ▶ τ decay (e.g. CLEO) |
| ▶ Heavy meson decays, e.g. J/π, χ_{cJ}, or B |
Introduction to Kaon Spectroscopy

Previous Measurements

ACCMOR measurements
- CERN SPS WA03 experiment
- $K^- + p \rightarrow K^- \pi^- \pi^+ + p_{\text{recoil}}$
- 200 000 events
- 63 GeV/c K^- beam

LASS measurements
- LASS spectrometer at SLAC
- 34 000 $K^- p \rightarrow \bar{K}^0 \pi^+ \pi^- n$ events
- 100 000 $K^- p \rightarrow K^- \omega p$ events
- 11 GeV/c beam energy

Further measurements
- τ decay (e.g. CLEO)
- Heavy meson decays, e.g. J/π, χ_{cJ}, or B
M2 beam line

- Located at the SPS (CERN)
- \(190 \text{ GeV}/c\) secondary hadron beams
 - \(h^-\) beams: 97 \% \(\pi^-\), 2 \% \(K^-\), 1 \% \(\bar{p}\)
 - \(h^+\) beams: 75 \% \(p\), 24 \% \(\pi^+\), 1 \% \(K^+\)
Target

- Various targets:
 - Ni
 - Pb
 - W
 - ℓH_2
COMPASS spectrometer

- Two-stage magnetic spectrometer
 - Large acceptance
 - Broad kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID
Diffractive production of \(X^- \) with strangeness

- Requires final-state PID via RICH
 - Distinguish between \(\pi^- \) and \(K^- \) over a wide momentum range
- Requires beam-particle PID via CEDARs
 - approximately \(\times 30 \) more \(\pi^- \) than \(K^- \) in the beam
Diffractive production of X^- with strangeness

- Requires final-state PID via RICH
 - Distinguish between π^- and K^- over a wide momentum range
- Requires beam-particle PID via CEDARs
 - approximately $\times 30$ more π^- than K^- in the beam
Diffractive production of X^- with strangeness

- Requires final-state PID via RICH
 - Distinguish between π^- and K^- over a wide momentum range
- Requires beam-particle PID via CEDARs
 - approximately $\times 30$ more π^- than K^- in the beam
Diffractive production of X^- with strangeness

- Requires final-state PID via RICH
 - Distinguish between π^- and K^- over a wide momentum range
- Requires beam-particle PID via CEDARs
 - approximately $\times 30$ more π^- than K^- in the beam
Event Sample

- 2008 data taking
- 270,000 exclusive $K^-\pi^-\pi^+$ events
 - $0.07 < t' < 0.7$ (GeV/c)2
 - DT0 trigger
- Good exclusivity

![Graph showing the distribution of events with respect to energy. The graph is labeled as COMPASS 2008 negative hadron beam $K^-\rightarrow K^-\pi^+\pi^-$ and indicates that the recoil $p^-\pi^+\pi^-$ is not acceptance corrected. The x-axis represents the energy (GeV) and the y-axis represents the number of events.]
COMPASS Kaon Spectroscopy Results
Kinematic Distributions

COMPASS: $K^-\pi^-\pi^+$

- Graph showing kinematic distributions for $K^-\pi^-\pi^+$ reactions.
- Highlighted states: $\rho(770)$, $f_0(980)$, $f_2(1270)$, not acceptance corrected.

COMPASS: $\pi^-\pi^-\pi^+$

- Graph showing kinematic distributions for $\pi^-\pi^-\pi^+$ reactions.
- Highlighted states: $\rho(770)$, $f_0(980)$, $f_2(1270)$, $\rho_3(1690)$.

$\pi^-\pi^+$ and $K^-\pi^+$ subsystem

- $\pi^-\pi^+$ subsystem: Known states from $\pi^-\pi^-\pi^+$
- $K^-\pi^+$ subsystem
 - Clear $K^*(892)$ and $K_2^*(1430)$
 - Broad spectrum from κ state: Needs further measurements
COMPASS: $K^-\pi^-\pi^+$

COMPASS 2008 negative hadron beam $K^- p \rightarrow K^- \pi^+ \pi^- p_{\text{recoil}}$ not acceptance corrected

$\pi^-\pi^+$ and $K^-\pi^+$ subsystem

- $\pi^-\pi^+$ subsystem: Known states from $\pi^-\pi^-\pi^+$
- $K^-\pi^+$ subsystem
 - Clear $K^*(892)$ and $K_2^*(1430)$
 - Broad spectrum from κ state: Needs further measurements

Belle: $B^0 \rightarrow J/\psi K^+\pi^-$ [PhysRevD. 83 (2011)]
COMPASS: $K^-\pi^-\pi^+$

- $K_1(1270)$, $K_1(1400)$, and $K_2(1770)$ signal
- Sitting on a broad spectrum

Belle: $B^+ \rightarrow J/\psi K^+\pi^+\pi^-$ [PhysRevD. 83 (2011)]
COMPASS: $K^-\pi^-\pi^+$

- $K_1(1270)$, $K_1(1400)$, and $K_2(1770)$ signal
- Sitting on a broad spectrum

Belle: $B^+ \rightarrow J/\psi K^+\pi^+\pi^-$ [PhysRevD. 83 (2011)]

Partial wave analysis necessary
COMPASS Kaon Spectroscopy Results
Partial Wave Analysis

Wave Set
- 19 partial waves
- 6 different isobars \([\sigma, \rho(770), f_2(1270), \kappa, K^*(892), K^*_2(1430)]\)
- Improved isobar shape w.r.t. ACCMOR analysis
- No low-\(t'\) region \(t' < 0.07 \text{ GeV}/c^2\)
COMPASS: $K^-\pi^-\pi^+$

- Clear $K_1(1270)$ and $K_1(1400)$ signals
- Clear $K^*_2(1430)$ signal
- Indications for $K^*_2(1980)$ reported by LASS. Needs further confirmation
- $K_2(1770)$ and $K_2(1820)$ signal
- $K_2(1580)$ and $K_2(2250)$ need further confirmation
COMPASS: $K^-\pi^-\pi^+$

- Clear $K_1(1270)$ and $K_1(1400)$ signals
- Clear $K^*_2(1430)$ signal
- Indications for $K^*_2(1980)$ reported by LASS
 Needs further confirmation
- $K_2(1770)$ and $K_2(1820)$ signal
- $K_2(1580)$ and $K_2(2250)$ need further confirmation
COMPASS: $K^-\pi^-\pi^+$

- Clear $K_1(1270)$ and $K_1(1400)$ signals
- Clear $K_2^*(1430)$ signal
- Indications for $K_2^*(1980)$ reported by LASS
 Needs further confirmation
- $K_2(1770)$ and $K_2(1820)$ signal
- $K_2(1580)$ and $K_2(2250)$ need further confirmation
Data Set

- Improved initial-state PID \(\Rightarrow \) expect 2x more events
- Analyzing a second data set \(\Rightarrow \) expect 1.8x more events

\[\Rightarrow 1 \times 10^6 \text{ events of } K^- + p \to K^- \pi^- \pi^+ + p_{\text{recoil}} \]

Partial wave analysis

- Improved wave set \(\Rightarrow \) Clearer resonance signals
- Resonance-model fits \(\Rightarrow \) Extract resonance parameters of \(K^- \pi^- \pi^+ \) resonances

Further channels with kaonic resonances

- \(K^- \pi^0 \pi^0 \)
- \(K^- K^- K^+ \)
- \(K^- \omega \)
- ...
Data Set

- Improved initial-state PID ⇒ expect 2x more events
- Analyzing a second data set ⇒ expect 1.8x more events

⇒ 1×10^6 events of $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$

Partial wave analysis

- Improved wave set ⇒ Clearer resonance signals
- Resonance-model fits ⇒ Extract resonance parameters of $K^-\pi^-\pi^+$ resonances

Further channels with kaonic resonances

- $K^0\pi^0$
- $K^-K^-K^+$
- $K^-\omega$
- ...

COMPASS Kaon Spectroscopy Results
Further Projects with Existing Data
Data Set

- Improved initial-state PID ⇒ expect 2x more events
- Analyzing a second data set ⇒ expect 1.8x more events

⇒ 1 × 10^6 events of $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$

Partial wave analysis

- Improved wave set ⇒ Clearer resonance signals
- Resonance-model fits ⇒ Extract resonance parameters of $K^-\pi^-\pi^+$ resonances

Further channels with kaonic resonances

- $K^-\pi^0\pi^0$
- $K^-K^-K^+$
- $K^-\omega$
- ...

COMPASS Kaon Spectroscopy Results

Further Projects with Existing Data
Why more data is needed

- More precise fit results
 - Establish open strangeness spectrum at the same level as for light quarks
 - Access to new states?
- Access to advanced / novel analysis methods
 Some examples from COMPASS $\pi^- \pi^- \pi^+$ analysis (≈ 50 M events):
 - t'-resolved analysis
 - Freed-isobar fits
 - Semi-automatized model selection from data
 - Observation of small signals
 - Extended mass-dependent fits
 - Models satisfying unitarity and analyticity
 - ...

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

t'-resolved analysis

- Fine binning in 11 t' bins
- Allows to resolve t' dependence in detail
- Improves separation of resonant and non-resonant contributions
Freed-isobar fits

\[\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \]

- PWA requires isobar mass-shape
- Replace fixed isobar-shape by step-like function
- Extract information about the \(\pi^-\pi^+ \) and \(K^-\pi^+ \) subsystem
 - Investigate the \(\kappa \) state
- \(\gtrsim 50 \) MeV needed
Kaon Spectroscopy beyond 2020

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Freed-isobar fits

- PWA requires isobar mass-shape
- Replace fixed isobar-shape by step-like function
 - Extract information about the $\pi^- \pi^+$ and $K^- \pi^+$ subsystem
 - Investigate the κ state
- $\gtrsim 50$ M needed
Freed-isobar fits

- PWA requires isobar mass-shape
- Replace fixed isobar-shape by step-like function
- Extract information about the $\pi^-\pi^+$ and $K^-\pi^+$ subsystem
 - Investigate the κ state
- $\gtrsim 50$ M needed
Freed-isobar fits

- PWA requires isobar mass-shape
- Replace fixed isobar-shape by step-like function
- Extract information about the $\pi^- \pi^+$ and $K^- \pi^+$ subsystem
 - Investigate the κ state
- $\gtrsim 50$ M needed

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$
Semi-automatized wave-set selection from data

- Large data sets \Rightarrow large wave sets
- Conventional approach: Systematically adding or eliminating waves by hand
 - May introduce observer bias
- Semi-automatized wave-set selection
 - Starting with a large pool of waves
 - Find the best subset of waves that describe the data

Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$
Kaon Spectroscopy beyond 2020

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

Semi-automatized wave-set selection from data

- Large data sets \(\Rightarrow \) large wave sets
- Conventional approach: Systematically adding or eliminating waves by hand
 - May introduce observer bias
- Semi-automatized wave-set selection
 - Starting with a large pool of waves
 - Find the best subset of waves that describe the data
Kaon Spectroscopy beyond 2020
Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

Semi-automatized wave-set selection from data

- Large data sets \Rightarrow large wave sets
- Conventional approach: Systematically adding or eliminating waves by hand
 - May introduce observer bias
- Semi-automatized wave-set selection
 - Starting with a large pool of waves
 - Find the best subset of waves that describe the data

38674 events

$1.8 \leq m_{3\pi} \leq 1.82\text{GeV}/c^2$

$0.1 \leq t' \leq 0.113\text{GeV}/c$
Example: $\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}}$

- Observation of small signals
- e.g. $a_1(1420)$ contributes only 0.3% to total intensity
Kaon Spectroscopy beyond 2020

Example: \(\pi^- + p \rightarrow \pi^- \pi^- \pi^+ + p_{\text{recoil}} \)

Resonance-model fits

- Precise extraction of resonance parameters
- Resonance-model fits
 - Using Breit-Wigner amplitudes
 - Large data sets
 - models at their limits
 - Fits to extract pole positions
 - Simultaneous fits of many channels
- Kaonic spectrum
 - Many overlapping resonances
Beam parameters now

- Beam composition: 2% K^-, 1% \bar{p}, and 97% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Kaon intensity of approximately 150×10^3 s$^{-1}$

Goals for a RF separated beam

- Aim for kaon intensity of approximately 8×10^6 s$^{-1}$ @ 100 GeV/c
- ×50 more than now
- Comparable with π^- intensity
- Momentum spread \lesssim 1%
- Requires detailed studies
- Requires infrastructure upgrades
Kaon Spectroscopy beyond 2020
RF Separated Kaon beam

Beam parameters now

- Beam composition: 2% K^-, 1% \bar{p}, and 97% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Kaon intensity of approximately 150×10^3 s$^{-1}$

Goals for a RF separated beam

- Aim for kaon intensity of approximately 8×10^6 s$^{-1}$ @ 100 GeV/c
 - ×50 more than now
 - Comparable with π^- intensity
 - Momentum spread $\lesssim 1\%$
- Requires detailed studies
- Requires infrastructure upgrades

Data and picture from: Lau Gatignon, Working Group Meeting: Physics Beyond Colliders
Kaon Spectroscopy beyond 2020
RF Separated Kaon beam

Beam parameters now

- Beam composition: 2% K^-, 1% \bar{p}, and 97% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Kaon intensity of approximately 150×10^3 s$^{-1}$

One year data taking ⇒ 30 to 50 M events
⇒ Access to advanced methods

- Aim for kaon intensity of approximately 8×10^6 s$^{-1}$ @ 100 GeV/c
 - \times50 more than now
 - Comparable with π^- intensity
 - Momentum spread $\lesssim 1\%$
- Requires detailed studies
- Requires infrastructure upgrades

Data and picture from: Lau Gatignon, Working Group Meeting: Physics Beyond Colliders
Uniform Acceptance

Spectrometer
- High precision tracking over broad kinematic range
- Precise vertex position measurements
- Measurement of the recoil particle
 - Maintain exclusivity

Beam PID
- Beam still consists of different particles species
- CEDAR detectors, which handle high rates
- Precise measurement of the beam inclination at the order of 40 µrad
Kaon Spectroscopy beyond 2020
Experimental Requirements

Uniform Acceptance

Spectrometer

- High precision tracking over broad kinematic range
- Precise vertex position measurements
- Measurement of the recoil particle
 - Maintain exclusivity

Beam PID

- Beam still consists of different particles species
- CEDAR detectors, which handle high rates
- Precise measurement of the beam inclination at the order of $40\,\mu\text{rad}$
Kaon Spectroscopy beyond 2020
Experimental Requirements

Uniform Acceptance

Final state PID

- RICH detectors have limited acceptance
- Lower beam momentum
 - More events in RICH acceptance
- Final state PID over broad momentum range

Acceptance for neutral channels

- Investigate $K^-\pi^0\pi^0$, $K^-\omega$, $K\eta$, $K\eta'$, ... final state
 - Detection of photons over a broad energy range via ECALs
Uniform Acceptance

Final state PID
- RICH detectors have limited acceptance
- Lower beam momentum
 - More events in RICH acceptance
- Final state PID over broad momentum range

Acceptance for neutral channels
- Investigate $K^-\pi^0\pi^0$, $K^-\omega$, $K\eta$, $K\eta'$, ... final state
 - Detection of photons over a broad energy range via ECALs
Kaon Spectroscopy beyond 2020
Experimental Requirements

Uniform Acceptance

Final state PID
- RICH detectors have limited acceptance
- Lower beam momentum
 - More events in RICH acceptance
- Final state PID over broad momentum range

Detailed studies of technical aspects necessary

Acceptance for neutral channels
- Investigate $K^-\pi^0\pi^0$, $K^-\omega$, $K\eta$, $K\eta'$, ... final state
 - Detection of photons over a broad energy range via ECALs
Kaon Spectroscopy beyond 2020

Competitors

- τ or heavy meson decays
 - LHCb
 - BES III
 - Belle II

- Data-set size typically factor 10 smaller
- Limited mass range

Photo production

- Glue-X Phase IV
- Aiming for 100×10^6 events in $KK\pi\pi$ final state

GlueX PhaseIV proposal

- Kaonic states appear as **intermediate states** (isobar model)
 - Freed-isobar ansatz
 - Needs very large data sets
 - Hard to obtain precise insight into the sub system from **four-body final state**
Kaon Spectroscopy beyond 2020

Competitors

- τ or heavy meson decays
 - LHCb
 - BES III
 - Belle II

- Data-set size typically factor 10 smaller
- Limited mass range

Photo production

- Glue-X Phase IV
- Aiming for 100×10^6 events in $KK\pi\pi$ final state

- Kaonic states appear as intermediate states (isobar model)
 - Freed-isobar ansatz
 - Needs very large data sets
 - Hard to obtain precise insight into the sub system from four-body final state
Kaon Spectroscopy beyond 2020

Competitors

- \(\tau \) or heavy meson decays
 - LHCb
 - BES III
 - Belle II
- Data-set size typically factor 10 smaller
- Limited mass range

Photo production

- [GlueX Phase IV proposal]
 - Glue-X Phase IV
 - Aiming for \(100 \times 10^6 \) events in \(KK\pi\pi \) final state

- Kaonic states appear as intermediate states (isobar model)
 - Freed-isobar ansatz
 - Needs very large data sets
 - Hard to obtain precise insight into the sub system from four-body final state
Kaon Spectroscopy beyond 2020

Competitors

\(\tau\) or heavy meson decays
- LHCb
- BES III
- Belle II

- Data-set size typically factor 10 smaller
- Limited mass range

Photo production
- Glue-X Phase IV
- Aiming for \(100 \times 10^6\) events in \(KK\pi\pi\) final state

- Kaonic states appear as intermediate states (isobar model)
 - Freed-isobar ansatz
 - Needs very large data sets
 - Hard to obtain precise insight into the sub system from four-body final state
Kaon Spectroscopy beyond 2020

Competitors

J-PARC

- Aiming 2 to 10 GeV/c separated K^- or \bar{p} beams
- with $10^7 K^-$/spill

- Separation between beam and target excitations difficult at 10 GeV/c
- Pomeron exchange not dominant at 10 GeV/c beams
- General purpose detector with high-precision tracking and calorimetry needed for spectroscopy
 - No experimental setup planned
J-PARC

- Aiming 2 to 10 GeV/c separated K^- or \bar{p} beams
- with $10^7 K^-$/spill

- Separation between beam and target excitations difficult at 10 GeV/c
- Pomeron exchange not dominant at 10 GeV/c beams
- General purpose detector with high-precision tracking and calorimetry needed for spectroscopy
 ➤ No experimental setup planned
Baryon Spectroscopy with Antiprotons beyond 2020

Negative hadron beam parameters now

- Beam composition: 2\% K^-, 1\% \bar{p}, and 97\% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Antiproton intensity of approximately 50×10^3 s$^{-1}$

Positive hadron beam parameters now

- Beam composition: 1\% K^+, 75\% p, and 24\% π^+ @ 190 GeV/c
- Measured large data sample of $57 \times 10^6 \ p + p \rightarrow p_f \pi^+\pi^- + p_s$ events
- Pomeran exchange is dominant \Rightarrow investigate N^* baryon resonances

Goals for a RF separated beam

- Aim for antiproton intensity of approximately 3×10^7 s$^{-1}$ @ 100 GeV/c
- Similar data-set size as baryon spectroscopy sample
Baryon Spectroscopy with Antiprotons beyond 2020

Negative hadron beam parameters now

- Beam composition: 2% K^-, 1% \bar{p}, and 97% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Antiproton intensity of approximately 50×10^3 s$^{-1}$

Positive hadron beam parameters now

- Beam composition: 1% K^+, 75% p, and 24% π^+ @ 190 GeV/c
- Measured large data sample of 57×10^6 $p + p \rightarrow p_{f} \pi^{+} \pi^{-} + p_s$ events
- Pomeron exchange is dominant \Rightarrow investigate N^* baryon resonances

Goals for a RF separated beam

- Aim for antiproton intensity of approximately 3×10^7 s$^{-1}$ @ 100 GeV/c
 - Similar data-set size as baryon spectroscopy sample
Negative hadron beam parameters now

- Beam composition: 2% K^-, 1% \bar{p}, and 97% π^- @ 190 GeV/c
- Beam intensity of 5×10^6 s$^{-1}$ for approximately 9.6 s every 45 s
- Antiproton intensity of approximately 50×10^3 s$^{-1}$

Positive hadron beam parameters now

- Beam composition: 1% K^+, 75% p, and 24% π^+ @ 190 GeV/c
- Measured large data sample of 57×10^6 $p + p \rightarrow p_f \pi^+ \pi^- + p_s$ events
- Pomeron exchange is dominant \Rightarrow investigate N^* baryon resonances

Goals for a RF separated beam

- Aim for antiproton intensity of approximately 3×10^7 s$^{-1}$ @ 100 GeV/c
 - Similar data-set size as baryon spectroscopy sample
Spectroscopy with 20 GeV/c Antiprotons beyond 2020
Low-Energy Antiproton Beam

- $\lesssim 20$ GeV/c antiproton beam
- Most of beam kaons decay in beam line
- $\frac{2}{3}$ of beam pions decay in beam line
- Antiproton fraction of total hadron flux at COMPASS target: 15%
- Center of mass energy: $\sqrt{s} = 6.1$ GeV
- Using a 40 cm ℓH$_2$ target and a maximum beam intensity of 10^8 s$^{-1}$ (RP)
 - $\bar{L} = 5 \times 10^{30}$ s$^{-1}$ cm$^{-2}$
 - $\frac{1}{40}$ of PANDA design luminosity (2 \times 1032 s$^{-1}$ cm$^{-2}$ in HL mode)

No RF separation necessary
⇒ Could immediately be started after long shutdown

Calculated according to L. Gatignon [COMPASS beyond 2020 Workshop] using 'Atherton formula' for 0 mrad production angle
(only approximation for $|\vec{p}| < 60$ GeV/c)
Spectroscopy with 20 GeV/c Antiprotons beyond 2020
Low-Energy Antiproton Beam

- $\lesssim 20$ GeV/c antiproton beam
- Most of beam kaons decay in beam line
- $\frac{2}{3}$ of beam pions decay in beam line
- Antiproton fraction of total hadron flux at COMPASS target: 15%
- Center of mass energy: $\sqrt{s} = 6.1$ GeV
- Using a 40 cm ℓH$_2$ target and a maximum beam intensity of 10^8 s$^{-1}$ (RP)
 - $\bar{L} = 5 \times 10^{30}$ s$^{-1}$ cm$^{-2}$
 - $\frac{1}{40}$ of PANDA design luminosity (2 \times 10^{32} s$^{-1}$ cm$^{-2}$ in HL mode)

No RF separation necessary
⇒ Could immediately be started after long shutdown

Calculated according to L. Gatignon [COMPASS beyond 2020 Workshop] using 'Atherton formula' for 0 mrad production angle (only approximation for $|\vec{p}| < 60$ GeV/c)
Spectroscopy with 20 GeV/c Antiprotons beyond 2020
Low-Energy Antiproton Beam

- $\lesssim 20$ GeV/c antiproton beam
- Most of beam kaons decay in beam line
- $\frac{2}{3}$ of beam pions decay in beam line
- Antiproton fraction of total hadron flux at COMPASS target: 15%
- Center of mass energy: $\sqrt{s} = 6.1$ GeV
- Using a 40 cm ℓH$_2$ target and a maximum beam intensity of 10^8 s$^{-1}$ (RP)
 - $\mathcal{L} = 5 \times 10^{30}$ s$^{-1}$ cm$^{-2}$
 - $\frac{1}{40}$ of PANDA design luminosity
 (2 \times 10^{32} s$^{-1}$ cm$^{-2}$ in HL mode)

No RF separation necessary
\Rightarrow Could immediately be started after long shutdown

Calculated according to L. Gatignon [COMPASS beyond 2020 Workshop] using 'Atherton formula' for 0 mrad production angle (only approximation for $|p| < 60$ GeV/c)
Spectroscopy of resonances in the energy region of charmonium and above

- Produced in association with one or more recoil particles
 \[p\bar{p} \to \chi_{cJ} + \text{recoil} \to J/\psi + \text{light mesons} + \text{recoil} \]
- Precision measurement of charmonium-like states, including
 - missing states, predicted by theory
 - hybrid candidates, ...

LQCD calculation
\[(m_\pi = 240 \text{ MeV}/c^2) \]
Hadron Spectrum collaboration
JHEP 1612, 089 (2016)
Spectroscopy with 20 GeV/c Antiprotons beyond 2020

Experimental Requirements

Neutral channels

- Large background
 - Final states with neutral particles (π^0, η) important
 - Requires electromagnetic calorimeter around the target region

Tracking

- Tracking of charged particles
 - at low momenta
 - with large angles

Central tracking and calorimetry detectors necessary
Neutral channels

- Large background
 - Final states with neutral particles (π^0, η) important
 - Requires electromagnetic calorimeter around the target region

Tracking

- Tracking of charged particles
 - at low momenta
 - with large angles

Central tracking and calorimetry detectors necessary
Neutral channels

- Large background
 - Final states with neutral particles (π^0, η) important
 - Requires electromagnetic calorimeter around the target region

Tracking

- Tracking of charged particles
 - at low momenta
 - with large angles

Central tracking and calorimetry detectors necessary
Spectroscopy with 20 GeV/c Antiprotons beyond 2020

Experimental Requirements

PANDA (-like) barrel detector

- **PANDA electromagnetic calorimeter barrel**
 - 15 k crystals
 - $\approx 99\%$ angular coverage
 - $1.54\% / \sqrt{E[\text{GeV}]} = 0.3\%$ energy resolution

- **PANDA phase 0**
 - Detector components are commissioned and used at other experiments
 - Until ≈ 2024

COMPASS setup

- Beam PID via CEDARs (high rates)
- Use COMPASS setup as forward spectrometer for high-precision tracking
- Good muon identification
Spectroscopy with 20 GeV/c Antiprotons beyond 2020
Experimental Requirements

PANDA (-like) barrel detector

- PANDA electromagnetic calorimeter barrel
 - 15 k crystals
 - \(\approx 99\% \) angular coverage
 - \(1.54\%/\sqrt{E[\text{GeV}]} = 0.3\% \) energy resolution

- PANDA phase 0
 - Detector components are commissioned and used at other experiments
 - Until \(\approx 2024 \)

COMPASS setup

- Beam PID via CEDARs (high rates)
- Use COMPASS setup as forward spectrometer for high-precision tracking
- Good muon identification
Spectroscopy with 20 GeV/c Antiprotons beyond 2020
Experimental Requirements

PANDA (-like) barrel detector

- PANDA electromagnetic calorimeter barrel
 - 15 k crystals
 - ≈ 99% angular coverage
 - 1.54%/√E[GeV] = 0.3% energy resolution
- PANDA phase 0
 - Detector components are commissioned and used at other experiments
 - Until ≈ 2024

COMPASS setup

- Beam PID via CEDARs (high rates)
- Use COMPASS setup as forward spectrometer for high-precision tracking
- Good muon identification
Summary

Spectroscopy with kaons

- Many kaonic states require further confirmation and precise measurement
- COMPASS has measured 1 M exclusive $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$ events
- Aiming for 30 to 50 M/y with RF separated kaon beam
 - Access to advance/novel analysis methods
- Requires uniform acceptance over broad kinematic range (PID/ECAL)
- No direct competitors

Spectroscopy with antiprotons

- 20 GeV/c antiproton beam
 - No RF separation necessary
- Measurements of charmonium-like states
- Aiming for $\frac{1}{40}$ of PANDA design luminosity
- Using PANDA (-like) electromagnetic calorimeter barrel
Summary

Spectroscopy with kaons

- Many kaonic states require further confirmation and precise measurement
- COMPASS has measured 1 M exclusive $K^- + p \rightarrow K^-\pi^-\pi^+ + p_{\text{recoil}}$ events
- Aiming for 30 to 50 M/y with RF separated kaon beam
 ➤ Access to advance/novel analysis methods
- Requires uniform acceptance over broad kinematic range (PID/ECAL)
- No direct competitors

Spectroscopy with antiprotons

- 20 GeV/c antiproton beam
 ➤ No RF separation necessary
- Measurements of charmonium-like states
- Aiming for $\frac{1}{40}$ of PANDA design luminosity
- Using PANDA (-like) electromagnetic calorimeter barrel