



# Status of Meson PDFs Available measurements and "global fits"



Stephane Platchkov

Paris-Saclay University, CEA/IRFU, France





## The Drell-Yan (-Lederman) process



Christenson et al., PRL 25 (1970) 1523

U



◆ First dimuon experiment at the AGS, made in 1968 Leon Lederman's team was looking for the W



- Rapid fall-off:  $\sim M_{\mu\mu}^{-4}$
- Remark: shoulder at around 3-4 GeV, the authors missed the  $J/\psi$  ... and the parton structure of the nucleon...
- ◆ Explanation by Drell and Yan (1970)

Drell and Yan, PRL 25 (1970) 316

- Process explained using Feynman's parton model
- First application of the parton model besides the SLAC DIS exp't







# "DY" - type experiments – a great historical background



• Discovery of the  $J/\psi$ 

"1974: Ting, Richter



Platchkov

• Discovery of the  $\Upsilon$ 

1977: Lederman



Discovery of the W,Z

1983: Rubbia, van der Meer





Trento - Dilepton workshop

#### Drell-Yan cross section



Convolution of two PDFs

$$\frac{d^2\sigma}{dx_1dx_2} \propto \sum_{i=u,d,s} e_i^2 \left[ f_i^{\pi}(x_1,Q^2).\overline{f}_i^{A}(x_2,Q^2) + \overline{f}_i^{\pi}(x_1,Q^2).f_i^{A}(x_2,Q^2) \right]$$

**QCD** 

Gluon

• At order  $(\alpha_s^0)$ : a purely electromagnetic process

• NLO  $(\alpha_s^{-1})$  corrections are well known

■ NNLO  $(\alpha_s^2)$  corrections are also known



Drell-Yan is a well understood process



#### Complementarity between DIS and Drell-Yan



♦ Space-like virtual photon

◆ Time-like virtual photon



DIS



Similarly to DIS, Drell-Yan is used to determine PDFs

- ◆ Meson-induced Drell-Yan (presently at CERN) several advantages :
  - Valence antiquarks ( $\bar{u}$  in  $\pi$ –): probe the valence quarks in the target (sea quarks with a p beam)
  - Allows access to the meson structure (no meson targets)
    Meson PDFs
  - Can be used to probe flavor dependence
  - p<sub>T</sub>-dependence, access to TMDs



COMPASS

# Drell-Yan: valence and sea quark contributions



- Example: negative pion (ūd) beam on a proton (uud) target:
  - $(\overline{u}d)+(uud)$ all combinations of :
- 4 terms:
  - Valence-valence:  $\overline{\mathcal{U}}_{\pi}\mathcal{U}_{p}$
  - $d_{\pi}\overline{d}_{p}+...$ ■ Valence-sea:
  - Sea-valence:  $\overline{d}_{\pi}d_{p}$
  - Sea-sea:  $u_{\pi}\overline{u}_{p}+...$



Valence – valence terms dominate the cross section



#### Drell-Yan: valence and sea contributions



 $\bullet$  E537, antiprotons with E = 125 GeV, W target

Anassontziset al., PRD 38, 1377 (1988)











# Pion and kaon PDFs: where are we today? A tentative overview





## Proton (unpolarized) structure (HERA)



- The nucleon PDFs have been extensively studied for many years in a large number of experiments
  - example: the HERAPDF2.0 set
  - Other sets: CTEQ, MRST....
- Well know in a (very) large domain of x
  - generic form:

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2}),$$



In contrast, the meson PDFs are essentially unknown



#### Why study meson PDFs?



- ◆ The lightest mesons have a double nature (☞ talk by C. Roberts)
  - 1. The simplest hadrons and the lightest quark-antiquark pairs
  - 2. Massless Nambu-Goldstone bosons that acquires mass through DCSB
    - Craig Roberts (2016): "Thus, enigmatically, the properties of the massless pion are the cleanest expression of the mechanism that is responsible for almost all the visible mass in the universe."
- ◆ Pion and Kaon structure
  - Can be accesses using DSE, LQCD....
  - Quark PDFs different than that of the proton
  - The *s* quark in the kaon is heavier: how is the total momentum shared?
  - What is the behavior of the kaon and pion PDFs at large x?
  - Are kaon and pion gluon distributions identical?





Needed is: experimental information on valence, sea and gluon PDFs





# Pion valence quark distributions Only from DY data: 1979 – 1989

No other experimental information available





## E444 experiment at Fermilab (1979)



◆ E331/E444 experiment (Chicago-Princeton)

- E = 225 GeV
- Targets: C, Cu, W
- Mass range: 4 8.75 GeV
- LO analysis
- ◆ First ever results on the pion
  - Pion valence:  $0.8x^{0.5}(1-x)^{1.23}$
  - Pion momentum: "about" 40%

#### Newman et al., PRL 42, 951(1979)







12

## NA3 experiment at CERN (1983)



◆ NA3 experiment : 150, 200, 200 GeV

■ Target: <sup>195</sup>Pt

**Table 1.** Number of dimuon events collected at 150, 200 and 280 GeV on the 6 cm Pt target in the mass interval 4.2 to  $8.5 \, \text{GeV/c}^2$ 

| $P_{ m inc}$ | Particle                              | No. events              | Luminosity (cm <sup>-2</sup> )                                                   |
|--------------|---------------------------------------|-------------------------|----------------------------------------------------------------------------------|
| 150 GeV/c    | $\pi^-$                               | 15,768                  | $5.0 \pm 0.7 \cdot 10^{38}$                                                      |
| 200 GeV/c    | π <sup>-</sup><br>π <sup>+</sup><br>p | 4,961<br>1,767<br>1,048 | $11.4 \pm 1.3 \cdot 10$ $8.8 \pm 1.0 \cdot 10^{37}$ $11.9 \pm 1.5 \cdot 10^{37}$ |
| 280 GeV/c    | $\pi^-$                               | 11.559                  | $2.8 \pm 0.3 \cdot 10^{38}$                                                      |

- ◆ Analysis (LO)
  - Assume SU(2) and SU(3) symmetry
  - Nucleon PDF: from CDHS (1979)
  - Determine valence pion:  $Ax^{0.45}(1-x)^{1.17}$









## NA10 experiment at CERN (1985)



◆ NA10 results:

# Observation of Anomalous Scaling Violation in Muon Pair Production by 194 GeV/c $\pi^-$ -Tungsten Interactions

NA10 Collaboration

- Target: W, E = 194 GeV, beam =  $\pi$ -, N = 155 000 events
- Main purpose: study the K-factor within the DY model
- Also: fit of the pion PDF (several different fits)

Betev et al., Z. Phys. C28, 15 (1985).

- Results: table with different options with no figure for the pion PDF.
- Analysis: LO
- Pion PDF parametrization:

$$Ax^{0.39}(1-x)^{0.98}$$

**Table 2.** Results of fits of pion valence parameters, at  $M_0^2 = 25 \,\text{GeV}^2$ , for different model assumptions.  $\langle K \rangle$  is the mean normalization factor between data and model resulting from the fits. Nucleon structure parameters are from [10, 11]; pion sea parameters are those of [4]. HYBR = pion structure functions without evolution. Only statistical errors are given

| Model                        | $\alpha_{0}$            | $\alpha_1$       | $\beta_0$       | $\beta_1$        | K-factor                | $\chi^2/d.o.f.$ | Confidence<br>level (%) | $\chi^2$ (below $\Upsilon$ ) | $\chi^2$ (above $\Upsilon$ ) |
|------------------------------|-------------------------|------------------|-----------------|------------------|-------------------------|-----------------|-------------------------|------------------------------|------------------------------|
| Fit region: $0.24 < \sqrt{}$ | $\tau < 0.72$           |                  |                 |                  |                         |                 |                         |                              |                              |
| DY [10, 11]                  | $0.44 \pm 0.03$         | _                | $1.18 \pm 0.04$ | _                | 2.60 + 0.11             | 199.2/42        | 0.0                     | 83.7                         | 115.6                        |
| LLA [10, 11]                 | $0.39 \pm 0.02$         | $-0.07 \pm 0.01$ | $0.98 \pm 0.04$ | $0.56 \pm 0.002$ | $\frac{-}{2.78\pm0.12}$ | 56.0/42         | 7.1                     | 37.4                         | 18.6                         |
| NLLA [10, 11]                | $0.40 \pm 0.03$         | $-0.07 \pm 0.01$ | $1.03 \pm 0.04$ | $0.57 \pm 0.002$ | $1.61 \pm 0.07$         | 57.5/42         | 5.3                     | 36.4                         | 21.2                         |
| HYBR [10, 11]                | $0.44 \pm 0.03$         | _                | $1.13 \pm 0.04$ | -                | $2.62 \pm 0.12$         | 53.0/42         | 11.8                    | 28.4                         | 24.6                         |
| Fit region: 0.24<            | $\frac{1}{\tau}$ < 0.42 |                  |                 |                  |                         |                 |                         |                              |                              |
| DY [10, 11]                  | $0.41 \pm 0.03$         | -                | 1.09 + 0.04     | _                | 2.71 + 0.13             | 75.3/36         | 0.0                     | 75.3                         | 134.8                        |
| LLA [10, 11]                 | $0.41 \pm 0.03$         | $-0.07 \pm 0.01$ | $1.02 \pm 0.04$ | $0.57 \pm 0.002$ | $2.69 \pm 0.12$         | 36.6/36         | 44.7                    | 36.6                         | 20.2                         |
| NLLA [10, 11]                | $0.41 \pm 0.03$         | $-0.07 \pm 0.01$ | $1.04 \pm 0.04$ | $0.57 \pm 0.002$ | $1.58 \pm 0.07$         | 36.0/36         | 47.4                    | 36.0                         | 21.7                         |
| HYBR [10, 11]                | $0.44 \pm 0.03$         | -                | $1.14 \pm 0.04$ | -                | $2.58 \pm 0.12$         | 28.2/36         | 18.1                    | 28.2                         | 25.0                         |
| Fit region: $0.24 < \gamma$  | $\tau < 0.30$           |                  |                 |                  |                         |                 |                         |                              |                              |
| DY [10, 11]                  | $0.42 \pm 0.05$         | _                | $1.07 \pm 0.11$ | ~~               | $2.67 \pm 0.21$         | 7.1/7           | _                       | -                            | ~                            |





# E615 – determination of the pion valence PDF (1989)



#### ■ Pion PDF data

- E615 : 252 GeV, W target
- Analysis
  - Sea quarks subtracted: use NA3 data
  - Correct for A-dependence
  - Analysis at LO only
- Results
  - Pseudo-data PDF points (LO)
  - Pion PDF:  $Ax^{0.6}(1-x)^{1.26}$



up to 20% difference in cross sections between NA3/NA10 and E615





## Pion PDF – NLO reanalysis (2005)



- ◆ Reanalysis at NLO :
  - data: pion-induced DY from E615
- ◆ Fits:
  - Nuclear corrections
  - More recent nucleon PDFs: CTEQ5M, MRST,
- ◆ Results:
  - $\blacksquare$  small depletion at low x
  - weak HT effect
  - some increase at high-x:  $(1-x)^{1.55}$

Wijesooriya et al., PR C72, 065203 (2005).







# Pion valence PDF – fall-off at large *x*?



Pion PDF parametrization :  $\sim Ax^{\alpha}(1-x)^{\beta}$ 

- ◆ Fall-off from original data (LO!)
  - NA3:  $\beta = 1.17$
  - E615:  $\beta = 1.26$
- Fall-off from 2005 re-analysis (NLO)
  - E615:  $\beta = 1.55$
- Fall-off from theory:
  - pQCD:  $\beta > 2.0$
  - DSE:  $\beta > 2.0$



A puzzle, .... until 2010 ...



#### Pion (valence) PDF – reanalysis with NLL resummation (2010)



#### New fit of E615 data

- NLO, NLL
- sea + gluons: from GRSh 1999
- take into account nuclear effects
- Valence PDF:

$$xv^{\pi}(x) = Nvx^{\alpha}(1-x)^{\beta}(1+\gamma x^{\delta})$$

Falloff at Q = 4 GeV:  $\beta$  = 2.34 Agreement with pQCD, DSE

NLL: makes the valence distribution softer at high *x*; OK vs DSE







"Our results overall demonstrate that threshold resummation effects will be important in the analysis of future COMPASS data."



# (Some of the) recent calculations of the pion PDF



- ◆ E615 data re-analysis
  - NLO: Wijesoorija, Reimer, Holt, 2005
  - NLO + NLL : Aicher, Shaffer, Voglesang, 2010
- ◆ Model calculations
  - DSE : Nguyen et al., 2011, Chen et al., 2016
  - LFCM : Pasquini et al., 2014
  - NLChQM: Nam, 2012





(c)



New, higher statistics data from COMPASS!





#### What do we know about the pion sea?





# NA3 experiment at CERN (1983)



- ◆ NA3 experiment : 150, 200, 200 GeV
  - Target : <sup>195</sup>Pt

**Table 1.** Number of dimuon events collected at 150, 200 and 280 GeV on the 6 cm Pt target in the mass interval 4.2 to  $8.5 \, \text{GeV/c}^2$ 

| $P_{ m inc}$ | Particle | No. events | Luminosity (cm <sup>-2</sup> ) |
|--------------|----------|------------|--------------------------------|
| 150 GeV/c    | $\pi^-$  | 15,768     | $5.0 \pm 0.7 \cdot 10^{38}$    |
| 200 GeV/c    | π-       | 4,961      | $11.4 \pm 1.3 \cdot 10$        |
| ·            | $\pi^+$  | 1,767      | $8.8 \pm 1.0 \cdot 10^{37}$    |
|              | р        | 1,048      | $11.9 \pm 1.5 \cdot 10^{37}$   |
| 280 GeV/c    | $\pi^-$  | 11.559     | $2.8 \pm 0.3 \cdot 10^{38}$    |

- ◆ Analysis (LO)
  - Assume SU(2) and SU(3) symmetry
  - Nucleon PDF: from CDHS (1979)





The only available today valence/sea separation





#### Valence sea separation in the pion



Two linear combinations:

Londergan, Liu and Thomas, PL B361, 110 (1995).

- assume SU(2) and charge invariance
- Sea:
- Valence:

$$\Sigma_{sea}^{\pi D} = 4\sigma^{\pi^{+}D} - \sigma^{\pi^{-}D}$$

$$\Sigma_{val}^{\pi D} = -\sigma^{\pi^{+}D} + \sigma^{\pi^{-}D}$$

• Study the ratio:  $R_{S/V} = \frac{\Sigma_{sea}^{\pi D}}{\Sigma_{nal}^{\pi D}}$ ,

- Experimental requirements :
  - Need  $\pi^-$  and  $\pi^+$  beams
  - High energy > low x

no valence-valence terms

only valence-va



Measurement only possible at CERN - talks by C. Quintans and V. Andrieux





22

#### Pion PDF at low x via DIS at HERA



- ◆ Idea: scattering from the pion cloud (Sullivan, 1972):
  - Pion cloud: the proton is a bare proton plus other states:

$$|p\rangle = a |p\rangle + b |n\pi^{+}\rangle + c |p\pi^{0}\rangle + ....$$

- ◆ HERA (Zeus and H1)
  - the proton fluctuates into a  $n\pi^+$  state
  - H1: study the process:  $ep \rightarrow e'nX$
  - Detect leading neutrons





23

#### Pion PDFs at low x via DIS at HERA



#### Main findings:

- the shape of the pion sea is quite similar to the one of the nucleon (solid curve)
- magnitude of the sea: ~about 1/3 instead of expected 2/3.
- Large uncertainties on the estimate of the "pion flux"

#### Aaron et al., Eur. Phys. J. C68, 381 (2010)







#### CEO IR F IJ

#### Pion and Kaon Structure at an Electron-Ion Collider

1-2 June 2017, Physics Division, Argonne National Laboratory





Far-Forward Ion Detection





Platchkov

25

COMPASS

# Pion PDF at high x (DIS on the pion at JLAB)



- ◆ JLAB experiment (Tagged DIS, 2015)
  - use the pion cloud model to study the pion PDF (p and d targets)
  - detect leading protons

We here propose to measure the semi-inclusive reactions H(e, e'p)X and D(e, e'pp)X in the deep inelastic regime of  $8 < W^2 < 18 \text{ GeV}^2$ ,  $1 < Q^2 < 3 \text{ GeV}^2$ , and 0.05 < x < 0.2, for very low proton momenta in the range 60 MeV/c up to 400 MeV/c.

- study  $\pi$  PDF at high x;
- normalize flux to to the DY data











# Extraction of the pion gluon distribution (1983 – 1995)

Three possible methods for extracting  $g_{\pi}(x)$ :

- Prompt photon production
- Leading  $\pi + /\pi$  comparison in high-p<sub>T</sub> jets
- Using J/ $\psi$  production





#### Gluon PDF – Method-1: high-p<sub>t</sub> prompt photons ☞ talk by A. Guskov



- High-pt prompt photons in  $\pi + p \rightarrow \gamma + X \ (\pi^+ \text{ and } \pi^- \text{ beams})$ 
  - two processes:  $qg \rightarrow \gamma q$  and  $q\bar{q} \rightarrow \gamma q$
  - known up to  $O(\alpha_s^2)$
  - Data from WA70 (CERN) at 280 GeV on a H target

Bonesini et al., Z.Phys. C37, 535 (1988)

Aurenche et al, PLB 233, 517 (1989)

- $\blacksquare$   $\pi$  cross section ratio dominated by: qg ->  $\gamma$ q
- Note that  $\sigma(\pi^+)$   $\sigma(\pi^-)$  is sensitive to  $q\bar{q}$



- Data cut for high p<sub>t</sub>: 4 GeV/c
- $g_{\pi} \sim (1-x)^{1.94\pm0.20\pm028}$



Results for xG(x) rely on the knowledge of Valence and Sea No new data since then!



28

#### Gluon PDF – Method-2: leading $\pi$ + and $\pi$ – in high-p<sub>t</sub> di-jets



◆ Fermilab experiment (E609)

Bodner et al., Z. Phys. C72, 249 (1995)

- E = 400 GeV protons, E = 200 GeV pions
- Target: liquid H<sub>2</sub>

- ◆ Data analysis
  - Ratio of data for two jets
  - $p_t$  cut: > 7 GeV for two jets
  - About 2 x 5000 events survive cuts

| xG(x)                                   | Reactions                        | Subprocess                  | Reference         |  |
|-----------------------------------------|----------------------------------|-----------------------------|-------------------|--|
| $(1-x)^3$                               | $\pi N 	o \psi$                  | GG	o car c                  | [4], (1980)       |  |
| $(1-x)^{1.9\pm0.3}$                     | $\pi^-Be	o\psi$                  | GG	o car c                  | [5],(1983), WA11  |  |
| $(1-x)^{2.38\pm0.06\pm0.1}$             | $\pi^{\pm} Pt  ightarrow \psi$   | GG	o car c                  | [6], (1983)       |  |
| $\sim (1-x)^{3.1}$ , evolves with $Q^2$ | $\pi p 	o \psi, \pi^{\pm} X$     | GG 	o car c                 | [7], (1984)       |  |
| $(1-x)^{2.3^{+0.4+0.1}_{-0.3-0.5}}$     | $\pi^-W \to \Upsilon$            | $GG 	o bar{b}$              | [8], (1986) NA10  |  |
| $(1-x)^{1.94^{+0.39}_{-0.17}}$          | $\pi^{\pm}p  ightarrow \gamma X$ | $QG  ightarrow \gamma Q$    | [10], (1989) WA70 |  |
| $(1-x)^{2.1\pm0.4}$                     | $\pi^+ p 	o \gamma X$            | $QG  ightarrow \gamma Q$    | [11], (1991)      |  |
| $(1-x)^{2.75\pm0.40\pm0.75}$            | $\pi^- p 	o dijets$              | $QG, GG \rightarrow dijets$ | This paper        |  |

• Result:  $g_{\pi} \sim (1-x)^{2.75 \pm 0.40 \pm 0.75}$ 



# Gluon PDF – Method-3: from J/ $\psi$ production



lacktriangle Main processes contributing to J/ $\psi$ 





gg

gg fusion

- Pion-induced  $J/\psi$  production:
  - NA3 (E = 150, 200 GeV)
  - E537 (E = 125 GeV)
  - WA11 (E = 190 GeV)

Platchkov

■ NA10 (Y prod, E = 286 GeV)

$$xg_{\pi}(x) = A(1-x)^{\beta}$$



30

#### Gluon PDF extraction – examples



■ E537: 125 GeV/c: W target

Akerlof et al., PRD48, 5067 (1993)



■ NA3: 200/280 GeV/c: Pt target

Badier et al., ZPhys, C20, 101 (1983)



Quite different results: ß varies from 1.20 to 2.38





# Comparison of DY and J/ $\psi$ processes



- ◆ Drell-Yan
  - Mainly electromagnetic process : clean and well known probe ⊖
  - Access to valence and sea quark PDFs
  - Low cross sections 🙂
- $J/\psi$  production
  - Strong interaction process
  - Depends on quark and gluon PDFs (at FT regime)
  - Large cross sections! ⊖
  - Model dependence ② a really powerful probe if we can get rid of it!

atalk by J.-C. Peng





# "Global" fits of the pion PDFs





#### Global fits



◆ In 2017: still only four global fit parametrizations (1984 – 1992)

Owens (OW)

Phys. Rev. D30, 943 (1984)

Aurenche et al. (ABKFW)

Phys. Lett. 233, 517 (1989)

■ Sutton et al. (SMRS)

Phys. Rev. D45, 2349 (1992)

■ Gluck et al., (GRV/S)

Z. Phys. C53, 651 (1992), Eur. Phys. J. C10, 313 (1999)

◆ Constraints for the pion

Number of quarks

$$\int_{0}^{1} u_{\pi}(x) dx = \int_{0}^{1} v_{\pi}(x) dx = 1$$

■ Momentum sum rule

$$\int_{0}^{1} x \left[ 2v_{\pi}(x) + 6s_{\pi}(x) + g_{\pi}(x) \right] dx = 1$$

■ SU(2) and charge symmetries  $u_{\pi}(x) = \overline{u}_{\pi}(x) = d_{\pi}(x) = \overline{d}_{\pi}(x)$ 





#### Pion global fits – Owens

æ

- ◆ DY data
  - E537 (125 GeV)
  - NA3 (150 GeV)
- $J/\psi$  data
  - NA3 (200 + 280 GeV)
  - WA39 (40 GeV)
- Analysis
  - LO with a K-factor
  - Q<sup>2</sup>-dependence





Owens parametrizations are still in use today



## Pion global fit – SMRS



◆ SMRS : fit at NLO

Sutton, Martin, Roberts and Strirling, PRD 45, 2349 (1992).

- valence quarks: DY data from NA3, NA10, E615
- sea: vary from 5% to 20% of the total pion momentum
- gluons: use  $\pi p \rightarrow \gamma X$  data from WA70 (1989)
- First moments @4 GeV<sup>2</sup>
  - valence: 0.47, sea: 0.10 0.20, gluons: 0.43 0.33





SMRS: "tension" with NA3 data



**COMPASS** 

#### Pion global fits – GRV/S



- GRV fits at NLO:
  - 1992:  $\pi$ -induced DY from NA3, NA10, E615
  - 1999: Constituent Quark Model constraints
  - Gluons:  $\pi$ -induced prompt photon data
  - $\blacksquare$  Q<sup>2</sup> evolution



X

GRV: Z Phys C53, 651 (1992).

GRS: Eur Phys J C10, 313 (1999).



The two global fits are non-consistent



COMPASS

37

#### Pion TMDs



|                              |   | nucleon polarization                             |                                                  |                                                                        |  |
|------------------------------|---|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------|--|
|                              |   | U                                                | L                                                | Т                                                                      |  |
| <b>quark</b><br>polarization | U | $f_1$ • number density                           |                                                  | $f_{1T}^{\perp}$ $\bullet$ - $\bullet$                                 |  |
|                              | L |                                                  | $g_1 \longrightarrow - \longrightarrow$ helicity | $g_{1T}$ $\overline{\bullet}$ - $\overline{\bullet}$                   |  |
|                              | т | $h_1^{\perp}$ $\bullet$ - $\bullet$ Boer-Mulders | $h_{1L}^{\perp}$                                 | $h_1$ $\delta$ - $Q$ transversity $h_{1T}^{\perp}$ $\delta$ - $\delta$ |  |



Only two TMDs (at LT)

#### Boer-Mulders pion PDF in the LFCM





Pasquini, Schwetzer PR D90, 014050, (2014)

#### PION TRANSVERSE MOMENTUM DEPENDENT PARTON ...





#### PHYSICAL REVIEW D **90**, 014050 (2014)









#### What about kaon PDFs?





# A single measurement (NA3) from 1983



#### Results

• The cross section ratio for  $K^-$  and  $\pi^-$  beams is proportional to:

$$\overline{u}^{K^-}(x)/\overline{u}^{\pi^-}(x)$$

- At large x, the kaon  $\bar{\mathbf{u}}(x)$  is smaller than the pion  $\bar{\mathbf{u}}(x)$
- The heavier *s* quark carries a larger fraction of the kaon momentum

Badier et al, PL 93B, 355 1980.





NA3 data: 700 events. We need more.



## Kaon and pion PDFs (DSE)



◆ DSE plot (courtesy C. Roberts)

Chen et al., PRD 93, 074021 (2016).







#### Gluon PDF for kaons?

œ

- ◆ BS + DSE calculation (☞ C. Roberts' talk)
  - Derive valence distributions, then incorporate sea and gluons. Evolve.
  - Fit  $u(K)/u(\pi)$  ratio and adjust the gluon PDF.



- ◆ Chen et al. (challenging!) conclusion:
  - At the hadronic scale gluons carry only 5% of the momentum of the kaon BUT 35% of the momentum of the pion!

=> Another good reason for a measurement of the kaon PDFs





#### Present status of the meson PDFs



- ◆ Global fits of the pion PDFs
  - Present parametrizations have large uncertainties (compared to nucleon)
  - No new data since nearly 3 decades
  - New global fit analysis underway (Sato et al., , PIEIC, Argonne, 2017)

- ◆ Measurements on the pion ion PDFs
  - Valence PDF: data can be improved, particularly for x < 0.5
  - Sea PDF: unknown (except some nice HERA data at low *x*)
  - Gluon PDF: badly known,
- Measurements on the kaon PDFs
  - All valence, sea and gluons PDF are essentially unknown

New measurements at CERN can greatly improve both pion and kaon PDFs!



CERN is a unique place for such measurements



#### Planned and possible measurements at CERN



- ◆ Present: 2015 and 2018
  - Pion valence PDF : infer from NH<sub>3</sub> and W with good statistics ( $\pi$  beam)
- ◆ After LS2: "near" future with "conventional" beams: ☞ talk by C. Quintans
  - valence sea separation of the pion PDFs ( $\pi$ + and  $\pi$  beams)
- ◆ After LS3: RF-separated kaon and antiproton beams: ☞ talk by J.Bernhard
  - Kaon valence PDF using DY

- atalk by V. Andrieux
- Kaon valence sea separation with DY (K+ and K− beams)
- Kaon valence glue separation with  $J/\psi$  production on a proton target (K+ and K− beams)
- Kaon and pion gluon PDFs using direct photons (K- and  $\pi$  beams):  $\Box$  talk by A. Guskov

