Photoproduction at COMPASS

Alexey Gusakov
Joint Institute for Nuclear Research (Dubna)
avg@jinr.ru
on behalf of the COMPASS collaboration

PHOTON-2017
CERN, 24.5.2017
The COMPASS experiment

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy)

is a fixed target experiment on a secondary beam of **Super Proton Synchrotron** at CERN

13 countries,
24 institutions,
~220 physicists

1996 - Proposal
2002-now - Physical data taking
COMPASS: physics with muon and hadron beam

COMPASS \approx SPIN PHYSICS + SPECTROSCOPY

Study of spin structure of nucleon with muon beam and polarized target:
- (un)polarized and TMD PDFs and FFs
- Generalized PDFs

Study of hadron structure and hadron spectroscopy with hadron beam:
- Primakoff reactions
- diffractive and central production
- k_T-dependent PDFs via Drell-Yan process

Spectroscopy with muon beam:
XYZ-states
Outline of this talk

COMPASS ≈ SPIN PHYSICS + SPECTROSCOPY

Study of spin structure of nucleon with muon beam and polarized target:
- (un)polarized and TMD PDFs and FFs
- Generalized PDFs

Study of hadron structure and hadron spectroscopy with hadron beam:
- Primakoff reactions
- Diffractive and central production
-
 k_T-dependent PDFs via Drell-Yan process

Study of photon-meson scattering via low-t (Primakoff) reactions

Muoproduction of exotic charmonia

XYZ-states

$q\bar{q}g$

gg

$qq\bar{q}$
The COMPASS setup

COMPASS layout for hadron program

- Muon (160-200 GeV/c) and hadron (190 GeV/c) beams
- CEDAR detectors for beam particle identification (for hadron beam)
- Set of nuclear targets (from H to Pb), polarized 6LiD and NH$_3$
QCD - true theory of strong interactions, but...

Since the constant of strong interactions $\alpha_s \sim 1$ at small energies, exact QCD formalism cannot make predictions with reasonable accuracy. Effective phenomenological models are needed.

Chiral Perturbation Theory

Mass of light quarks (u,d) is much smaller than the typical scale $M \approx 1$ GeV.

$$\mathcal{L}_{QCD} = \mathcal{L}^0 + \mathcal{L}_m$$

mass term - a small perturbation

Chiral symmetric term

m_q/M, p/M - small parameters in expansion

Approximate chiral symmetry is in lagrangian but not in the mass spectrum of hadrons!

Pions are pseudo-Goldstone bosons in chiral theory.
Low-t reactions

Electromagnetic field of fast charged particle is similar to a field of electromagnetic wave

\[\sigma_{x\gamma}(\omega, Q^2) \rightarrow \sigma_{x\gamma}(\omega, 0) \]

\[d\sigma_{xA} = \int n_\gamma(\omega) d\sigma_{x\gamma}(\omega) d\omega \]

Density of equivalent photons:

\[n_\gamma(\omega) \sim \frac{Z^2 \alpha}{\omega} \ln \frac{E}{\omega} \]
Polarizabilities of hadrons

Compton amplitude:

\[A(\gamma X \rightarrow \gamma X) = \]

\[\left(-\frac{\alpha}{m} \delta_{\omega \omega} + \alpha_X \omega_1 \omega_2 \right) \hat{e}_1 \cdot \hat{e}_2 + \]

\[+ \beta_X \omega_1 \omega_2 (\hat{e}_1 \times \hat{q}_1)(\hat{e}_2 \times \hat{q}_2) + \ldots \]

The electric and magnetic polarizabilities of a hadron are the quantities characterizing the rigidity of QCD system

\[H = \ldots - \left(\alpha_X E^2 + \beta_X H^2 \right)/2 \]

PDG data:

<table>
<thead>
<tr>
<th></th>
<th>(\alpha_X, 10^{-4} \text{fm}^3)</th>
<th>(\beta_X, 10^{-4} \text{fm}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>12.0±0.6</td>
<td>1.9±0.6</td>
</tr>
<tr>
<td>(n)</td>
<td>12.5±1.7</td>
<td>2.7±1.8</td>
</tr>
</tbody>
</table>

Chiral theory 2-loop approximation \((O(p^6)) \) for \(\pi \):

\[\alpha_\pi - \beta_\pi = (5.7 \pm 1.0) \times 10^{-4} \text{fm}^3 \]

\[\alpha_\pi + \beta_\pi = (0.16 \pm 0.1) \times 10^{-4} \text{fm}^3 \]

The most of other models:

\[8 \times 10^{-4} \text{fm}^3 \leq \alpha_\pi - \beta_\pi \leq 14 \times 10^{-4} \text{fm}^3 \]
Polarizabilities and cross section

\[\frac{d\sigma}{ds\,dt\,dQ^2} = \frac{Z^2\alpha}{\pi(s - m^2_\pi)} \cdot F^2_{\text{eff}}(Q^2) \cdot \frac{Q^2 - Q^2_{\text{min}}}{Q^4} \cdot \frac{d\sigma_{\pi\gamma}}{dt} \]

\[Q_{\text{min}} = (s - m^2_\pi)/2E_{\text{beam}} \]

Compton cross section:

\[\frac{d\sigma_{\pi\gamma}}{d\Omega_{\text{cm}}} = \alpha^2(s^2z^2_+ + m^4_\pi z^-_+) \cdot \frac{\alpha m^3_\pi (s - m^2_\pi)^2}{s(sz_+ + m^2_\pi z^-_2) - 4s^2(sz_+ + m^2_\pi z^-_2)} \cdot \mathcal{P} \]

\[z_\pm = 1 \pm \cos \theta_{\text{cm}} \]

\[\mathcal{P} = z^-_2(\alpha_\pi - \beta_\pi) + \frac{s^2}{m^4_\pi} z^2_+(\alpha_\pi + \beta_\pi) \]

For the case \(\alpha_\pi + \beta_\pi = 0 \):

\[R = \frac{\sigma}{\sigma_{\text{p.l.}}} \approx 1 - \frac{3}{2} \cdot \frac{x^2_\gamma}{1 - x_\gamma} \cdot \frac{m^3_\pi}{\alpha} \cdot \alpha_\pi \]
The measured kinematic distributions

Background from the reaction $\pi^-\text{Ni} \rightarrow \pi^-\text{Ni} \pi^0$ is subtracted
The COMPASS result

Protvino: $\alpha_\pi = -\beta_\pi = (6.8 \pm 1.4_{\text{stat}} \pm 1.2_{\text{syst}}) \times 10^{-4} \text{ fm}^3$, χPT: $\alpha_\pi \approx 2.8 \times 10^{-4} \text{ fm}^3$

Under assumption $\alpha_\pi = -\beta_\pi$:
$\alpha_\pi = (2.0 \pm 0.6_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-4} \text{ fm}^3$

Larger statistics is under analysis. Separate precision extraction of α_π and β_π is expected

Alexey Guskov, Joint Institute for Nuclear Research
QCD chiral anomaly

Chiral anomaly: chiral symmetry on the level of the lagrangian but non conservation of chiral current

\[\pi^0 \rightarrow \gamma \gamma \quad \gamma \rightarrow 3 \pi \]

For \(\pi^- \gamma \rightarrow \pi^- \pi^0 \):

\[F_{3\pi}(0,0,0) = \frac{F_{\pi}(0,0,0)}{e f^2} \]

Low-energy theorem:

\[F_{3\pi} = \frac{e N_c}{12\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \text{ GeV}^{-3} \]

SIGMA (Protvino, 1987): 10.7±1.2 GeV⁻³
\(\pi^- \)–e scattering (2005): 9.6±1.1 GeV⁻³

For \(\pi^- \gamma \rightarrow \pi^- \eta \):

\[F_{\eta\pi\pi\gamma}(0,0,0) = \frac{e}{4\pi^2} \left(\frac{f_{\pi} \cos \theta_p}{f_8} - \frac{f_{\pi}}{f_0} \sqrt{\frac{2}{3}} \sin \theta_p \right) \]

\[F_{\eta\pi\pi\gamma}(0,0,0) = 6.5 \pm 0.3 \text{ GeV}^{-3} \]

VES (Protvino, 1998): 6.9±0.7 GeV⁻³
χPT prediction for $\gamma\pi \rightarrow 3\pi$ cross sections

Radiative widths of mesons

\[\sigma_{\text{Primakoff}, X} = \int_{m_1}^{m_2} \int_0^{t_{\text{max}}} \frac{d\sigma}{dm \, dt'} \, dt' \, dm = \Gamma_0(X \rightarrow \pi\gamma) C_X. \]

Intensity \(\cdot 10^{-3} / (40 \text{ MeV/c}^2) \)

<table>
<thead>
<tr>
<th>(2^{++} \rho[D]\pi)</th>
<th>(\sigma_{\text{prim}} / \sigma_{\text{all}} = 0.97)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi \text{ Pb} \rightarrow \pi \pi \pi' \text{ Pb})</td>
<td>(t' < 0.001 (\text{GeV/c})^2)</td>
</tr>
<tr>
<td>(\Gamma_0(a_2 \rightarrow \pi\gamma) = 358 \text{ keV})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(2^{-+} f_2[S]\pi)</th>
<th>(\sigma_{\text{prim}} / \sigma_{\text{all}} = 0.86)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi \text{ Pb} \rightarrow \pi \pi \pi' \text{ Pb})</td>
<td>(t' < 0.001 (\text{GeV/c})^2)</td>
</tr>
<tr>
<td>(\Gamma_0(\pi_2 \rightarrow \pi\gamma) = 181 \text{ keV})</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>This measurement</th>
<th>(a_2(1320))</th>
<th>(\pi_2(1670))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEX [21]</td>
<td>(358 \pm 6 \pm 42) keV</td>
<td>(181 \pm 11 \pm 27) keV (\cdot (0.56/\text{BR}_{f_2\pi}))</td>
</tr>
<tr>
<td>S. Cihangir et al. [24]</td>
<td>(284 \pm 25 \pm 25) keV</td>
<td></td>
</tr>
<tr>
<td>E.N. May et al. [25]</td>
<td>(295 \pm 60) keV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.46 \pm 0.11) MeV</td>
<td></td>
</tr>
<tr>
<td>VMD model [1]</td>
<td>(375 \pm 50) keV</td>
<td></td>
</tr>
</tbody>
</table>

2 values: 335 keV and 521 keV

EPJA 50 (2014) 79
Kaon polarizabilities

Theoretical predictions:

χPT prediction $O(p^4)$:

\[\alpha_K + \beta_K = 0 \]
\[\alpha_K = \alpha_\pi \times \frac{m_\pi F_\pi^2}{m_K F_K^2} \approx \frac{\alpha_\pi}{5} \approx 0.6 \times 10^{-4} \text{fm}^3 \]

Quark confinement model:

\[\alpha_K + \beta_K = 1.0 \times 10^{-4} \text{fm}^3 \]
\[\alpha_K = 2.3 \times 10^{-4} \text{fm}^3 \]

Exp. result: $\alpha_K < 200 \times 10^{-4} \text{fm}^3$ (1973)

- from kaonic atoms spectra

Presently COMPASS has ~2.4% of kaons in hadron beam...

RF-separated hadron beam enriched by kaons is under discussion
Exotic charmonia

tetraquark

hybrid meson

hadro-quarkonium

 glueball

molecule

...
XYZ production mechanisms

direct production in e^+e^- collisions;

COMPASS: photo-(muo-)-production off nucleon

We cover range of $\sqrt{s_{YN}}$ from 6 to 19 GeV
Muophoto)production of exotic charmonia: **X(3872)**

First observation of exotic charmonia in photoproduction!

\[iG(J^{PC}) = 0^+(1++) \]

- Mass \(m = 3871.69 \pm 0.17 \text{ MeV} \)
- \(m_{X(3872)} - m_{J/\psi} = 775 \pm 4 \text{ MeV} \)
- \(m_{X(3872)} - m_{\psi(2S)} \)
- Full width \(\Gamma < 1.2 \text{ MeV}, \text{ CL} = 90\% \)

COMPASS result for dipion mass spectrum is in tension with previous observations:

\[13.2 \pm 5.2 \text{ X}(3872) \text{ events} \]

\[\sigma_{\gamma N \rightarrow X(3872) \pi N'} \times B_{X(3872) \rightarrow J/\psi \pi \pi} = 71 \pm 28 \text{ (stat)} \pm 39 \text{ (syst)} \text{ pb} \]

ATLAS: \(\psi(2S) \) and \(X(3872) \)
Muo(photoproduction of exotic charmonia: $Z_c(3900)$

$X(3900)$

$I^G(J^{PC}) = 1^+(1^+-)$

Mass $m = 3886.6 \pm 2.4$ MeV ($S = 1.6$)

Full width $\Gamma = 28.1 \pm 2.6$ MeV

7 years (2002-2011) of data taking with muon beam and nuclear target (6LiD and NH$_3$)

$BR(Z_c^{\pm}(3900) \rightarrow J/\psi \pi^{\pm}) \times \sigma_{\gamma \rightarrow Z_c^{\pm}(3900)} < 52$ pb

$\sqrt{s_{\gamma N}} = 13.8$ GeV

PLB 742 (2015) 330
Low-t reactions provide unique possibility to study processes induced by photons. Study of such reactions is one of the main goals of the COMPASS experiment. Main directions of low-t studies at COMPASS are:

- pion and kaon polarizabilities;
- chiral anomaly study;
- meson radiative width;
- $\sigma_{\pi\gamma}$ dynamics for ChPT tests.

Exclusive photoproduction of exotic charmonia off a nuclear target is a new opportunity to clarify nature of the XYZ states. COMPASS performed:

- first search for exclusive photoproduction of the $Z_c(3900)$;
- first observation of photoproduction of the $X(3872)$;
- more results are expected.