Exclusive ω meson production at COMPASS

Wolf-Dieter Nowak
University of Mainz

Paweł Sznajder
National Centre for Nuclear Research, Warsaw

on behalf of the COMPASS Collaboration

14th International Workshop on Meson Production, Properties and Interaction
Kraków, Poland, June 2-7, 2016
• Formalism: GPDs, cross section, asymmetries
• COMPASS experiment
• Transverse target spin asymmetries for exclusive ω production in muon-nucleon scattering
• Summary and outlook
Formalism: Generalised Parton Distributions (GPDs)

Hard Exclusive Meson Production

\[\gamma^* p \rightarrow V p' \]

Chiral-even GPDs

- Helicity of parton unchanged
 - \(H^{q,g} (x, \xi, t) \)
 - \(\widetilde{H}^{q,g} (x, \xi, t) \)
 - \(E^{q,g} (x, \xi, t) \)
 - \(\widetilde{E}^{q,g} (x, \xi, t) \)

Chiral-odd GPDs

- Helicity of parton changed (not probed by DVCS)
 - \(H_T^{q} (x, \xi, t) \)
 - \(\widetilde{H}_T^{q} (x, \xi, t) \)
 - \(E_T^{q} (x, \xi, t) \)
 - \(\widetilde{E}_T^{q} (x, \xi, t) \)

Flavour separation for GPDs

Example of ‘effective’ GPDs:

- \(E_{\rho} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u + \frac{1}{3} E^d + \frac{3}{8} E^g \right) \)
- \(E_{\omega} = \frac{1}{\sqrt{2}} \left(\frac{2}{3} E^u - \frac{1}{3} E^d + \frac{1}{8} E^g \right) \)
- \(E_{\phi} = -\frac{1}{3} E^s - \frac{1}{8} E^g \)

- Contribution from gluons at the same order of \(\alpha_s \) as from quarks

Note:

- Large \(Q^2 \) and \(W, -t/Q^2 \ll 1 \)
- Factorization strictly proven only for longitudinal \(\gamma^* \)
GPD formalism – highlights

Nucleon tomography:

(quasi-) 3D parton distribution function:

\[q(x,b) = \left(\frac{2 \pi}{\Delta} \right)^{-2} \int d^2 \Delta e^{-ib \cdot \Delta} H^q(x,0,t=-\Delta^2) \]

where:

- \(x \) - longitudinal momentum fraction of hit parton
- \(b \) - 2-dim. position of hit parton

\[H^q(x,0,t=-\Delta^2) \]

Ji’s sum rule (access to total angular momentum) for quarks:

\[\frac{1}{2} \int dx x \left[H^q(x,\xi,0) + E^q(x,\xi,0) \right] = 2 J^q \]

Transversity:

\[H^q_T(x,0,0) = h^q_T(x) \]
Cross section formula for exclusive meson production

\[
\frac{\alpha_{em}}{8\pi^3} \frac{y^2}{1-x_B} \left[\frac{1}{Q^2} \right]^{-1} \frac{d\sigma}{d x_B dQ^2 d\phi d\phi_S} = \frac{1}{2} \left(\sigma^{++} + \sigma^{+-} \right) + \varepsilon \sigma^{++}_{00} - \varepsilon \cos(2\phi) \text{Re} \sigma^{++} - \sqrt{\varepsilon(1+\varepsilon)} \cos \phi \text{Re} \left(\sigma^{++}_{00} + \sigma^{+-} \right) \\
- P_\ell \sqrt{\varepsilon(1-\varepsilon)} \sin \phi \text{Im} \left(\sigma^{++}_{00} + \sigma^{+-} \right) \\
- S_L \left[\varepsilon \sin(2\phi) \text{Im} \sigma^{++} + \sqrt{\varepsilon(1+\varepsilon)} \sin \phi \text{Im} \left(\sigma^{++}_{00} - \sigma^{+-} \right) \right] \\
+ S_L P_\ell \left[\sqrt{1-\varepsilon^2} \frac{1}{2} \left(\sigma^{++} - \sigma^{+-} \right) - \sqrt{\varepsilon(1-\varepsilon)} \cos \phi \text{Re} \left(\sigma^{++}_{00} - \sigma^{+-} \right) \right] \\
- S_T \left[\sin(\phi - \phi_S) \text{Im} \left(\sigma^{++} + \varepsilon \sigma^{++}_{00} \right) + \frac{\varepsilon}{2} \sin(\phi + \phi_S) \text{Im} \sigma^{++} + \frac{\varepsilon}{2} \sin(3\phi - \phi_S) \text{Im} \sigma^{++} \right] \\
+ \sqrt{\varepsilon(1+\varepsilon)} \sin \phi_S \text{Im} \sigma^{+-} + \sqrt{\varepsilon(1+\varepsilon)} \sin(2\phi - \phi_S) \text{Im} \sigma^{++}_{00} \right] \\
+ S_T P_\ell \left[\sqrt{1-\varepsilon^2} \cos(\phi - \phi_S) \text{Re} \sigma^{++} \right] \\
- \sqrt{\varepsilon(1-\varepsilon)} \cos \phi_S \text{Re} \sigma^{+-}_{00} - \sqrt{\varepsilon(1-\varepsilon)} \cos(2\phi - \phi_S) \text{Re} \sigma^{++}_{00} \right] .
\]

\(\sigma_{mn}^{ij} \): helicity-dependent photoabsorption cross sections and interference terms

\[
\sigma_{mn}^{ij}(x_B, Q^2, t) \propto \sum \left(M_m^i \right)^* M_n^j
\]

\(M_m^i \): amplitude for process \(\gamma^* p \rightarrow V p' \) with photon helicity \(m \) and target proton helicity \(i \)

\[
\epsilon = \frac{1-y-\frac{1}{4}y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}y^2} \\
y = 2 x_{Bj} M_p / Q
\]
5 transverse-target single-spin asymmetries and 3 transverse-target double-spin asymmetries

\[
A_{UT}^{\sin (\phi - \phi_s)} = -\frac{\text{Im} \left(\sigma_{++}^+ + e \sigma_{00}^+ \right)}{\sigma_0}
\]

\[
A_{UT}^{\sin (2 \phi - \phi_s)} = -\frac{\text{Im} \sigma_{0+}^-}{\sigma_0}
\]

\[
A_{UT}^{\sin \phi_s} = -\frac{\text{Im} \sigma_{++}^+}{\sigma_0}
\]

\[
A_{UT}^{\sin (3 \phi - \phi_s)} = -\frac{\text{Im} \sigma_{+-}^-}{\sigma_0}
\]

\[
A_{UT}^{\sin (\phi + \phi_s)} = -\frac{\text{Im} \sigma_{+-}^-}{\sigma_0}
\]

unpolarised cross section

\[
\sigma_0 = \frac{1}{2} \left(\sigma_{++}^+ + \sigma_{+-}^- \right) + e \sigma_{00}^+ = \sigma_L + e \sigma_T
\]
Effect known since early photoproduction experiments

- At COMPASS kinematics:
 - small for ρ^0 production
 - sizable for ω production

- Unnatural parity exchange process
 → impact on helicity-dependent observables

- Crucial for description of SDMEs for excl. ω production

- Sign of $\pi\omega$ form factor not resolved from SDME data
 → azimuthal asymmetries more sensitive

\[@ W=4.8 \text{ GeV}, Q^2=2.42 \text{ GeV}^2 \]
\[@ W=8 \text{ GeV}, Q^2=2.42 \text{ GeV}^2 \]
Wolf-Dieter Nowak

COMPASS experiment at CERN – setup with transversely polarized target

μ⁺ beam from the SPS accelerator

- Luminosity: $5 \cdot 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
- Energy: 160 GeV
- Polarization: ≈ 80%

Two 30cm and one 60 cm long target cells [two 60cm long cells in 2002-2004] with opposite polarization

- Material: NH₃ (protons) [$^6\text{LiD (deuterons)}$]
- Polarization: ≈90% [≈50%]
- Dilution factor for exclusive ρ^0 production: ≈25% [≈44%]

Microwave reversal every week
Transverse target spin asymmetry for incoherent exclusive ω production

Used data:

\[\mu N \rightarrow \mu N \omega \]
\[\rightarrow \pi^+ + \pi^- + \pi^0 \]
\[\rightarrow \gamma + \gamma \]

2010 (transversely polarised protons)

Topology of vertex:

- one incoming and one outgoing muon track
- two hadron tracks of opposite charges
- two clusters in ECALs timely correlated with vertex and not associated to any charged particle

Kinematics domain:

- \(1 \text{ (GeV/c)}^2 < Q^2 < 10 \text{ (GeV/c)}^2 \)
- \(W > 5 \text{ GeV} \)
- \(0.1 < y < 0.9 \)
- \(0.003 < x_{Bj} < 0.35 \)
Transverse target spin asymmetry for incoherent exclusive ω production

Missing energy and energy of ω candidate

- Check if the proton stayed intact
 \[E_{\text{miss}} = \frac{M_x^2 - M_p^2}{2 M_p} \in (-3, 3) \text{ GeV} \]
 \[E_{\text{miss}} = 0 \] is the signature of exclusivity
- Check if $E_\omega > \nu_{\text{min}}$ (minimal energy of γ^* allowed by the kinematic cuts)
 \[E_\omega > 15 \text{ GeV} \]

Squared transverse momentum of ω candidate w.r.t. γ^*

To remove coherent production off target nuclei
\[0.05 < p_T^2 \left[\text{GeV} / c \right]^2 \]
To suppress non-exclusive
\[p_T^2 < 0.5 \left[\text{GeV} / c \right]^2 \]
Extraction of asymmetries

- Unbinned maximum likelihood estimator with simultaneous fit of signal and background asymmetries

Background rejection:
For each target cell and polarization state

shape of semi-inclusive background from MC

(LEPTO with COMPASS tuning + simulation of spectrometer response + reconstruction as for real data)

MC weighted using ratio between real data and MC for wrong charge combination sample \((h^+h^+\gamma\gamma + h^-h^-\gamma\gamma) \)

\[
\omega(E_{miss}) = \frac{N_{RD}^{h^+h^+\gamma\gamma} E_{miss} + N_{RD}^{h^-h^-\gamma\gamma} E_{miss}}{N_{MC}^{h^+h^+\gamma\gamma} E_{miss} + N_{MC}^{h^-h^-\gamma\gamma} E_{miss}}
\]

Normalization of MC to the real data using two component fit Gaussian function (signal) + shape from MC (bkg)
Transverse target spin asymmetry for incoherent exclusive ω production

New result → to be published

- Unbinned maximum likelihood method
- 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

$Q^2 = 2.2 \text{ GeV}^2$
$x_{Bj} = 0.049$
$p_T^2 = 0.17 \text{ GeV}^2$
$W = 7.1 \text{ GeV}$
Transverse target spin asymmetry for incoherent exclusive ω production

New result → to be published

GK model predictions

private communication

- positive $\pi\omega$ form factor
- no pion pole
- negative $\pi\omega$ form factor
Comparison between COMPASS and HERMES

COMPASS

HERMES

GK predictions @ COMPASS kinematics

GK predictions @ HERMES kinematics
Summary and outlook

- COMPASS is unique to probe GPDs due to covered kinematic region of intermediate x_{Bj} and availability of beams of two charges and polarizations

- Exclusive meson production → complementary measurement to DVCS, flavour separation for GPDs, sensitivity to chiral-odd GPDs

- Transverse target spin asymmetries are (in principle) sensitive to
 - GPDs E (→ orbital angular momentum)
 - GPDs H_T (→ transversity)
 - pion pole (→ production mechanism)

 can be used to constrain GPD models (presently exists only Goloskokov/Kroll model)

- COMPASS results, although 2-3 times more accurate than HERMES ones, can (still) not conclusively decide on the sign of the pion-pole contribution.

- Need to wait for next generation of experiments (JLab12)
Spare Slides

Results on exclusive ρ production
Transverse target spin asymmetry for incoherent exclusive ρ^0 production

Used data:

- 2007, 2010 (transversely polarised protons)
- 2003, 2004 (transversely polarised deuterons)

Kinematics domain:

- $1 \text{ (GeV/c)^2} < Q^2 < 10 \text{ (GeV/c)^2}$
- $W > 5 \text{ GeV}$
- $0.1 < y < 0.9$
- $0.003 < x_{Bj} < 0.35$

Topology of vertex:

- One incoming and one outgoing muon track
- Two hadron tracks of opposite charges

Diagram:

- Black line: proton data
- Red line: deuteron data
Missing energy and energy of ρ^0 candidate

- Check if the proton is intact
 \[E_{\text{miss}} = \frac{M_x^2 - M_p^2}{2 M_p} \in (-2.5, 2.5) \text{ GeV} \]
 \[E_{\text{miss}} = 0 \] is the signature of exclusivity

- Check if $E \rho^0 > \gamma_{\text{min}}$ (minimal energy of γ^* allowed by the kinematic cuts)
 \[E_{\rho^0} > 15 \text{ GeV} \]

Squared transverse momentum of ρ^0 candidate w.r.t. γ^*

To remove coherent production off target nuclei
 \[0.05 < p_T^2 \left(\text{GeV/c}\right)^2 \] for protons
 \[0.1 < p_T^2 \left(\text{GeV/c}\right)^2 \] for deuterons

To suppress non-exclusive background
 \[p_T^2 < 0.5 \left(\text{GeV/c}\right)^2 \]
Transverse target spin asymmetry for incoherent exclusive ρ^0 production

- All asymmetries small and compatible with predictions of GK model
- $\sin \phi_s^{\sin} = -0.019 \pm 0.008 \pm 0.003$
- Indication of H_T contribution → relation with transitivity at forward limit: $H_T(x, 0, 0) = h_1(x)$

\[A_{UT}^{\sin (\phi - \phi_s)} = -2 \text{Im} \left[e^{M_{0,-,0}^* M_{0,+,-}} + e^{M_{+,++,}^* M_{--,+}} + \frac{1}{2} e^{M_{0,-,0}^* M_{0,+,-}} \right] \]

\[A_{UT}^{\sin (2 \phi - \phi_s)} = -\text{Im} \left[e^{M_{0,+,-}^* M_{0,-,0}} \right] \]

\[A_{UT}^{\sin \phi_s} = -\text{Im} \left[e^{M_{0,-,0}^* M_{0,+,-}} - e^{M_{+,++,}^* M_{--,+}} \right] \]

\[A_{LT}^{\cos (\phi - \phi_s)} = -\text{Re} \left[e^{M_{0,-,0}^* M_{0,+,-}} - e^{M_{+,++,}^* M_{--,+}} \right] \]

\[A_{LT}^{\cos \phi_s} = -\text{Re} \left[e^{M_{0,-,0}^* M_{0,+,-}} + e^{M_{+,++,}^* M_{--,+}} \right] \]

\[x_B \approx 0.039 \]

\[Q^2 \approx 2.0 \text{[GeV}/c]^2 \]

\[p_T^2 \approx 0.18 \text{[GeV}/c]^2 \]
Transverse target spin asymmetry for incoherent exclusive ρ^0 production

COMPASS results
(NPB 865 (2012) 1)

- $A_{UT}^{\sin(\phi - \phi_S)}$ for transversely polarised protons and deuterons small
- for proton data in agreement with HERMES results
- COMPASS results with statistical errors improved by factor 3 and extended kinematic range
- for deuteron data the first measurement
- reasonable agreement with predictions of the GPD model of Goloskokov - Kroll

Goloskokov and Kroll
(EPJC 59 (2009) 809)

- “handbag model”
- GPDs constrained by CTEQ6 parametrization and nucleon form factors
- power corrections due to transverse quarks momenta
- predictions both for γ^*_L and γ^*_T
Transverse target spin asymmetry for incoherent exclusive ρ^0 production

→ PLB 731 (2014) 19

- Improved method of extraction (2D)
- 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

\[
\langle x_B \rangle \approx 0.039 \\
\langle Q^2 \rangle \approx 2.0 \, (GeV/c)^2 \\
\langle p_T^2 \rangle \approx 0.18 \, (GeV/c)^2
\]
Transverse target spin asymmetry for incoherent exclusive ρ^0 production

→ PLB 731 (2014) 19

• Improved method of extraction (2D)
• 5 single spin asymmetries and 3 double spin asymmetries for transversely polarized proton target

\[
\begin{align*}
\langle x_B \rangle &\approx 0.039 \\
\langle Q^2 \rangle &\approx 2.0 \text{ (GeV/c)}^2 \\
\langle p_T^2 \rangle &\approx 0.18 \text{ (GeV/c)}^2
\end{align*}
\]