Longitudinal Spin Structure of the Nucleon
COMPASS Legacy

Yann Bedfer
CEA/DPhN Saclay

September 11, 2017
COMPASS @ DSPIN-17

- Longitudinal spin structure
 - Artem Ivanov: Tuesday AM
 Longitudinal target spin dependent azimuthal asymmetries in SIDIS

- Fragmentation
 - Nikolai Mitrofanov: Tuesday AM
 Multiplicities of charged hadrons, pions and kaons in DIS

- TMD
 - Franco Bradamante: TSAs in SIDIS
 - Michael Pešek: TSAs in Drell-Yan
 - Jan Matoušek: q_T-weighted TSAs in Drell-Yan

- GPD
 - Andrzej Sandacz: DVCS and exclusive π^0
 - Bohdan Marianski TSAs in exclusive vector meson production
Partonic structure of the nucleon

- Twist-2 PDFs, integrated over k_T ($k_T = \text{parton intrinsic transverse momentum}$)

 ⇒ Three parton distributions:
 - Parton momentum DF $q(x)$
 - $\Delta q(x)$ for a longitudinally polarised Nucleon via Structure Function $g_1(x, Q^2)$
 - $\Delta_T q(x)$ for a transversally polarised Nucleon

- $\Delta_T q(x)$: See talk by F. Bradamante at this conference

- Finite $A_{UL}^{\sin \phi R}$ in LSA of di-hadron production, sensitive to collinear twist-3 PDF and FF

 See talk by A. Ivanov at this conference
COMPASS: Spectrometer

○ **Muon Beam** (2011)
 - 160 GeV (200 GeV)
 - $2 \cdot 10^8 \mu$ per Spill of ~ 10 s ($1 \cdot 10^8$)
 - 76÷80% polarisation

○ **Target**
 - $LiD: f \simeq 40\%, P_T \simeq 50\%$
 - $NH_3: f \simeq 16\%, P_T \simeq 85\%$

○ **Spectrometer**
 - Two stages
 each with HCalorimeter and μ-filter
 - RICH: in stage 1
 - ECalorimeters(1&2): since 2008
Double Spin Asymmetry Measurement

- **Simultaneous** recording of the two spin states in oppositely polarised target cells.

 - 2 cells: $1/2 \uparrow 1/2 \downarrow \iff 8 \text{ hours} \implies 1/2 \downarrow 1/2 \uparrow$
 - 3 cells: $1/3 \uparrow 2/3 \downarrow 1/3 \uparrow \iff 24 \text{ hours} \implies 1/3 \downarrow 2/3 \uparrow 1/3 \downarrow$

 - Reversal by **target-field** rotation to cancel acceptance diff

$$\frac{A\parallel}{D} = \frac{1}{|P_\mu P_T| f D} \frac{1}{2} \left(\frac{N^{\uparrow\downarrow}}{N^{\uparrow\downarrow}} - \frac{N^{\uparrow\uparrow}}{N^{\uparrow\uparrow}} + \frac{N^{\uparrow\downarrow}}{N^{\uparrow\downarrow}} - \frac{N^{\uparrow\uparrow}}{N^{\uparrow\uparrow}} \right)$$

 - $D = \text{Depolarisation factor}$

\[\begin{align*}
 & LiD: \quad P_\mu \times D \times P_T \times f \approx 80\% \times 60\% \times 50\% \times 40\% \approx 10\% \\
 & NH_3: \quad \ldots \quad P_T \times f \approx \ldots \quad 85\% \times 16\% \approx 6\%
\end{align*} \]

- Reversal via re-polarisation once per year to cancel **target-field**/acceptance correlation

- f corrected for spin-independent radiative processes: TERAD

- $A_1 \approx A\parallel / D$ corrected for spin-dependent radiative processes: POLRAD
Method of extraction

- \(g^{p,d}_{1}(x, Q^2) \) is extracted as:

\[
g^{p,d}_{1}(x, Q^2) = A^{p,d}_{1}(x, Q^2) \frac{F^{p,d}_{2}(x, Q^2)}{2x(1 + R(x, Q^2))}
\]

- Input \(F^{p,d}_{2}(x, Q^2) \): from NMC parametrisation at \(Q^2 > 0.2 \text{ GeV}^2 \) \((PRD 58 (1998) 112001) \)
 at \(Q^2 < 0.2 \text{ GeV}^2 \): from the model based on the GVMD concept \((PLB 295 (1992) 263) \)

- \(R(x, Q^2) \): R1998 from SLAC \((PLB 452 (1999) 194) \)
 suitably extended to low \(Q^2 \), \((PLB 647 (2007) 330) \)

- Maximum systematic uncertainties on \(A_{1} \)
 - At low \(Q^2 \): from \(D(R) \), \(\sim (0.01 - 0.39)D \) (mult.)
 and false asymm., \(1.5\sigma_{\text{stat.}} \) (additive)
 - At high \(Q^2 \): from \(P_B, P_T \), \(\sim 0.05 P_B, P_T \) (mult.)
 and false asymm., \(< 0.8\sigma_{\text{stat.}} \) (additive)
\(g_1^d\) at low \(Q^2\)

- More than ten-fold improvement over SMC

- Consistent with 0 for \(5 \times 10^{-5} < x \lesssim 3 \times 10^{-2}\)

- Tend to indicate that \(\Delta G\) is small. Would then rule out large \(\Delta G\) solution to the spin crisis,

\[
\Sigma = \Sigma_{naiveQM} - N_f \alpha_S(Q^2)/2\pi \Delta G(Q^2)
\]

(see e.g. A. Thomas, Int. J. Mod. Phys. E 18 (2009))
g_1^p at low Q^2

- Kinematic coverage:

\begin{align*}
(Q^2, x) & \\
(x, Q^2) & \\
(Q^2, \nu) & \\
(\nu, x) &
\end{align*}
g_1^p at low Q^2: data sample

- **Reconstructed event**: Small scattering angle
 - ⇒ No way to be strictly inclusive and stay within polarised target cells
 - ⇒ Require one extra outgoing charged particle
 - Doesn’t bias asymmetry at low x (see [SMC Coll., Phys. Rev. D 58 (1998) 112001])

- **Kinematic cuts**
 - $x > 4 \times 10^{-5}$ (at smaller x uncertainties become too large)
 - $0.1 < y < 0.9$ (bad reconstruction @ low y, large rad. corr. at high y)
 - Above cuts result in: $W \gtrsim 5$ GeV

- Removed $\mu e \rightarrow \mu e$ events, around $x = m_e/M_p = 5.45 \times 10^{-4}$

- Final sample: 447 Mevnts @ 160 GeV + 229 Mevents @ 200 GeV
 - $\sim 150 \times$ SMC statistics
Low Q^2: results on $A_{1}^{p}(x, Q^2)$

- More than ten-fold improvement over the statistical precision of SMC.
- Clear spin effects at low x and Q^2
Low Q^2: results on $A_{1}^{p}(x, Q^2)$
Importance of g_1^p at low x, Q^2: results on $A_{1}^{p}(x, Q^2)$

- At low x: strong increase of parton density with decreasing x
 \Rightarrow parton recombination effects

- **BUT**: in fixed-target experiments low x correlated with low Q^2 region
 \Rightarrow non-perturbative effects must be considered

- Attempts to describe that region phenomenologically:

- g_1 at low Q^2 needed for Radiative Corrections
g_1^p at high Q^2: data samples

- Complementing earlier data at $E = 160$ GeV: (PLB 690 (2010) 466)

Reaching lower x and higher Q^2

- Results on A_1^p at both energies agree well
Results on A_1^p and g_1^p

- A_1^p and g_1^p shown at the measured values of Q^2

- Good agreement with world data

- g_1^p clearly positive at lowest measured values of x
g_1^d at high Q^2: data samples

- Combined data, all @ 160 GeV: Phys. Lett. B 769 (2017) 34

- Results on A_1^d agree very well
Results on A_{1}^{d} and g_{1}^{d}

- A_{1}^{d} and g_{1}^{d} shown at the measured values

- Good agreement of A_{1}^{d} and g_{1}^{d} with world data

- g_{1}^{d} compatible with zero at lowest measured values of x,
 contrary to hints from SMC
NLO QCD fit: conditions

- A fit of the g_p^1, g_d^1, $g_{3\text{He}}^1$ inclusive data
- $\overline{\text{MS}}$ scheme
- $W^2 < 10 \text{ GeV}^2$ excluded
- Number of data points total/COMPASS: 495/138
- Fitted: Δg, $\Delta q_0 = \Delta(u+\bar{u}) + \Delta(d+\bar{d}) + \Delta(s+\bar{s})$, $\Delta q_3 = \Delta(u+\bar{u}) - \Delta(d+\bar{d})$, $\Delta q_8 = \Delta(u+\bar{u}) + \Delta(d+\bar{d}) - 2\Delta(s+\bar{s})$, $\Delta f_k(x) = \eta_k \frac{x^\alpha_k (1-x)^\beta_k (1+\gamma_k x)}{\int_0^1 x^\alpha_k (1-x)^\beta_k (1+\gamma_k x) \, dx}, \quad (k = 0, 3, 8, g)$
- Positivity required at every iteration: $|\Delta q + \bar{q}(x)| \leq |q + \bar{q}(x)|, |\Delta g(x)| \leq |g(x)|$ at Q^0
- Systematics: free/fix γ_k's, vary Q^0
NLO QCD fit: results

- Statistical uncertainties (dark bands) \ll systematic (light bands)
- Gluon polarisation poorly constraint \Rightarrow Need “direct” methods
- Quark spin contribution to the nucleon spin: $0.26 < \Delta \Sigma < 0.36$ (due to poor ΔG)
First moments of g_1 and singlet axial charge a_0

- First moments Γ_1^p, Γ_1^d, Γ_1^N

 where $\Gamma_1^i(Q^2) = \int_0^1 g_1^i(x, Q^2) \, dx$

- In particular:

 $$\Gamma_1^N(Q^2) = 1/36 \left[4a_0 \, C_S(Q^2) + a_8 \, C_{NS}(Q^2) \right]$$

 $$= \int_0^1 \frac{g_1^d(x, Q^2)}{1 - 1.5\omega_D} \, dx$$

- In the $\overline{\text{MS}}$: $a_0 = \Delta \Sigma = \Delta(u + \bar{u}) + \Delta(d + \bar{d}) + \Delta(s + \bar{s})$

- From COMPASS data alone:

 $$\Gamma_1^N(Q^2 = 3\text{GeV}^2) = 0.046 \pm 0.002_{\text{stat.}} \pm 0.004_{\text{syst.}} \pm 0.005_{\text{evol.}}$$

- From COMPASS data alone (and still a_8 from Phys. Rev. D 82 (2010)):

 $$a_0(Q^2 = 3\text{GeV}^2) = 0.32 \pm 0.02_{\text{stat.}} \pm 0.04_{\text{syst.}} \pm 0.05_{\text{evol.}}$$

 (consistent with value from the COMPASS NLO QCD fit of world data).
First moments of g_{1}^{NS} and Bjorken sum rule

- Non-singlet structure function:
 \[g_{1}^{NS} = g_{1}^{p}(x, Q^{2}) - g_{1}^{n}(x, Q^{2}) \]

- Bjorken sum rule:
 \[\Gamma_{1}^{NS}(Q^{2}) = \frac{1}{6} \left| \frac{g_{A}}{g_{V}} \right| C_{1}^{NS}(Q^{2}) \]

- g_{1}^{NS} calculated, NLO QCD fitted (only Δq_{3}), evolved to $Q^{2} = 3\text{GeV}^{2}$ and fit-extrapolated $x \rightarrow 0, 1$:
 \[\Gamma_{1}^{NS}(Q^{2}) = 0.192 \pm 0.007_{\text{stat.}} \pm 0.015_{\text{syst.}} \]
 \[\left| \frac{g_{A}}{g_{V}} \right| = 1.29 \pm 0.05_{\text{stat.}} \pm 0.10_{\text{syst.}} \]

- Neutron β decay gives: $|g_{A}/g_{V}| = 1.2701 \pm 0.002$

 PDG, PRD86 (2012) 010001

- This validates the Bjorken sum rule with an accuracy of 9%
Δg: “direct” measurement

- Δg accessed via PGF

- Double spin asymmetries of single inclusive hadron in DIS over a wide range in p_T, $0.05 < p_T < 2.5$ GeV/c

- LO order interpretation:
 - Hadron level $→$ parton level via LEPTO Monte Carlo
 - 1.6 gain in statistical and systematics precision
 - $Δg/g = 0.113 \pm 0.038_{\text{stat.}} \pm 0.035_{\text{syst.}}, \langle Q^2 \rangle = 3\text{GeV}^2, \langle x_g \rangle = 0.10$
\[\Delta g: \text{“direct” measurement (cont’d)} \]

- LO “direct” measurement, here in 3 \(x_g \) bins, compared to NLO QCD fit

(Note: 1st and 2nd bin are correlated.)

\[\Rightarrow \text{Illustrates the potential of “direct” asymmetry data.} \]

(But cannot be included in NLO fit.)
Δg: “direct” measurement @ low Q^2

 Double Spin asymmetry of single inclusive hadron @ $Q^2 < 1$ GeV2

- Extra resolved subprocesses contribute: gg, qg . . .

- New calculation with resummation of large logarithms:

 ⇒ Reasonable agreement with pPDF = DSSV2014 and FF = DSS14(π)+DSS17(K)
Conclusions

- COMPASS legacy on $g_1^p(x, Q^2)$ and $g_1^d(x, Q^2)$ presented for DIS and nonperturbative regions
 - g_1^p at low x and low Q^2 is clearly positive (g_1^d is consistent with zero)
 - First observation of the spin effect at such low x
 - $g_1^d \approx 0$ also at $Q^2 > 1 \text{ GeV}^2$

- From the COMPASS data alone:
 - First moments determined and Bjorken sum rule verified to 9 %

- NLO QCD fit of g_1 world data gave well constrained quark distributions.
 - Quark helicity contribution to nucleon spin: $0.26 < \Delta \Sigma < 0.36$

- “Direct” Δg measurement
 - In DIS, LO extraction: $\Delta g/g = 0.113 \pm 0.038_{\text{stat.}} \pm 0.035_{\text{syst.}}, \langle Q^2 \rangle = 3 \text{ GeV}^2, \langle x_g \rangle = 0.10$
 - At low Q^2, rich asymmetry data, consistent with DSSV2014
Spares
NLO+resummation with pPDF = DSSV2014 and FF = DSS14(\(\pi\))+DSS17(\(K\))

Still tension for \(h^+\) off \(p\), despite resummation of resolved processes.

Improvement for \(h^-\) off \(p\) thanks to DSS14
NLO+resummation with FF = DSS14(\(\pi\))+DSS17(\(K\))

\(\eta \in [-0.1, 0.45]\) \(\eta \in [0.45, 0.9]\) \(\eta \in [0.9, 2.4]\)

\(A_{LL}^d\)}

- \(p_T\) (GeV)