TMD EFFECTS IN SIDIS @ COMPASS

Andrea Bressan
University of Trieste and INFN
(on behalf of the COMPASS Collaboration)

QCD Evolution 2017, Thomas Jefferson National Accelerator Facility
Newport News, VA
Space resolution is function of the distance to the target.
the polarized target system (>2005)

$^3\text{He} - ^4\text{He}$ dilution refrigerator (T~50mK)

- solenoid: 2.5T
- dipole magnet: 0.6T

$^\mu_d$ (^6LiD)
p (NH_3)

polarization:
- d (^6LiD): 50%
- p (NH_3): 90%

dilution factor:
- d (^6LiD): 40%
- p (NH_3): 16%

no evidence for relevant nuclear effects (160 GeV)

opposite polarisation

COMPASS 2007 transverse proton data (part)
COMPASS data taking

<table>
<thead>
<tr>
<th>muon beam</th>
<th>deuteron ((^6)LiD) PT</th>
<th>2002</th>
<th>80% L/20% T target polarisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>proton (NH(_3)) PT</td>
<td></td>
<td>2006</td>
<td>L target polarisation</td>
</tr>
<tr>
<td>Hadron</td>
<td>LH target</td>
<td>2008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>muon beam</td>
<td>proton (NH(_3)) PT</td>
<td>2010</td>
<td>T target polarisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2011</td>
<td>L target polarisation</td>
</tr>
<tr>
<td>Hadron</td>
<td>Ni target</td>
<td>2012</td>
<td>Primakoff</td>
</tr>
<tr>
<td>muon beam</td>
<td>LH2 target</td>
<td>2012</td>
<td>Pilot DVCS & unpol. SIDIS</td>
</tr>
<tr>
<td>Hadron</td>
<td>Proton (NH3) DT</td>
<td>2014</td>
<td>Pilot DY run</td>
</tr>
<tr>
<td></td>
<td>PT</td>
<td>2015</td>
<td>DY run</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2018</td>
<td>2° year of DY run</td>
</tr>
<tr>
<td>muon beam</td>
<td>LH2 target</td>
<td>2016</td>
<td>DVCS & unpol. SIDIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2017</td>
<td></td>
</tr>
</tbody>
</table>
Measurements with the target transversely polarized:

<table>
<thead>
<tr>
<th>Year</th>
<th>Obs</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>$A_{Siv,d}^h, A_{Col,d}^h$</td>
<td>First 6LiD data</td>
</tr>
<tr>
<td>2006</td>
<td>$A_{Siv,d}^h, A_{Col,d}^h$</td>
<td>Full 6LiD statistics</td>
</tr>
<tr>
<td>2009</td>
<td>$A_{Siv,d}^{\pi^+,K^+,K_s^0}, A_{Col,d}^{\pi^+,K^+,K_s^0}$</td>
<td>Full 6LiD statistics</td>
</tr>
<tr>
<td>2010</td>
<td>$A_{Siv,p}^h, A_{Col,p}^h$</td>
<td>2007 NH$_3$ data</td>
</tr>
<tr>
<td>2012</td>
<td>$A_{UT,d}^{\sin\phi_RS}, A_{UT,p}^{\sin\phi_RS}$</td>
<td>Full 6LiD</td>
</tr>
<tr>
<td>2012</td>
<td>$A_{Siv,p}^h, A_{Col,p}^h$</td>
<td>Full NH$_3$ statistics</td>
</tr>
<tr>
<td>2012</td>
<td>$A_{UT,d}^{\sin(\phi_{p}-\phi_S)}, A_{UT,p}^{\sin(\phi_{p}-\phi_S)}$</td>
<td>Exclusive ρ^0</td>
</tr>
<tr>
<td>2013</td>
<td>$A_{UT,d}^{(\phi_{p},\phi_S)}, A_{UT,p}^{(\phi_{p},\phi_S)}$</td>
<td>Exclusive ρ^0, all asyms.</td>
</tr>
<tr>
<td>2014</td>
<td>$A_{UT,d}^{\sin\phi_RS}, A_{UT,p}^{\sin\phi_RS}$</td>
<td>Full 6LiD and NH$_3$</td>
</tr>
<tr>
<td>2014</td>
<td>$A_{Siv,d}^{\pi^+,K^+,K_s^0}, A_{Col,d}^{\pi^+,K^+,K_s^0}$</td>
<td>Full NH$_3$ statistics</td>
</tr>
<tr>
<td>2015</td>
<td>Interplay $A_{UT,p}^{\sin\phi_RS}$ vs $A_{Col,p}^h$</td>
<td>Full NH$_3$ statistics</td>
</tr>
<tr>
<td>2016</td>
<td>$A_{Siv,p}^h$ binned in Q^2 to be in DY range</td>
<td>Full NH$_3$ statistics</td>
</tr>
</tbody>
</table>
Accessing TMD PDFs and FFs

- SIDIS off polarized p, d, n targets

 \[\sigma_{\ell p \to \ell' h X} \sim f_{q,p}(x, k_{\perp}^2) \otimes \sigma_{\ell q \to q} \otimes D_{1q}^h(z, p_{\perp}^2) \]

- hard polarised pp scattering

- polarised Drell-Yan

- future: eN colliders

\[\sigma_{\ell p \to \ell' h X} \sim f_{q,h}(x_1, k_{\perp}^2) \otimes f_{q,p}(x_2, k_{\perp}^2) \otimes \hat{\sigma}_{q \to \mu \mu}(\hat{s}) \]

- future: FAIR, JPark, NICA

\[\sigma_{e^+ e^- \to h_1 h_2} \sim \hat{\sigma}_{\ell\ell \to \bar{q}q}(\hat{s}) \otimes D_{q_1}^{h_1}(z_1, p_{\perp}^2) \otimes D_{q_2}^{h_2}(z_2, p_{\perp}^2) \]
hard interaction of a lepton with a nucleon via virtual photon exchange

\[Q^2 = -q^2 \]

\[x = \frac{Q^2}{2P \cdot q} = \frac{Q^2}{2M_p \nu} \]

\[y = \frac{P \cdot q}{P \cdot \ell} = \frac{E - E'}{E} \]

\[W^2 = (P + q)^2 = M_P^2 - Q^2 + 2M_p \nu \]

\[z = \frac{P \cdot P_h}{P \cdot q} = \frac{E_h}{\nu} \]
Kinematic coverage
Kinematic coverage

COMPASS
HERMES
JLAB12

$Q^2 (\text{GeV}/c^2)$

$W^2 = 100 (\text{GeV}/c^2)^2$
$W^2 = 25 (\text{GeV}/c^2)^2$
$W^2 = 5 (\text{GeV}/c^2)^2$

$y = 0.9$
$y = 0.1$

x

10^{-2}
10^{-1}

1

10
100
1000

dN/dW^2

$W^2 (\text{GeV}/c^2)^2$

COMPASS 2007 transverse proton data (part)
SIDIS access to TMDs

\[\sigma_{\ell p \rightarrow \ell' h X} \sim f_{q,p}(x, k_{\perp}^2) \otimes \sigma_{q \rightarrow q} \otimes D_{1q}^h(z, p_{\perp}^2) \]

TMDs \((x, k_{\perp})\)

TMDs

- **FFs** \((z, p_{\perp})\)

Nucleon polarization

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(f_1)</td>
<td>(f_{1T}^\perp)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(h_{1T}^\perp)</td>
<td>(h_1, h_{1T}^\perp)</td>
<td>(h_{1L}^\perp)</td>
</tr>
<tr>
<td>L</td>
<td>(g_{1T}^\perp)</td>
<td></td>
<td>(g_{1L}^\perp)</td>
</tr>
</tbody>
</table>

Hadron polarization

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>T</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>(D_1)</td>
<td>(D_{1T}^\perp)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>(H_{1T}^\perp)</td>
<td>(H_1, H_{1T}^\perp)</td>
<td>(H_{1T}^\perp)</td>
</tr>
<tr>
<td>L</td>
<td>(G_{1T}^\perp)</td>
<td></td>
<td>(G_{1L}^\perp)</td>
</tr>
</tbody>
</table>

T odd **chiral odd**

Factorisation (Collins & Soper, Ji, Ma, Yuan, Qiu & Vogelsang, Collins & Metz...)

JLab 22/05/2017
The cross-section dependence from P_{hT} results from:

- intrinsic k_\perp of the quarks
- p_\perp generated in the quark fragmentation
- A Gaussian ansatz for k_\perp and p_\perp leads to

$$\langle P_{hT}^2 \rangle = z^2 \langle k_\perp^2 \rangle + \langle p_\perp^2 \rangle$$

The azimuthal modulations in the unpolarised cross sections comes from:

- Intrinsic k_\perp of the quarks
- The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance

COMPASS and HERMES have

- results on $^6\text{LiD (}\sim d\text{)}$ and d and on p (Hermes only)
- No COMPASS measurements on p since on $N\text{H}_3 (\sim p)$ nuclear effects may be important

⇒COMPASS-II, measurements on LH$_2$ in parallel with DVCS
The full cross section for the unpolarised case is written as:

\[
\frac{d\sigma}{dx \, dy \, dz \, dP_{hT}^2 \, d\phi_h \, d\psi} = \left[\frac{\alpha^2 \, y^2}{xyQ^2 \, 2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x} \right) \right] (F_{UU,T} + \epsilon F_{UU,L}) \left\{ 1 + \cos \phi_h \sqrt{2\epsilon(1 + \epsilon)} A_{UU}^{\cos \phi_h} \right\}
\]

\[
A_{UU}^x(x, z, dP_{hT}^2, Q^2) = \frac{F_{UU}^x}{F_{UU,T} + \epsilon F_{UU,L}}
\]

\[
\epsilon = \frac{1 - y - \frac{1}{4} y^2 \gamma^2}{1 - y + \frac{1}{2} y^2 + \frac{1}{4} y^2 \gamma^2} \quad \text{and} \quad \gamma = \frac{2xM}{Q}
\]

\[
F_{UU} = C [f_1 D_1] = x \sum_q e_q^2 \int d\vec{p}_\perp d\vec{k}_\perp \delta^2 (z\vec{k}_\perp + \vec{p}_\perp - \vec{P}_{hT}) f_1^q (x, k_{\perp}^2, Q^2) D_{1,q}^h (z, p_{\perp}^2, Q^2)
\]
When looking at the content of the structure functions/modulations in terms of TMD PDFs for the $\cos \phi_h$ and $\cos 2\phi_h$ we can write:

$$F_{UUU}^{\cos \phi_h} = -\frac{2M}{Q} C \left[\frac{\hat{h} \cdot \vec{k}_\perp}{M} f_1 D_1 - \frac{p_\perp k_\perp}{M} \vec{P}_{hT} - z(\hat{h} \cdot \vec{k}_\perp) \frac{h_1^\perp H_1^\perp}{zM_h M} \right] + \text{twists} > 3$$

$$F_{UUU}^{\cos 2\phi_h} = C \left[\frac{(\hat{h} \cdot \vec{k}_\perp)(\hat{h} \cdot \vec{p}_\perp) - \vec{p}_\perp \cdot \vec{k}_\perp}{MM_h} h_1^\perp H_1^\perp \right] + \text{twists} > 3$$

In the $\cos 2\phi_h$ Cahn effects enters only at twist4

$$F_{\text{Cahn}}^{\cos 2\phi_h} \approx \frac{2}{Q^2} C \left[\{2(\hat{h} \cdot \vec{k}_\perp)^2 - k_\perp^2 \} f_1 D_1 \right]$$
Importance of unpolarised SIDIS

\[F^h_{UU}(x, z, P^2_{hT}; Q^2) = x \sum_q e_q^2 \int d^2 \vec{k}_\perp \, d^2 \vec{p}_\perp \, \delta(\vec{p}_\perp - z \vec{k}_\perp) \]

\[M^h(x, z, P^2_{hT}; Q^2) = \frac{d^5 \sigma^h / dx dQ^2 dz d^2 \vec{p}_T}{d^2 \sigma^{DIS} / dx dQ^2} \sim \frac{F^h_{UU}(x, z, P^2_{hT}; Q^2)}{F_{UU,T} + \varepsilon F_{UU,L}} \]
Importance of unpolarised SIDIS
Boer-Mulders in $\cos 2\phi$

\[F_{UU}^{\cos 2\phi}(x, z, P_{h_T}^2; Q^2) = -x \sum_q e_q^2 \int d^2 \vec{k}_\perp d^2 \vec{p}_\perp \frac{2(\hat{h} \cdot \vec{k}_\perp)(\hat{h} \cdot \vec{k}_\perp) - \vec{k}_\perp \cdot \vec{p}_\perp}{Mm_h} h_{1,q}^\perp(x, k'^2; Q^2)H_{1,q}^\perp(z, p'^2; Q^2) \]
Boer-Mulders in $\cos 2\phi$ and in $\cos \phi$
Sivers Asymmetry

- **Sivers**: correlates nucleon spin & **quark transverse momentum** k_T / T-ODD: at LO for $\mu p^\uparrow \rightarrow \mu X h^\pm$

- \[A_{Siv}(x, z) = \frac{F_{UT}^{\sin \Phi_{Siv}}(x, z)}{F_{UU}(x, z)} = \frac{\sum_q e_q^2 x f_{1T}^q(x, k_T^2) \otimes D_h^1(z, p_T^2)}{\sum_q e_q^2 x f_1^q(x, k_T^2) \otimes D_h^1(z, p_T^2)} \]

- To evaluate it we need to solve the convolutions (i.e. make hypothesis on the transverse momenta dependences of the TMDs)

- Gaussian ansatz:
 \[f_{1T}^q(x) e^{-\frac{k_T^2}{\langle k_T^2 \rangle_S}} \quad D_h^1(z) e^{-\frac{p_T^2}{\langle p_T^2 \rangle}} \]

- Leading to:
 \[A_{Siv, G}(x, z) = \frac{\sqrt{\pi M}}{\sqrt{z^2 \langle k_T^2 \rangle_S + (p_T^2)}} \frac{\sum_q e_q^2 x f_{1T}^{q(1)}(x) z D_h^1(z)}{\sum_q e_q^2 x f_1^q(x) D_h^1(z)} \]

- with $f_{1T}^{q(1)}(x) = \int d^2 k_T \frac{k_T^2}{2M^2} f_{1T}^q(x, k_T^2)$
Sivers asymmetry on p charged pions (and kaons), HERMES and COMPASS

![Graph showing Sivers asymmetry](image-url)
If we weight the spin dependent part of the cross-section

\[F_{UT}^{\sin \Phi_{Siv}}(x, z) = \sum_q e_q^2 \int d^2 \vec{p}_T P_T F_q(x, z, P_T^2) \]

with \(w = \frac{P_T}{zM} \), i.e.

\[F_{UT}^{\sin \Phi_{Siv,w}}(x, z) = \sum_q e_q^2 \int d^2 \vec{p}_T \frac{P_T^2}{zM} F_q(x, z, P_T^2) = 2 \sum_q e_q^2 x f_{1T}^{\perp(1)q}(x) D_{1q}^h(z) \]

and

\[F_q(x, z, P_T^2) = \int d^2 \vec{k}_T \int d^2 \vec{p}_T \delta^2(\vec{P}_T - z\vec{k}_T - \vec{p}_T) \frac{\vec{p}_T \cdot \vec{k}_T}{M_P^2} x f_{1T}^{\perp q}(x, k_T^2) D_{1q}(z, p_T^2) \]

we have no longer a convolution but a product of two integrals and we can write

\[A_{Siv}^w(x, z) = \frac{F_{UT}^{\sin \Phi_{Siv,w}}(x, z)}{F_{UU}(x, z)} = 2 \frac{\sum_q e_q^2 x f_{1T}^{\perp(1)q}(x) D_{1q}^h(z)}{\sum_q e_q^2 x f_1^q(x) D_{1q}^h(z)} \]

with \(f_{1T}^{\perp(1)q}(x) = \int d^2 \vec{k}_T \frac{k_T^2}{2M^2} f_{1T}^{\perp q}(x, k_T^2) \)
The weighted Sivers asymmetry

- In one dimension: for x

\[
A_{Siv}^w(x) = 2 \frac{\sum_q e_q^2 x f_{1T}^{(1)q}(x) \int D_1^h(z) dz}{\sum_q e_q^2 x f_1^q(x) \int D_1^h(z) dz}
\]

and for z

\[
A_{Siv}^w(z) = 2 \frac{\sum_q e_q^2 D_1^h(z) \int C(x) x f_{1T}^{(1)q}(x) dx}{\sum_q e_q^2 D_1^h(z) \int C(x) x f_1^q(x) dx}
\]

with $C(x) = \int_{\Omega_y} dy \frac{1-y+y^2/2}{x^2 y^2}$

- Note that assuming u-dominance at large x for positive hadrons:

\[
A_{Siv}^{w,h^+}(x) \approx 2 \frac{f_{1T}^{(1)u}(x)}{f_1^u(x)} \quad \text{and} \quad A_{Siv}^{w,h^+}(z) = 2 \frac{\int C(x) x f_{1T}^{(1)u}(x) dx}{\int C(x) x f_1^u(x) dx}
\]
The weighted Sivers asymmetry

\[A_{Siv}^w(x) = 2 \frac{\sum_q e_q^2 x f_{1T}^q(x) \int D_{1q}^h(z) dz}{\sum_q e_q^2 x f_{1}^q(x) \int D_{1q}^h(z) dz} \]

\[w = \frac{P_T}{zM} \]

standard cuts

\[z > 0.2 \]

\[\sim 2 \frac{f_{1T}^{(1)u}(x)}{f_1^u(x)} \]

both \(f_{1T}^{(1)u} \) and \(f_{1T}^{(1)d} \) contribute
The weighted Sivers asymmetry

\[A_{Siw}^w(x) = 2 \frac{\sum_q e_q^2 x f_1^{1q}(x) \int D_{1q}^h(z)dz}{\sum_q e_q^2 x f_1^{q}(x) \int D_{1q}^h(z)dz} \]

\[w = \frac{P_T}{zM} \]

standard cuts
\[z > 0.2 \]

The weighted Sivers asymmetry

\[A_{Siv}^w(x) = 2 \frac{\sum_q e_q^2 x f_{1T}^{(1)}(x) \int D_{1q}^h(z) dz}{\sum_q e_q^2 x f_1^{q}(x) \int D_{1q}^h(z) dz} \]

\[w = \frac{P_T}{z_M} \]

standard cuts
\[z > 0.2 \]

The ratio between weighted and unweighted Sivers asymmetries follows the average of \(\left\langle \frac{P_{hT}}{z_M} \right\rangle \) of the unpolarised sample.
The weighted Sivers asymmetry

1. weight $\mathbf{w} = \frac{P_T}{zM}$

$A_{Siv}^{w}(z)$

$0.1 < z < 1.0$

\[
2 \frac{\int C(x) x f_{1T}^{(1)u}(x) dx}{\int C(x) x f_{1}^{u}(x) dx}
\]
The weighted Sivers asymmetry

1. weight $w = \frac{P_T}{zM}$

$A_{Siv}^w(z)$

$0.1 < z < 1.0$

The ratio between weighted and unweighted Sivers asymmetries follows the average of $\left< \frac{P_{hT}}{zM} \right>$ of the unpolarised sample.
The weighted Sivers asymmetry

1. weight \(w = \frac{P_T}{zM} \) \(A_{Siv}^w(z) \) \(0.1 < z < 1.0 \)

For \(0.1 < z < 0.2 \) the asymmetries for \(h^+ \) and \(h^- \) show the same behavior
Interplay among dihadron and single hadron asymmetries

- Collins asymmetry for h+ and for h- "mirror symmetry"
- dihadron asymmetry *only somewhat larger than h+ Collins*

hints for a common origin of the Collins FF and DiFF

Como 2013, DSpin2013, PLB736 (2014) 124

look at

the $\Delta \phi = \phi_1 - \phi_2$

dependence of the asymmetries
Interplay among dihadron and single hadron asymmetries

Analytically

\[A_{CL1}^{\sin \Phi_C} = a_1 + a_2 \cos \Delta \phi \]

\[A_{CL2}^{\sin \Phi_C} = a_2 + a_1 \cos \Delta \phi \]

Agreement with data if \(a_1 = -a_2 = a \)

\[A_{CL\ 2h}^{\sin \Phi_{2h,s}} = a \sqrt{2(1 - \cos \Delta \phi)} \]

Ratio of the \(\Delta \phi \) integrated 2h and 1h asymmetries: \(4/\pi \)

slightly larger than \(h^+ \)
Interplay among dihadron and single hadron asymmetries

analyitically

\[A_{\text{CL}1}^{\sin \Phi} = a_1 + a_2 \cos \Delta \phi \]
\[A_{\text{CL}2}^{\sin \Phi} = a_2 + a_1 \cos \Delta \phi \]

mirror symmetry

agreement with data if

\[A_{\text{CL}2h}^{\sin \Phi_{2h,s}} = a \sqrt{2 (1 - \cos \Delta \phi)} \]

agreement with data

a very simple relationships among the asymmetries in the “2h sample”

they are driven by the same elementary mechanism.

ratio of the \(\Delta \phi \) integrated 2h and 1h asymmetries: \(4/\pi \)

slightly larger than \(h^+ \)
From Collins asymmetries to transversity

- Following Physical Review D 91, 014034 (2015), in the valence region

\[xh_1^u = \frac{1}{5} \frac{1}{\tilde{a}_p^h (1 - \tilde{\alpha})} \left[(xf_p^+ A_p^+ - xf_p^- A_p^-) + \frac{1}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) \right] \]

\[xh_1^d = \frac{1}{5} \frac{1}{\tilde{a}_p^h (1 - \tilde{\alpha})} \left[\frac{4}{3} (xf_d^+ A_d^+ - xf_d^- A_d^-) - (xf_p^+ A_p^+ - xf_p^- A_p^-) \right] \]

With \(\tilde{a}_p^h \) and \(\tilde{\alpha} \) constants
New deuteron data

- Benchmark: extraction from Collins asymmetries

![Graph showing Collins asymmetries](image)
New deuteron data

- 1 full year (same as 2010). We also gain from $\frac{f_P P_{PT}}{f_D P_{DT}} = \frac{0.155 \times 0.8}{0.40 \times 0.5} = 0.6$

THIS IS A KEY MEASUREMENT THAT WILL IMPACT OUR KNOWLEDGE,
Conclusions

- The study of TMDs has entered the phase of multidimensional analysis
- An important step in this direction is the large sample of precise unpolarised data, both as multiplicities and as azimuthal modulations
- In the next years more of such data will be available both from COMPASS and from JLab12
- One year of deuteron data (something that COMPASS can do after 2020) will strongly impact our knowledge of h_1^d!
- Waiting for the EIC to extend the accessible phase space, the description of such data is a mandatory task for the theory of TMDs
Thank you
and see you all in Trieste for the EICUG meeting (July 18-22, 2017)
eicug2017.ts.infn.it
The CM Energy vs Luminosity Landscape

CEIC1 = Chinese version of Electron-Ion Collider ("A dilution-free mini-COMPASS")

MEIC1 = EIC@Jlab

eRHIC = EIC@BNL

LHeC = ep/eA collider @ CERN

CEIC2

MEIC2

HL-eRHIC

FCC-he
SIDIS Experiment must:

- Have large acceptances on all the relevant variables x, Q^2, z, P_{hT}, ϕ
- Use different targets (p, d, n) and identify hadrons to allow flavor separation
- Be ad different energies for to cover PDFs from the valence region down to small-x
- Large luminosity to allow multidimensional results needed by the complexity of TMDs

The polarized lepton-nucleon collider will be a mandatory tool to reach the level of ordinary PDF