Nucleon spin and structure studies at COMPASS

Fabienne KUNNE
CEA/IRFU Saclay, France

- Nucleon spin: Quark and gluon helicities
- Quark Fragmentation Functions
- Transversity
- Future
COmmon Muon Proton Apparatus for Structure and Spectroscopy

~240 physicists, 12 countries, 24 institutions

Fixed target experiment, multi-purpose set-up.
Secondary ~200 GeV muon and hadron beams from CERN SPS
Various targets
COMPASS at CERN

Results from:

Polarized muon beam & polarized target: d, p: Nucleon spin structure

Hadron beam \(\pi / K / p \) \& LH\(_2 \) or nuclei targets: Meson spectroscopy \(\rightarrow \) Talk of S. Uhl

\(\pi, K \) polarisabilities

Ongoing program:

- Generalized Parton Distributions from DVCS
- Transverse Momentum Dependent distributions from Polarized Drell-Yan

COMPASS at CERN

Results from:

Polarized muon beam & polarized target: d, p: Nucleon spin structure

Hadron beam \(\pi / K / p \) \& LH\(_2 \) or nuclei targets: Meson spectroscopy \(\rightarrow \) Talk of S. Uhl

\(\pi, K \) polarisabilities

Ongoing program:

- Generalized Parton Distributions from DVCS
- Transverse Momentum Dependent distributions from Polarized Drell-Yan

NIMA 577 (2007) 455
Nucleon spin

How is the nucleon spin distributed among its constituents?

Nucleon Spin \[\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L \]

- \(\Delta \Sigma \) : sum over \(u, d, s, \bar{u}, \bar{d}, \bar{s} \)
- can take non half-integer value:
 - superposition of several spin states

\[\Delta q = q - q \]

Parton spin parallel or anti parallel to nucleon spin

Past:

- Theory: QPM estimations, with relativistic effects
- \(\Delta \Sigma \sim 0.6 \)
- Experiment: “Spin crisis” in 1988, when EMC measured
 - \(a_0 = \Delta \Sigma = 0.12 \pm 0.17 \) \(\text{MS scheme} \)
- Quark spin contribution \(~ 0?\)

Today:

- Precise world data on polarized DIS
 - \(g_1 + SU_f(3) \)
 - \(a_0 = \Delta \Sigma \sim 0.3 \)
 - Quark spin contribution \sim 30\%

- Confirmed by first results from Lattice QCD on \(\Delta \Sigma_{u,d} \).

Large experimental effort on \(\Delta G \) measurement

- also because \(a_0 = \Delta \Sigma - n_f(\alpha_s/2\pi) \Delta G \) (AB scheme)
Quark and gluon helicity

Quarks and gluons from nucleon, probed with lepton beams

quarks
- Deep inelastic scattering
- QCD Leading order

gluons
- Photon-gluon fusion: $\gamma g \rightarrow q\bar{q}$

Helicities of partons measured via spin asymmetries using polarized beams and targets

- **Acces $\Delta \Sigma$ et ΔG**: contributions of quark and gluon spin to nucleon spin $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$
- **Comparison to lattice QCD calculations**
Gluon helicity $\Delta G/G$ from hadron production

Photon Gluon Fusion

$\mu^+ p \rightarrow \mu^{' h + h} + X$

Results are in agreement with latest fits from NNPDF and DSSV++ using RHIC pp data, which give $\int_{0.05}^{0.2} \Delta g(x) \, dx \approx 0.20$
QCD fits - World data on g_1^p and g_1^d

Polarized Deep Inelastic Scattering

\rightarrow Nucleon spin structure functions g_1

$\rightarrow g_1(x,Q^2)$ as input to global QCD fits for extraction of $\Delta q_f(x)$ and $\Delta g(x)$

\[
\frac{d g_1}{d \log(Q^2)} \propto -\Delta g(x, Q^2)
\]

However x and Q^2 coverage not yet sufficient for precise Δg

Would need to use constraint from pp data (as DSSV, NNPDF)
COMPASS NLO pQCD fit to g_1 DIS world data

- Assume functional forms for $\Delta \Sigma$, ΔG and Δq^{NS}, and assume SU3 symmetry
- Use DGLAP equations, relating $\Delta \Sigma$, ΔG evolutions.
- Fit g_1^p, g_1^d, g_1^n DIS world data

- Extract $\Delta \Sigma$ Quarks ΔG Gluons

→ Solutions $\Delta G > 0$ and $\Delta G < 0$

→ Quark spin contribution:
 $\Delta \Sigma = 0.31 (5)$ at $Q^2 = 3$ (GeV/c)2

 Largest uncertainty comes from the bad knowledge of functional forms.
 Results in fair agreement with other global fits

→ Gluon spin contribution: ΔG not well constrained, even the sign, using DIS only

 Solution with $\Delta G > 0$ agrees with result from DSSV++ using RHIC pp data
Summary on nucleon spin from COMPASS

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g
\]

Quarks \(\frac{1}{2} \Delta \Sigma \sim 0.15\) (3)
- largest uncertainty due to uncertainty on \(\Delta G\)

Gluons \(\Delta G/G\) positive at \(x \sim 0.1\) (PGF)
- agrees with precise RHIC result (\(\Delta G \sim 0.2\) for integral \(0.05 < x < 0.2\))
- Low \(x\) contribution to integral still unknown.

Orbital momenta \(L_q, L_g\)
- Ongoing measurements of GPDs

There exist promising results from lattice QCD calculations:
- Confirm already \(\Delta \Sigma\), and predictions for \(L_u\) et \(L_d\).

\(\rightarrow\) The main question raised in ‘Nucleon spin crisis’ resolved:
- Quark spin represents a non zero fraction (0.3) of nucleon spin
 (from measurements and from lattice QCD calculations)
- The hypothesis of very large \(\Delta G\) (2 to 3, associated to \(L \sim -2\) ou -3) rejected
 (COMPASS 2005)
- Puzzle still pending: share between \(\Delta G\) and \(L\) not known
Quark helicities from semi-inclusive DIS

\[l \rightarrow p \rightarrow l h^{+/-} x \]

Outgoing hadron tags quark flavor (quark fragmentation functions)

Leading order extraction of quark helicities from spin asymmetries:

- COMPASS
 - PLB693(2010)227, using DSS quark FFs
- HERMES
 - PRD71(2005)012003
 - DSSV at NLO

\[\mathbf{l} \rightarrow \mathbf{p} \rightarrow l h^{+/-} X \]

\(Q^2 = 3 \text{ (GeV/c)}^2 \)

- Full flavour separation \(\rightarrow x \sim 0.004 \)
- Sea quark distributions \(\sim \) zero
- Good agreement with global fits

What about \(\Delta s ? \) Integral is found negative from \textit{inclusive} data (with SU3) while here from \textit{semi-inclusive} data, \(x > \sim 0.005 \), \(\Delta s \) is compatible with zero.

\textbf{NB:} - The extraction assumes quark Fragmentation Functions known (DSS here)
 - No measurement at lower \(x \)
Quark Fragmentation Functions (FF)

FFs: - Non perturbative object; needed to describe various reactions
- Strange quark FF = largest uncertainty in Δs extraction from polarized SIDIS. Data exist from e^+e^- and pp reactions, but unsufficient and at too high Q^2

→ Measure π, K, p multiplicities in **SIDIS** $\mu^+d \rightarrow \mu^+h^\pm X$

\[
dM^h(x, Q^2, z) = \frac{\sum_q e_q^2 f_q(x, Q^2) D_q^h(z, Q^2)}{\sum_q e_q^2 f_q(x, Q^2)}
\]

PDFs depend on x, while FFs depend on z

Data obtained in a fine binning in x, z, Q^2

→ Constitute an input to global NLO QCD analyses to extract quark FFs
COMPASS π and K multiplicities vs z in (x,y) bins

- ~360 data points for π and 360 for K
- Strong z dependance
- $M_{\pi^+} \sim M_{\pi^-}$ and $M_{K^+} > M_{K^-}$

F. Kunne
Quark FFs from COMPASS LO fits

Pions

Assuming 2 independent FFs: D_{fav}^π and D_{unf}^π

- As expected, $D_{\text{fav}}^\pi > D_{\text{unf}}^\pi$.
- COMPASS results ~agree with DSS and LSS NLO fits (not shown here)

Kaons

Assuming 3 independent FFs: D_{fav}^K, D_{unf}^K, D_{str}^K

- $D_{\text{fav}}^K > D_{\text{unf}}^K$.
- D_{fav}^K and D_{unf}^K larger than DSS and LSS NLO fits (which do not include these kaon data)
- D_{str}^K (not shown, not constrained enough by the fit)
Sum of z integrated multiplicities $\pi^+ + \pi^- \, \& \, K^+ + K^-$

For isoscalar target, simple dependence on FFs:

$$M^{\pi^+ + \pi^-} = (1 - 2S/(5Q+2S)) \ D_{fav} + D_{unf}$$

At high x, \simno x dependence expected

$$5M^{K^+ + K^-} = \ D_Q^K + S/Q \ D_S^K$$

where:

$$\begin{cases}
Q = u + \bar{u} + d + \bar{d}, \\
S = s + \bar{s}, \\
D_Q^K = 4D^K_{fav} + 6D^K_{unf}
\end{cases}$$

COMPASS pion data:
- significantly below HERMES ones
- no x dependence
 (as in EMC h, but not shown here)

COMPASS kaon data:
- significantly above HERMES ones
- agree with MC simulation (LUND)
- Indicate smaller D_S^K, and larger D_Q^K
Transversity- Collins and Sivers asymmetries

- Access via SIDIS, transversely polarized target
 \[\mu p^\uparrow \rightarrow \mu h^{+/-} X \]

- Measure simultaneously several azimuthal asymmetries, out of which:
 - **Collins**: Outgoing hadron direction & **quark transverse spin**
 - **Sivers**: Nucleon spin & **quark transverse momentum** \(k_T \)

 Sivers function = one of the TMDs = Transverse Momentum Dependent PDFs

At LO:

Collins

\[
A_{\text{Coll}} = \frac{\sum_q e_q^2 (\Delta T q \otimes \Delta T) D_h^q}{\sum_q e_q \cdot q \otimes D_h^q}
\]

Collins TMD fragmentation function, depends on spin, and hadron \(p_T \)

Sivers

\[
A_{\text{Siv}} = \frac{\sum_q e_q^2 \cdot f_{1Tq} \otimes D_h^q}{\sum_q e_q \cdot q \otimes D_h^q}
\]

Unpolarized quark TMD fragmentation function

Note: \(\Delta T q \) also measured in SIDIS using “Two hadron” fragmentation function
Collins asymmetry \rightarrow Transversity $\Delta_T u$ $\Delta_T d$

- Large signal for proton target. (compatible with zero for deuteron target)
- Same signal strength seen by HERMES and COMPASS, although different Q^2 (times 4)

Several combined analyses of polarized SIDIS data
HERMES p, COMPASS p and d, and BELLE FF

- $\Delta_T u > 0$ and $\Delta_T d < 0$
- Smaller than helicity
- Derived also from di-hadron

Nb: Asymmetry also measured for π and K

PLB 744 (2015) 250

F. Kunne

M. Anselmino et al., RRD87 (2013) 094019
Sivers asymmetry → Sivers function

Correlation between Nucleon spin & quark transverse momentum k_T

Large signal with proton target and h^+
Was measured compatible with zero on deuteron

When compared to HERMES, smaller strength at larger Q^2

\Rightarrow Opposite sign for u and d quark Sivers function

Nh: Asymmetry also measured for π and K

PLB 744 (2015) 250
Transversity from dihadrons – Extraction of h_1

using:
• COMPASS proton and deuteron data on dihadron azimuthal asymmetries (different analysis from Collins)
• dihadron FF + Q^2 evolution from Bacchetta et al. *JHEP03 (2013) 119*

Comparison with Anselmino et al. (global fits of single hadron Collins asymmetries+FFs):
Very good agreement for u quark, and fair agreement for d quark transversity.
Transversity from di-hadrons. Interplay with Collins

Fragmentation of a transversely polarized quark

Azimuthal asymmetries from production of:
- di-hadron (oppositely charged pair)
- single hadron (+ and -, mirror symmetric Collins asymmetries)

\[
\langle A_{\perp} \rangle
\]

\[
\langle \sin \Phi_C \rangle
\]

\(x\) range: \(10^{-2}\) to 1

\(A_{\perp}\) vs. \(x\)

\(\sin \Phi_C\) vs. \(x\)

→ Observe similar behaviour …

and establish correlation between the three

• First experimental indication for a common physical origin to the two processes, di-hadron and Collins, as originally suggested by different models.

• Results for ‘transversity’ from the two measurements are NOT independent
Six Transverse Target spin asymmetries

beyond Collins & Sivers, access TMDs

k_T effects \rightarrow modulations in SIDIS cross-section

- Major progress in TMD measurement
- Powerful tool to understand correlations

$A_{LT}^{\cos(\varphi_h - \varphi_s)}$ shown as example

In agreement with HERMES prelim., and with theoretical predictions
COMPASS ongoing program 2015 - 2018:

• **GPDs** (Generalized Parton Distributions) via **Deep Virtual Compton Scattering** $\mu p \rightarrow \mu p' \gamma$

• **TMDs** (Transverse Momentum Dependent distributions) via **spin dependent Drell-Yan** $\pi p \uparrow \rightarrow \mu^+ \mu^-$
Generalized parton distributions

Study correlation between parton longitudinal momentum & parton transverse position in the nucleon ‘3D’

- Nucleon ‘3D’ structure
- Link to orbital momentum L_z

Process:
Deep virtual Compton scattering (DVCS):
‘exclusive’ γ production $\mu \ p \rightarrow \mu \ p' \ \gamma$
or Meson Production $\rho^0, \omega, \phi...$

\rightarrow Proton transverse size

\rightarrow Compton Form Factors in yet unexplored regions (160 GeV μ beam)
DVCS- t-slope of Cross-section

\[\mu p \rightarrow \mu p \gamma \]

x dependence of transverse size of the nucleon

\[\sigma_{\text{DVCS}} \sim \exp^{-B|t|} \]

\[B(x_B) = \frac{1}{2} \langle r_{\perp}^2(x_B) \rangle \]

Also accessed via meson production \(\rho, \omega, \phi \)

Deep Virtual Compton Scattering (\(\gamma \))

Deep Virtual Meson Prod. (\(\rho \))

COMPASS result from 2012 pilot run

COMPASS projection 2 years

projection 2 years
COMPASS- Spin dependent Drell-Yan (2015 and 2018)

Pion beam on transversely polarized nucleon

Objectives for Drell-Yan measurements:

• Polarised: Sivers TMD PDF (correlation k_T vs nucleon transverse spin) sign change DY vs SIDIS \rightarrow test of factorization in QCD
• Unpolarized: Other TMD PDFs (Boer-Mulders…) (k_T vs s_q)

COMPASS assets

• SIDIS and DY experiments: large acceptance, same spectrometer
• Unique hadron beam (π, K, p) with valence antiquarks
• Polarized target

Projection 2 years (2015+2018 data)
Summary

Gluon and quark contribution to nucleon spin
Gluon $\Delta G/G = 0.1$ at $x = 0.1$ from measurement in PGF 2 hadrons

Quarks: Sum $0.26 < \Delta \Sigma < 0.34$ from global QCD fit of g_1 world data
Largest uncertainty comes from functional shape (of ΔG also)
Extraction for all flavours from SIDIS measurements, down to $x \sim 0.004$.
Towards agreement with Lattice QCD calculation

Pion and kaon multiplicities in semi-inclusive DIS:
Large discrepancies between COMPASS and HERMES data

Transversity and Transverse Momentum Dependent parton distributions
Precise results on Collins and Sivers asymmetries
Interplay Collins effect / di-hadron
Much progress on all azimuthal asymmetries for TMDs

Future
TMDs via polarized Drell-Yan $\pi \, p \uparrow \rightarrow \gamma \, \gamma$
GPDs via Deep Virtual Compton Scattering $\mu \, p \rightarrow \mu \, p \, \gamma$
First result on proton transverse size
COMPASS Plans

2015 Polarized Drell-Yan πp^\uparrow

2016 DVCS μp

2017

2018 Polarized Drell-Yan πp^\uparrow

2019 CERN Long Shutdown-2

2020

2021 Ideas for future:

2022 - Kaon & p-bar beams (for Drell-Yan and Meson Spectroscopy)

2023 - DVCS on Polarized Target μp^\uparrow

(sensitive to nucleon orbital angular momentum)