Spin structure of the proton at low x and low Q^2
in two-dimensional bins from COMPASS

Ana Sofia Nunes (LIP-Lisbon), on behalf of the COMPASS Collaboration

DIS2016, DESY, Hamburg, Germany – April 11th-15th, 2016

Aknowledgements: CERN/FIS-NUC/0017/2015
Motivation

- low $x \leftrightarrow$ high parton densities
- low x and low $Q^2 \leftrightarrow$ transition from the regime of photoproduction to the regime of DIS (described by pQCD)
- A_1^p and g_1^p as functions of x and ν showed, for the first time, positive spin effects at very low x (cf. $A_1^d \sim 0$ at low x, and SMC sample - 150x smaller)
- theoretical predictions for g_1^p as function of two kinematic variables:
 “Spin structure function $g_1(x, Q^2)$ and the DHGHY integral $I(Q^2)$ at low Q^2: Predictions from the GVMD model”
 “Comment on the recent COMPASS data on the spin structure function g_1”
 “Overview of the spin structure function g_1 at arbitrary x and Q^2”
 “one can parameterize g_1 by the set of variables x, Q^2 or, alternatively, $\omega \equiv 2pq = 2M(E - E')$, Q^2, or ν, Q^2”
- COMPASS’ $\sim 7 \times 10^8$ events allow a 2D extraction
- extraction, for the first time, in 4 2D grids: (x, Q^2), (ν, Q^2), (x, ν), (Q^2, x)
The COMPASS experiment at CERN

COMPASS @ CERN
COmmom Muon Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment at the SPS using a tertiary muon beam
- Collaboration of about 200 members from 11 countries and 23 institutions

- 160/200 GeV μ^+ polarised beam, $P_b \sim -80\%$
- ^6LiD or NH_3, 1.2 m long, polarised target @ 2.5 T and 60 mK, $P_{\text{target}} \sim 50/85\%$

- large acceptance, two staged spectrometer
- tracking, calorimetry, PID

Ana S. Nunes (LIP-Lisbon)
Polarised target

<table>
<thead>
<tr>
<th>Material</th>
<th>Dilution factor ((f))</th>
<th>Polarisation ((P_{\text{target}}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{6}\text{LiD})</td>
<td>0.40</td>
<td>50%</td>
</tr>
<tr>
<td>(\text{NH}_3)</td>
<td>0.16</td>
<td>85%</td>
</tr>
</tbody>
</table>

Two 30 cm long target cells polarised in the same direction. One 60 cm long target cell polarised in the opposite direction.

\(^{4}\text{He} - ^{4}\text{He} \text{ Dilution refrigerator (T ~ 50 mK)}\)

Vertex coordinate \(z_{PV}\)

- 160 GeV beam (2007)
- 200 GeV beam (2011)

\(\mu\)

\(\mu\)

\(\geq 2006\)
Data samples for the extraction of A_1^p and g_1^p

- Longitudinally polarised target (NH$_3$): 676×10^6 events
 (447 $\times 10^6$ with 160 GeV beam in 2007, 229 $\times 10^6$ with 200 GeV beam in 2011)

- Before, SMC low x, low Q^2 proton data: 4.5 $\times 10^6$ events
 \Rightarrow The COMPASS data set has 150\times more events than SMC

Main selection criteria:

- at least one additional track (besides the scattered muon) in the interaction point
 ("hadron method") - SMC proved there is no bias to the inclusive asymmetries at
 low x

- not a μe elastic scattering event

- $Q^2 < 1$ (GeV/c)2

- $x \geq 4 \times 10^{-5}$

- 0.1 $\leq y < 0.9$
Characteristics of the final sample

- A_P^D and g_1^D at low x and Q^2 (COMPASS)

Ana S. Nunes (LIP-Lisbon)
Phase-space coverage of the 2D analysis

\[(x, Q^2) \]

\[(\nu, Q^2) \]

\[(x, \nu) \]

\[(Q^2, x) \]
Double spin longitudinal asymmetry A_{1}^{p}

\[N \leftrightarrow,\leftrightarrow = a \phi n \bar{\sigma}(1 \pm P_{\text{beam}} P_{\text{target}} \chi D A_{1}^{p}) \]

\[\frac{N \leftrightarrow,1 \cdot N \leftrightarrow,2}{N \leftrightarrow,1 \cdot N \leftrightarrow,2} \rightarrow 2^{\text{nd}} \text{ ord. eq. on } A_{1}^{p} \]

- Each event is given a weight $\omega = f D|P_{\text{beam}}|$ to optimize the statistical errors

- Unpolarised radiative corrections (RC), included in the dilution factor, from TERAD

 [A.A. Akhundov, et al., Fortschr. Phys. 44 (1996) 373]

- Polarised radiative corrections ($A_{1}^{pRC} \leq 0.25 \delta A_{1}^{\text{stat}}$) from POLRAD

- Corrected for polarisable ^{14}N ($A_{1}^{^{14}N} \leq 0.01 \delta A_{1}^{\text{stat}}$)

- Thorough checks on possible sources of false asymmetries \Rightarrow systematic errors similar to the statistical errors
Spin dependent structure function g_1^p

- The structure function is obtained in bins of x or ν according to:

$$g_1^p \left(\langle x \rangle, \langle Q^2 \rangle \right) = \frac{F_2^p \left(\langle x \rangle, \langle Q^2 \rangle \right)}{2x \left[1 + R \left(\langle x \rangle, \langle Q^2 \rangle \right) \right]} A_1^p \left(\langle x \rangle, \langle Q^2 \rangle \right)$$

- $F_2^p(\langle x \rangle, \langle Q^2 \rangle)$ from the SMC fit on data or from a model (for low x and Q^2)

- $R(\langle x \rangle, \langle Q^2 \rangle)$ based on SLAC parameterization, extended to low Q^2
 [COMPASS, PLB 647 (2007) 330]
$A_1^p(x)$ & comparison with previous experiments

- Results for the two beam energies are compatible within errors
- Systematic errors are similar to the statistical errors (not shown here)
- A_1^p is significantly positive
- No dependence on x is seen (nor on ν, not shown here)
- The COMPASS results improve the precision of the measurement
A_1^p and g_1^p at low x and low Q^2: results for the grid (x, Q^2)

Data: 2007&2011, $\mu^+ p \rightarrow \mu^+ X$

- **no strong dependence** on x or Q^2
A_1^p and g_1^p at low x and low Q^2: results for the grid (ν, Q^2)

Data: 2007 & 2011, $\mu^+ p \rightarrow \mu^+ X$

- **No strong dependence** on ν or Q^2

A_1^p and g_1^p at low x and Q^2 (COMPASS)
A_1^p and g_1^p at low x and low Q^2: results for the grid (ν, x)

Data: 2007 & 2011, $\mu^+ p \rightarrow \mu^+ X$

- **no strong dependence** on ν or x
A_1^p and g_1^p at low x and low Q^2: results for the grid (Q^2, x)

Data: 2007&2011, $\mu^+ p \rightarrow \mu^+ X$

- no strong dependence on x or Q^2
Longitudinal double spin asymmetries A_1^p and the spin dependent structure function g_1^p extracted in 4 two-dimensional grids:

- (x, Q^2)
- (ν, Q^2)
- (x, Q^2)
- (Q^2, x)

- **Positive** spin asymmetries at very low x

- **No significant dependence** on studied kinematic variables

BACKUP
To obtain the value of C from (12), the contribution of resonances was evaluated using the preliminary data taken at ELSA/MAMI by the GDH Collaboration [16] at the photoproduction, for $W_i = 1.8$ GeV. The asymptotic part of g_1 was parametrized using the GRSV2000 fit for the “standard scenario” of polarized parton distributions with a flavor symmetric light sea, $\Delta u = \Delta d = \Delta s = \Delta \bar{s}$, at the NLO accuracy [9]. The non-perturbative parton distributions, $\Delta p_i^{(0)}(x)$, in the light vector meson component of g_1, (3), were evaluated at fixed $Q^2 = Q_0^2$, using, either (i) the GRSV2000 fit, or (ii) a simple, “flat” input:

$$\Delta p_i^{(0)}(x) = N_i (1 - x)^{\eta_i},$$

(13)

with $\eta_u = \eta_d = 3$, $\eta_s = 7$ and $\eta_{\bar{s}} = 5$. The normalization constants N_i were determined by imposing the Bjorken sum rule for $\Delta u_i^{(0)} - \Delta d_i^{(0)}$, and requiring that the first moments of all other distributions are the same as those determined from the QCD analysis [18]. It was checked that the parametrization (13) combined with the unified equations gives a reasonable description of the SMC data on $g_1^{NS}(x, Q^2)$ [19] and on $g_1^p(x, Q^2)$ [5]. This fit was also used to investigate the magnitude of the double logarithmic corrections, $\ln^2(1/x)$, to the spin structure function of the proton at low x [20]. We have assumed $Q_0^2 = 1.2$ GeV2, cf. (1) and (3), in accordance with the analysis of F_2 [7,8]. As a result the constant C was found to be -0.30 in case (i) and -0.24 in case (ii). These values change at most by 13% when Q_0^2 changes in the interval $1.0 < Q_0^2 < 1.6$ GeV2.

Fig. 1. Values of g_1 for the proton as a function of x and Q^2. The asymptotic contribution, g_1^{AS}, is marked with broken lines, the VMD part, g_1^L, with dotted lines and the continuous curves mark their sum, according to (5).

Fig. 2. Values of xg_1 for the proton as a function of x at the measured values of Q^2 in the non-resonant region, $x < x_t = Q^2/2M_{\pi^0}(Q^2)$. The upper plot corresponds to the VMD part parameterized using (13), the lower plot corresponds to the GRSV parameterization [9] of the VMD input. The g_1^{AS} in both plots has been calculated using the GRSV fit for standard scenario at the NLO accuracy. The contributions of the VMD and of the xg_1^{AS} are shown separately. Points are the SMC measurements at $Q^2 < 1$ GeV2 [3]; errors are total. The curves have been calculated at the measured x and Q^2 values.