PION POLARIZABILITY AT CERN COMPASS

Murray Moinester
Tel Aviv University
CERN COMPASS collaboration

Universidad Técnica Federico Santa María, Valparaíso, Chile, Jan. 8, 2016
NA58 experiment at CERN SPS

COMPASS

COMon

muon and

Proton

Apparatus for

Structure and

Spectroscopy

20 Institutes/11 counties/~230 physicists
Czech Republic, Finland, France, Germany, India, Israel, Italy, Japan, Poland, Portugal and Russia

Bielefeld, Bochum, Bonn, Burdwan/Calcutta, CERN, Dubna, Erlangen, Freiburg, Lisbon, Mainz, Moscow, Munich, Prage, Protvino, Saclay, Tel Aviv, Torino, Trieste, Warsaw and Yamagata
Dipole pion polarizabilities probe rigidity of pion’s quark-antiquark structure. Dipole moments induced by gamma’s electric and magnetic fields during Gamma-Pion Compton scattering: \(d = \alpha E \) \(\mu = \beta H \).
COMPASS Tests of ChPT: Primakoff reactions

Access to $\pi + \gamma$ reactions via the Primakoff effect:
At small momentum transfer to the nucleus, high-energetic particles scatter predominantly off the el.mag. field quanta ($\sim Z^2$)

Compton Scattering

$$\pi^- + \gamma \rightarrow \begin{cases}
\pi^- + \gamma \\
\pi^- + \pi^0 \\
\pi^- + \pi^0 + \pi^0 \\
\pi^- + \pi^- + \pi^+ \\
\pi^- + \ldots
\end{cases}$$

Polarizability

or $\pi^- \rho^0$

$\pi + \gamma \rightarrow \pi + \gamma$

Low-energy LO deviation from pointlike particle \leftrightarrow em. polarisability
Pion Compton scattering: embedding the process

Primakoff processes

Radiative pion photoproduction

Photon-Photon fusion
Equivalent photon method
(Weizsaecker-Williams approximation)

Electromagnetic field of fast charged particle is similar to a field of electromagnetic wave

$$\sigma_{x\gamma}(\omega, Q^2) \rightarrow \sigma_{x\gamma}(\omega, 0)$$

\[d\sigma_{xA} = \int n_{\gamma}(\omega) d\sigma_{x\gamma}(\omega) d\omega \]

\[n_{\gamma}(\omega) \sim \frac{Z^2 \alpha}{\omega} \ln \left(\frac{E}{\omega} \right) \]

density of equivalent photons
Primakoff scattering (pion Bremsthalung) of 200 GeV π from virtual photon target is a hypo-peripheral one-photon exchange reaction. Illustrate via production of $a_1(1260)$, mass m_a, followed by $a_1 \rightarrow \pi \gamma$. Target Z intact with low recoil energy, no FSI, separated from large p_T meson exchange reactions. Minimal 4-momentum transfer t_0 to Z. For $m_a=1$ GeV, $p_\pi = 200$ GeV/c, $t_0=5\times10^{-6}$ GeV/c2, $p_{T,\text{min}}= 2$ MeV/c. Uncertainty Principle: $b \cdot p_{T,\text{min}} = \pi / 2$ and $b \sim 150$ fm.
MEASUREMENT OF π^--MESON POLARIZABILITY IN PION COMPTON EFFECT

IHEP, Serpukhov, USSR

P.A. KULINICH, G.V. MECEL'MACHER, A.G. OL'SHEVSKI and V.I. TRAVKIN

JINR, Dubna, USSR

Received 11 November 1982

About 7×10^3 events of Compton effect on pion in the reaction $\pi^- A \to A\pi^- \gamma$ at 40 GeV/c were detected and for the first time the charged pion polarizability was obtained $\alpha_\pi = (6.8 \pm 1.4) \times 10^{-43}$ cm3.

"Serpukhov value"

$\alpha_\pi \approx 7 \cdot 10^{-4}$ fm3

from the pion bremsstrahlung spectrum

assuming $\alpha_\pi + \beta_\pi = 0$

$$x_\gamma = \frac{E_\gamma}{E_{\text{Beam}}}$$
Experimental pion polarizabilities subject chiral symmetry and χ^P_T techniques of QCD to serious tests. Major failure - χ^P_T predicts pion polarizability significantly stiffer than previous measurements, and most other models. At one-loop level, electric and magnetic polarizabilities equal and opposite. Two-loop corrections small. Predictions below.

\[
\begin{align*}
\text{pion polarisabilities } & \alpha_\pi, \beta_\pi \text{ in units of } 10^{-4} \text{ fm}^3 \\
\text{experiments for } & \alpha_\pi - \beta_\pi \text{ lie in the range } 4 \cdots 14 \\
\text{ChPT (2-loop) prediction: } & \\
\alpha_\pi - \beta_\pi & = 5.7 \pm 1.0 \\
\alpha_\pi + \beta_\pi & = 0.16 \pm 0.1 \\
\alpha_\pi & = 2.93 \pm 0.5 \\
\beta_\pi & = -2.77 \pm 0.5
\end{align*}
\]
The COMPASS experiment at CERN has made the first precise measurement of the polarizability of the pion – the lightest composite particle built from quarks. The result confirms the expectation from the low-energy expansion of QCD – the quantum field theory of the strong interaction between quarks – but is at variance with the previously published values, which overestimated the pion polarizability by more than a factor of two.

Every composite system made from charged particles can be polarized by an external electromagnetic field, which acts to separate positive and negative charges. The size of this charge separation—the induced dipole moment—is related to the external field by the polarizability. As a measure of the response of a complex system to an external force, polarizability is directly related to the system's stiffness against deformability, and hence the binding force between the constituents.

The pion, made up of a quark and an antiquark, is the lightest object bound by the strong force and has a size of about 0.6×10^{-15} m (0.6 fm). To observe a measurable effect, the particle must be subjected to electric fields in the order of 10^{14} V/cm. To achieve this, the COMPASS experiment made use of the electric field around nuclei. To high-energy pions, this field appears as a source of (almost) real photons, on which the incident pion scatters.

Such pion–photon Compton scattering, also known as the Primakoff mechanism, was explored in the early 1980s in an experiment at Serpukhov, but the small data sample led to only an imprecise value for the polarizability of 6.8 ± 0.4 (stat.) ± 2.2 (syst.) $\times 10^{-4}$ fm2, where the systematic uncertainty was underestimated, presumably.

COMPASS has now achieved a modern Primakoff experiment, using a 190 GeV pion beam from the Super Proton Synchrotron at CERN directed at a nickel target. Importantly, COMPASS was also able to use muons, which are point-like and hence non-deformable, to calibrate the experiment. The Compton $\pi^+ \rightarrow \pi^+ \gamma$ scattering is extracted from the reaction $\pi^- N \rightarrow \pi^- N\gamma$ by selecting events from the Coulomb peak at small momentum transfer. From the analysis of a sample of 63,000 events, the collaboration obtained a value of the pion electric polarizability of 2.0 ± 0.6 (stat.) ± 0.7 (syst.) $\times 10^{-4}$ fm2 – that is, about 2×10^{-4} of the pion's volume. This value is in good agreement with theoretical calculations in low-energy QCD, therefore solving a long-standing discrepancy between these calculations and previous experimental efforts to determine the polarizability.

Although this measurement is the first to allow a self-calibration, the accuracy is still below the quoted uncertainty of the calculations. With more data already recorded, the COMPASS collaboration expects to improve on this result by a significant factor in the near future, and thereby probe further a benchmark calculation of non-perturbative QCD.

Further reading
Compton cross section

- $s = (p + p_\gamma)^2$ (squared) CM energy of the $\pi \gamma$-system
- $t = (p - p_\pi)^2 \sim \cos \theta_{CM}$
- The polarisabilities α_π and β_π enter
 - with increasing s
 - as $\alpha_\pi - \beta_\pi$ in backward angles
 - as $\alpha_\pi + \beta_\pi$ in forward angles (small, but s-enhanced)
 - as $\alpha_2 - \beta_2$ with $(s - m_\pi^2)^2/s$ dependence
Pion Compton Scattering

\[\pi \gamma \rightarrow \pi \gamma \]

- Two kinematic variables, in CM: total energy \(\sqrt{s} \), scattering angle \(\theta_{cm} \)

\[
\frac{d\sigma_{\pi\gamma}}{d\Omega_{cm}} = \frac{\alpha^2 (s^2 z_+^2 + m_\pi^4 z_-^2)}{s(sz_+ + m_\pi^2 z_-)^2} - \frac{\alpha m_\pi^3 (s - m_\pi^2)^2}{4s^2(sz_+ + m_\pi^2 z_-)^2} \cdot \mathcal{P}
\]

\[
\mathcal{P} = z_+^2 (\alpha_\pi - \beta_\pi) + \frac{s^2}{m_\pi^4} z_+^2 (\alpha_\pi + \beta_\pi) - \frac{(s - m_\pi^2)^2}{24s} z_-^3 (\alpha_2 - \beta_2)
\]

\[
z_\pm = 1 \pm \cos \theta_{cm}
\]

- \(\sigma_{tot}(s) \) rather insensitive to pion’s low-energy structure
- Up to 20% effect on backward angular distributions of \(d\sigma/d\Omega_{cm} \)
The COMPASS setup for physics with hadron beams
Extraction of the pion polarisability

- Identify exclusive reactions
 \[\pi \gamma_{\{Ni \rightarrow Ni'\}} \rightarrow \pi \gamma \]

 at smallest momentum transfer \(< 0.001 \text{ GeV}^2/c^2\)

- Assuming \(\alpha_\pi + \beta_\pi = 0\), from the cross-section

\[
R = \frac{\sigma(x_\gamma)}{\sigma_{\alpha_\pi=0}(x_\gamma)} = \frac{N_{\text{meas}}(x_\gamma)}{N_{\text{sim}}(x_\gamma)} = 1 - \frac{3}{2} \cdot \frac{m_\pi^3}{\alpha} \cdot \frac{x_\gamma^2}{1 - x_\gamma} \alpha_\pi
\]

is derived, depending on \(x_\gamma = E_{\gamma\text{(lab)}}/E_{\text{Beam}}\).

Measuring \(R\) the polarisability \(\alpha_\pi\) can be concluded.

- Control systematics by
 \[\mu \gamma_{\{Ni \rightarrow Ni'\}} \rightarrow \mu \gamma \]

and

\[K^- \rightarrow \pi^- \pi^0 \rightarrow \pi \gamma \gamma \]
Identifying the $\pi \gamma \rightarrow \pi \gamma$ reaction

- Energy balance $\Delta E = E_\pi + E_\gamma - E_{\text{Beam}}$
- Exclusivity peak $\sigma \approx 2.6$ GeV (1.4%)
- $\sim 63,000$ exclusive events ($x_\gamma > 0.4$) (Serpukhov ~ 7000 for $x_\gamma > 0.5$)
Primakoff peak

\[\pi^- \text{Ni} \rightarrow \pi^- \gamma \text{Ni} \]

- \(\Delta Q_T \approx 12 \text{ MeV/c} \) (190 GeV/c beam → requires few-\(\mu \text{rad} \) angular resolution)
- first diffractive minimum on Ni nucleus at \(Q \approx 190 \text{ MeV/c} \)
- data a little more narrow than simulation → negative interference?
Primakoff peak: muon data

COMPASS 2009
\(\mu^- \text{Ni} \rightarrow \mu^- \gamma \text{Ni} \)

- data
- simulation (normalised)

- muon control measurement: pure electromagnetic interaction
- e.m. nuclear effects well understood
Photon energy spectra for muon and pion beam

Counts / 0.025

Counts

π^- data
π^- simulation

μ^- data x2
μ^- simulation

$f_{\pi^0} [%]$

\[\alpha_\pi = (2.0 \pm 0.6_{\text{stat}}) \times 10^{-4} \text{ fm}^3 \]

(assuming \(\alpha_\pi = -\beta_\pi \))

"false polarisability" from muon data:

\[(0.5 \pm 0.5_{\text{stat}}) \times 10^{-4} \text{ fm}^3 \]

Pion polarisability

<table>
<thead>
<tr>
<th>source of systematic uncertainty</th>
<th>estimated magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL = 68%</td>
<td>10^{-4} fm3</td>
</tr>
<tr>
<td>tracking</td>
<td>0.5</td>
</tr>
<tr>
<td>radiative corrections</td>
<td>0.3</td>
</tr>
<tr>
<td>background subtraction in Q</td>
<td>0.4</td>
</tr>
<tr>
<td>pion electron scattering</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>quadratic sum</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>

COMPASS result for the pion polarisability:

\[
\alpha_\pi = (2.0 \pm 0.6_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-4} \text{ fm}^3
\]

with $\alpha_\pi = -\beta_\pi$ assumed
The new COMPASS result is in significant tension with the earlier measurements of the pion polarisability.

The expectation from ChPT is confirmed within the uncertainties.
Pion polarisability measurements at COMPASS

Primakoff pilot run 2004

~63k events 0.3X_0 Ni
~3 weeks

Primakoff run 2009

~1 week
~10k events 0.5X_0 Pb

just seen

Primakoff run 2012

~3 months
~200–400k events 0.3X_0 Ni

E / E_{beam} > 0.4
Measurement of the pion polarisability at COMPASS

- Via the Primakoff reaction, COMPASS has determined

\[
\alpha_\pi = (2.0 \pm 0.6_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-4} \text{ fm}^3 \quad \text{assuming } \alpha_\pi + \beta_\pi = 0
\]

- most direct access to the $\pi\gamma \rightarrow \pi\gamma$ process
- Most precise experimental determination
- Systematic control: $\mu\gamma \rightarrow \mu\gamma$, $K^- \rightarrow \pi^-\pi^0$

(not shown today:) COMPASS measures other aspects of chiral dynamics in $\pi^-\gamma \rightarrow \pi^-\pi^0$ and $\pi\gamma \rightarrow \pi\pi\pi$ reactions

High-statistics run 2012

- separate determination of α_π and β_π
- s-dependent quadrupole polarisabilities
- First measurement of the kaon polarisability
The electric α_π and magnetic β_π charged pion Compton polarizabilities provide stringent tests of Chiral Perturbation Theory. The combination ($\alpha_\pi - \beta_\pi$) was measured at CERN COMPASS via radiative pion Primakoff scattering (190 GeV/c pion Bremsstrahlung) in the nuclear Coulomb field: $\pi + Z \rightarrow \pi + Z + \gamma$. COMPASS data analysis gives a value: $\alpha_\pi = \left(2.0 \pm 0.6_{\text{stat}} \pm 0.7_{\text{syst}} \right) \times 10^{-4}$ fm3.

The data were taken in 2009. Higher statistics data taken in 2012 will allow an independent determination of α_π and β_π, and a first determination of Kaon polarizabilities.

- Identify $\pi N_i \rightarrow \pi N_i \gamma$ exclusive reactions at smallest momentum transfer < 0.001 GeV2/c2
- Assuming $\alpha_\pi + \beta_\pi = 0$, the dependence on $x_T = t/E_{\text{beam}}$

$$R = \frac{\alpha_{\gamma N}(x_T)}{\alpha_{\gamma N}(0)} = 1 - \frac{3}{2} \frac{m_N^2}{\alpha} \frac{x_T^2}{1 - x_T} \alpha_\pi$$

is used to determine the polarizability α_π

- Control systematics by investigating $\mu N_i \rightarrow \mu N_i \gamma K^- \rightarrow \pi^0$.
Polarizabilities are associated with the Rayleigh scattering cross section of sunlight photons on atomic electrons in atmospheric \(\text{N}_2 \) and \(\text{O}_2 \). The oscillating electric field of sunlight photons forces the atomic electrons to vibrate. The resulting changing electric dipole moment radiates energy as the square of its second derivative. The radiated power is \(P \sim \alpha^2 \lambda^{-4} \), where \(\alpha \) is the electric polarizability of the atom. The scattering cross section depends on \(\lambda^{-4} \). The intensity of scattered and transmitted sunlight is therefore dominated by blue and red, respectively. The daytime sky is therefore blue, while sunrise and sunset are red.
Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson*

H. Primakoff†

Laboratory for Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

January 2, 1951

It has now been well established experimentally that neutral \(\pi \)-mesons (\(\pi^0 \)) decay into two photons.\(^1\) Theoretically, this two-photon type of decay implies zero \(\pi^0 \) spin;\(^2\) in addition, the decay has been interpreted as proceeding through the mechanism of the creation and subsequent radiative recombination of a virtual proton anti-proton pair.\(^3\) Whatever the actual mechanism of the (two-photon) decay, its mere existence implies an effective interaction between the \(\pi^0 \) wave field, \(\varphi \), and the electromagnetic wave field, \(E, H \), representable in the form:

\[
\text{Interaction Energy Density} = \eta \frac{\hbar}{\mu c} (\hbar c)^{-\frac{1}{2}} \varphi E \cdot H. \tag{1}
\]

Here \(\varphi \) has been assumed pseudoscalar, the factors \(\frac{\hbar}{\mu c} \) and \((\hbar c)^{-\frac{1}{2}} \) are introduced for dimensional reasons (\(\mu \equiv \text{rest mass of } \pi^0 \)),

Coulomb field of nucleus can be used as photon target
CERN SPS: protons ~ 400 GeV (5–10 sec spills)

- secondary π, K, \bar{p}: up to $2 \cdot 10^7 / s$ (typ. $5 \cdot 10^6 / s$)
 Nov. 2004, 2008-09, 2012:
 hadron spec. & Primakoff reactions
- tertiary muons: $4 \cdot 10^7 / s$
 2002-04, 2006-07, 2010-11: spin structure of the nucleon
The COMPASS Experiment

- Fixed-target experiment
 - two-stage magnetic spectrometer
 - high-precision, high-rate tracking, PID, calorimetry
 - broad kinematical range
 - ~250000 channels
 - > 800 TB/year

 - 190 GeV π^- beam on p and nuclear targets (C, Ni, W, Pb)
 - Silicon microstrip detectors for “vertexing”
 - recoil and (digital) ECAL triggers

- Data taking periods:
 - 2002-2004: 160 GeV/c m +
 - 2004: 2 weeks
 - 2006-2007: 160 GeV/c m +
 - 2008-2009: 190 GeV/c p -

[hep-ex/0703049, NIM A 577, 455 (2007)]
Measurement of the Charged-Pion Polarizability

C. Adolph, J. Lichtenstadt, M. A. Moinester, et al. (COMPASS Collaboration)

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^- \gamma \rightarrow \pi^- \gamma$, at center-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^- \text{Ni} \rightarrow \pi^- \gamma \text{Ni}$, which is initiated by 190 GeV pions impinging on a nickel target. The exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2 < 0.0015 \ (\text{GeV}/c)^2$. From a sample of 63 000 events, the pion electric polarizability is determined to be $\alpha_\pi = (2.0 \pm 0.6_{\text{stat}} \pm 0.7_{\text{syst}}) \times 10^{-4} \ \text{fm}^3$ under the assumption $\alpha_\pi = -\beta_\pi$, which relates the electric and magnetic dipole polarizabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambiguously known, was performed for an independent estimate of the systematic uncertainty.
Experimental Information and Data Analysis Backward polarizability $\alpha_{\pi^+} - \beta_{\pi^+}$ in units of 10^{-4} fm3

<table>
<thead>
<tr>
<th>reaction</th>
<th>analysis [experiment]</th>
<th>$\alpha_{\pi^+} - \beta_{\pi^+}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^- Z \rightarrow \gamma\pi^- Z$</td>
<td>Serpukhov (1983)</td>
<td>$15.6 \pm 6.4 \pm 4.4$</td>
</tr>
<tr>
<td></td>
<td>COMPASS (2015) 2015, $4.0 \pm 1.2 \pm 1.4$</td>
<td>??±??±??</td>
</tr>
<tr>
<td>$\gamma p \rightarrow \pi^+ n$</td>
<td>Lebedev (1984)</td>
<td>40 ± 24</td>
</tr>
<tr>
<td></td>
<td>Mainz (2005)</td>
<td>$11.6 \pm 1.5 \pm 3.0 \pm 0.5$</td>
</tr>
<tr>
<td>$\gamma\gamma \leftrightarrow \pi^+\pi^-$</td>
<td>D. Babusci et al. (1992) [PLUTO (1984)]</td>
<td>$38.2 \pm 9.6 \pm 11.4$</td>
</tr>
<tr>
<td></td>
<td>[DM1 (1986)]</td>
<td>34.4 ± 9.2</td>
</tr>
<tr>
<td></td>
<td>[DM2 (1987)]</td>
<td>52.6 ± 14.8</td>
</tr>
<tr>
<td></td>
<td>[MARK II (1990)]</td>
<td>4.4 ± 3.2</td>
</tr>
<tr>
<td></td>
<td>J.F. Donoghue & B. Holstein (1993) [MARK II (1990)]</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>A. Kaloshin & V. Serebryakov (1994) [MARK II (1990), CBC (1990)]</td>
<td>5.25 ± 0.95</td>
</tr>
</tbody>
</table>
Measurement of the π^+-meson polarizabilities via the $\gamma p \rightarrow \gamma \pi^+ n$ reaction

DOI 10.1140/epja/i2004-10056-2

J. Ahrens1, M. Moinester5, I. Giller5, et al., Mainz

$$(\alpha - \beta)_{\pi^+} = (11.6 \pm 1.5_{\text{stat}} \pm 3.0_{\text{syst}} \pm 0.5_{\text{mod}}) \times 10^{-4} \text{fm}^3.$$

Fig. 10. The differential cross-section of the process $\gamma p \rightarrow \gamma \pi^+ n$ averaged over the full photon beam energy interval and over s_1 from $1.5m^2_{\pi}$ to $5m^2_{\pi}$. The solid and dashed lines are the predictions of model-1 and model-2, respectively, for $(\alpha - \beta)_{\pi^+} = 0$. The dotted line is a fit to the experimental data (see text).

Fig. 11. The cross-section of the process $\gamma p \rightarrow \gamma \pi^+ n$ integrated over s_1 and t in the region where the contribution of the pion polarizability is biggest and the difference between the predictions of the theoretical models under consideration does not exceed 3%. The dashed and dashed-dotted lines are predictions of model-1 and the solid and dotted lines of model-2 for $(\alpha - \beta)_{\pi^+} = 0$ and $14 \times 10^{-4} \text{fm}^3$, respectively.
Chiral symmetry and pion polarizabilities

D. Babusci a, S. Bellucci a, G. Giordano a, G. Matone a, A.M. Sandorfi b and M.A. Moinester c

a INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy
b Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA
c School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel

Received 8 November 1991

We use chiral perturbation theory including one-loop contribution to derive formulae needed to deduce pion polarizabilities for $\gamma\pi\to\gamma\pi$ and $\gamma\gamma\to\pi\pi$ data. We deduce for the first time values for the π^\pm and π^0 polarizabilities from $\pi\pi$ production data, and compare these new results to chiral symmetry predictions.

Table 1
Values for α_π from data and theory

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluto</td>
<td>19.1</td>
<td>± 4.8 (stat) ± 5.7 (syst)</td>
</tr>
<tr>
<td>DM1</td>
<td>17.2</td>
<td>± 4.6 (stat)</td>
</tr>
<tr>
<td>DM2</td>
<td>26.3</td>
<td>± 7.4 (stat)</td>
</tr>
<tr>
<td>LEBEDEV</td>
<td>20.1</td>
<td>± 12 (stat)</td>
</tr>
<tr>
<td>MARK II</td>
<td>22.1</td>
<td>± 1.6 (stat + syst)</td>
</tr>
</tbody>
</table>
Can one expect gamma ray rates from the QGP to be higher than from the hot hadronic gas phase. Xiong, Shuryak, Brown (XSB) calculate photon production from a hot hadronic gas via the reaction $\pi^- + \rho^0 \rightarrow a_1(1260) \rightarrow \pi^- + \gamma$. For $a_1(1260) \rightarrow \pi\gamma$, they assume a radiative width of 1.4 MeV. XSB use their estimated a_1 radiative width to calculate the pion polarizability, obtaining $\alpha_\pi = 1.8 \times 10^{-43}$ cm3. Independently, Holstein showed that meson exchange via a pole diagram involving the a_1 resonance provides the main contribution ($\alpha_\pi = 2.6 \times 10^{-43}$ cm3) to the polarizability. New Primakoff data for $\pi^- \gamma \rightarrow a_1(1260) \rightarrow \pi^- \rho^0$ should allow a reevaluation of the consistency of their expected relationship, and improved calculation of the gamma rate from the hot hadronic gas phase.