Meson Spectroscopy at COMPASS

Boris Grube

Physik-Department E18
Technische Universität München,
Garching, Germany

MESON2016
07. June 2016, Kraków
The COMPASS Experiment at the CERN SPS
Experimental Setup

Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)
The COMPASS Experiment at the CERN SPS
Experimental Setup

Fixed-target experiment
- Two-stage spectrometer
- Large acceptance over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

Hadron spectroscopy 2008-09, 2012
- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH$_2$, Ni, Pb, W
The COMPASS Experiment at the CERN SPS
Experimental Setup

Fixed-target experiment
- **Two-stage** spectrometer
- **Large acceptance** over wide kinematic range
- Electromagnetic and hadronic calorimeters
- Beam and final-state particle ID (CEDARs, RICH)

Hadron spectroscopy
- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH_2, Ni, Pb, W
The COMPASS Experiment at the CERN SPS

Experimental Setup

Spectroscopy program

- Explore light-meson spectrum for $m \gtrsim 2 \text{ GeV}/c^2$
- Search for states beyond the constituent quark model
- Precision measurement of known resonances

Hadron spectroscopy

- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH_2, Ni, Pb, W
1 Introduction
 ● Meson production in diffractive dissociation
 ● Partial-wave analysis method

2 PWA of diffractively produced 3π final states
 ● Observation of a new narrow axial-vector meson $a_1(1420)$
 ● $J^{PC} = 1^{−+}$ spin-exotic partial wave

3 Conclusions and outlook
Soft scattering of beam particle off target
- Production of n forward-going hadrons
- Target particle stays intact

At 190 GeV/c, interaction dominated by space-like pomeron exchange
Meson Production in Diffractive Dissociation

- **Exclusive measurement**
- **Clean data samples**
- Reduced four-momentum transfer squared $t' \equiv |t| - |t|_{\text{min}}$
 - Analyzed range: $0.1 < t' < 1.0 \ (\text{GeV}/c)^2$

Example: $\pi^-\pi^+\pi^-$ final state

![Diagram showing the process of meson production in diffractive dissociation](image)

<table>
<thead>
<tr>
<th>Events / (50 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_{beam} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>180</td>
</tr>
<tr>
<td>190</td>
</tr>
<tr>
<td>200</td>
</tr>
</tbody>
</table>
Meson Production in Diffractive Dissociation

- **Exclusive measurement**
- Clean data samples
- Reduced four-momentum transfer squared $t' \equiv |t| - |t|_{\text{min}}$
 - Analyzed range: $0.1 < t' < 1.0 \text{ (GeV/c)}^2$

Example: $\pi^- \pi^+ \pi^-$ final state
Excitation of beam particle into intermediate resonances X

X dissociate into n-body final state

Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Meson Production in Diffractive Dissociation

- Excitation of beam particle into intermediate resonances X
- X dissociate into n-body final state
- Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Meson Production in Diffractive Dissociation

- Excitation of beam particle into intermediate resonances X
- X dissociate into n-body final state
- Rich spectrum of intermediate states X

Disentanglement of all contributing X by partial-wave analysis (PWA)
Partial-Wave Analysis Method

Ansatz: Factorization of production and decay

\[\mathcal{I}(\tau; m_X) = \sum_{\epsilon = \pm 1} \left| \sum_{i} \mathcal{T}_{i}^{\epsilon}(m_X) \mathcal{A}_{i}^{\epsilon}(\tau; m_X) \right|^2 \]

- Transition amplitudes \(\mathcal{T}_{i}^{\epsilon}(m_X) \) \(\implies \) interesting physics
- Decay amplitudes \(\mathcal{A}_{i}^{\epsilon}(\tau; m_X) \)
 - Describe kinematic distribution of partial waves
 - Calculated using isobar model (for \(n > 2 \)) and helicity formalism (Wigner D-functions)
- \(\epsilon = \pm 1 \): naturalities of exchange particle
 - 190 GeV/c beam momentum \(\implies \) pomeron (\(\epsilon = +1 \)) dominates
Partial-Wave Analysis Method

\[\mathcal{I}(\tau; m_X) = \sum_{\epsilon=\pm 1} \left| \sum_{i} \mathcal{T}_i^{\epsilon}(m_X) \mathcal{A}_i^{\epsilon}(\tau; m_X) \right|^2 \]

Ansatz: Factorization of production and decay

- Transition amplitudes \(\mathcal{T}_i^{\epsilon}(m_X) \) \(\implies \) interesting physics
- Decay amplitudes \(\mathcal{A}_i^{\epsilon}(\tau; m_X) \)
 - Describe **kinematic distribution** of partial waves
 - Calculated using **isobar model** (for \(n > 2 \)) and **helicity formalism** (Wigner \(D \)-functions)
- \(\epsilon = \pm 1 \): **naturalities of exchange particle**
 - 190 GeV/c beam momentum \(\implies \) pomeron (\(\epsilon = +1 \)) dominates

Boris Grube, TU München
Meson Spectroscopy at COMPASS
Partial-Wave Analysis Method

\[\pi^- \text{beam} \rightarrow T \rightarrow X^- \rightarrow A \]

Ansatz: Factorization of production and decay

\[\mathcal{I}(\tau; m_X) = \sum_{\epsilon = \pm 1} \left| \sum_{i}^{\text{waves}} \mathcal{T}_{i}^{\epsilon}(m_X) A_{i}^{\epsilon}(\tau; m_X) \right|^2 \]

\begin{itemize}
 \item Transition amplitudes \(\mathcal{T}_{i}^{\epsilon}(m_X) \Rightarrow \text{interesting physics} \)
 \item Decay amplitudes \(A_{i}^{\epsilon}(\tau; m_X) \)
 \begin{itemize}
 \item Describe kinematic distribution of partial waves
 \item Calculated using isobar model (for \(n > 2 \)) and helicity formalism (Wigner \(D \)-functions)
 \end{itemize}
 \item \(\epsilon = \pm 1 \): naturalities of exchange particle
 \begin{itemize}
 \item 190 GeV/c beam momentum \(\Rightarrow \) pomeron \((\epsilon = +1) \) dominates
 \end{itemize}
\end{itemize}
Partial-Wave Analysis Method

Two-step analysis

\[I(\tau; m_X) = \sum_{\epsilon=\pm1} \left| \sum_{i}^{\text{waves}} T_{i}^{\epsilon}(m_X) A_{i}^{\epsilon}(\tau; m_X) \right|^2 \]

1. **Determination of** m_X **dependence of spin-density matrix**
 \[\varrho_{ij}^{\epsilon}(m_X) = T_{i}^{\epsilon}(m_X) T_{j}^{\epsilon \ast}(m_X) \]
 - Independent maximum likelihood fits to measured τ distributions in narrow bins of m_X
 - Fits take into account detection efficiency
 - No assumptions about resonance content of X

2. **Extraction of resonances**
 - χ^2 fit of resonance model to spin-density (sub)matrix
Two-step analysis

\[\mathcal{I}(\tau; m_X) = \sum_{\epsilon = \pm 1} \left| \sum_{i} \mathcal{T}_i^\epsilon(m_X) \mathcal{A}_i^\epsilon(\tau; m_X) \right|^2 \]

1. **Determination of \(m_X \) dependence of spin-density matrix**
 \[\varrho_{ij}^\epsilon(m_X) = \mathcal{T}_i^\epsilon(m_X) \mathcal{T}_j^{\epsilon*}(m_X) \]
 - Independent maximum likelihood fits to measured \(\tau \) distributions in narrow bins of \(m_X \)
 - Fits take into account detection efficiency
 - No assumptions about resonance content of \(X \)

2. **Extraction of resonances**
 - \(\chi^2 \) fit of resonance model to spin-density (sub)matrix
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

π^-_{beam} \rightarrow $X^- \rightarrow \pi^- \pi^+ \pi^-$

ρ_{target} \rightarrow P \rightarrow ρ_{recoil}

X^- decay via $\pi^+ \pi^-$ resonances = "isobars"
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

X^- decay via $\pi^+ \pi^-$ resonances = "isobars"
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

X^- decay via $\pi^+ \pi^-$ resonances = "isobars"
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

π^-_{beam}

π^-_{target}

π^+_recoil

$X^-_{decay via \pi^+ \pi^- resonances = "isobars"}$

$|m_{3\pi} - 1672 \text{ MeV}/c^2| < 100 \text{ MeV}/c^2$
Partial-Wave Analysis: $\pi^- \pi^+ \pi^-$ Final State

$\pi^-_{\text{beam}} \rightarrow [J^{PC} M^\epsilon] \rightarrow X^- \rightarrow\text{Bachelor} \rightarrow [L] \rightarrow \text{Isobar} \rightarrow p_{\text{target}} \rightarrow p_{\text{recoil}}$

X^- decay via $\pi^+ \pi^-$ resonances = "isobars"

$|m_{3\pi} - 1672 \text{ MeV}/c^2| < 100 \text{ MeV}/c^2$
Isobar model

- Isobars included into PWA model
 - $^3\pi\pi$ $J^{PC} = 0^{++}$
 - $\rho(770)$ 1^{--}
 - $f_0(980)$ 0^{++}
 - $f_2(1270)$ 2^{++}
 - $f_0(1500)$ 0^{++}
 - $\rho_3(1690)$ 3^{--}
- PWA requires precise knowledge of isobar $\rightarrow \pi^+\pi^-$ amplitude

Partial-Wave Analysis: $\pi^-\pi^+\pi^-$ Final State

Bachelor

\[X^- \quad [J^{PC}M^\epsilon] \quad [L] \]

Isobar

π_beam

π_target

π_recoil

\[\rho_\text{beam} \quad [J^{PC}M^\epsilon] \quad \pi^- \quad [L] \quad \pi^+ \quad \pi^- \]

\[\rho_\text{target} \quad \rho_\text{recoil} \]

Entries / (5 MeV/c^2)

Entries / (5 MeV/c^2) vs $m_{\pi^+\pi^-}$ [GeV/c^2]

$\rho(770)$

$\rho_3(1690)$

$f_0(980)$

$f_2(1270)$
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars in $\pi^- \pi^0$
 - $I = 0$ isobars in $\pi^0 \pi^0$

Complicated correlation of $m_{3\pi}$ and t'

- 2D PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets
1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars in $\pi^- \pi^0$
 - $I = 0$ isobars in $\pi^0 \pi^0$

Complicated correlation of $m_{3\pi}$ and t'
- 2D PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions

\[800 < m_{3\pi} < 850 \text{ MeV} / c^2 \]

\[0.80 < m_{3\pi} < 0.85 \text{ GeV} / c^2 \]

\[1600 < m_{3\pi} < 1650 \text{ MeV} / c^2 \]

\[1.60 < m_{3\pi} < 1.65 \text{ GeV} / c^2 \]
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars in $\pi^- \pi^0$
 - $I = 0$ isobars in $\pi^0 \pi^0$

Complicated correlation of $m_{3\pi}$ and t'

- 2D PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$

Two Data Sets

1. $\pi^- \pi^+ \pi^-$ (50 M events)
2. Crosscheck with $\pi^- \pi^0 \pi^0$ (3.5 M events)
 - Very different acceptance
 - Isobars separated by isospin
 - $I = 1$ isobars in $\pi^- \pi^0$
 - $I = 0$ isobars in $\pi^0 \pi^0$

Complicated correlation of $m_{3\pi}$ and t'

- 2D PWA in bins of t' and $m_{3\pi}$
 - $\pi^- \pi^+ \pi^-$: 11 t' bins
 - $\pi^- \pi^0 \pi^0$: 8 t' bins
- Better disentanglement of resonant and nonresonant contributions
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

- $1^{++} 0^+ \rho(770)\pi S$
- $2^{++} 1^+ \rho(770)\pi D$
- $2^{-+} 0^+ f_2(1270)\pi S$

![Mass spectrum graph](attachment:mass_spectrum.png)
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770) \pi S$
- $2^{++} 1^+ \rho(770) \pi D$
- $2^{-+} 0^+ f_2(1270) \pi S$

![Graph showing invariant mass spectrum with peaks at $a_1(1260)$, $a_2(1320)$, and $\pi_2(1670)$]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770) \pi S$
- $2^{++} 1^+ \rho(770) \pi D$
- $2^{-+} 0^+ f_2(1270) \pi S$

Boris Grube, TU München
Meson Spectroscopy at COMPASS
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770)\pi S$
- $2^{++} 1^+ \rho(770)\pi D$
- $2^{--} 0^+ f_2(1270)\pi S$

Boris Grube, TU München
Meson Spectroscopy at COMPASS
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Major Waves

- $\pi^- \pi^+ \pi^-$ invariant mass spectrum
- $1^{++} 0^+ \rho(770) \pi S$
- $2^{++} 1^+ \rho(770) \pi D$
- $2^{-+} 0^+ f_2(1270) \pi S$

In total 88 partial waves

- Largest wave set used so far for $\pi^- \pi^+ \pi^-$
- Spin J up to 6
- Orbital angular momentum L up to 6
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

- $2^{++} 2^+ \rho(770) \pi D$
- $4^{++} 1^+ \rho(770) \pi G$
- $0^- 0^+ f_0(980) \pi S$

$2^{++} 2^+ \rho(770) \pi D$

$0.3\% \quad 0.100 < t' < 1.000 \text{ (GeV/c)}^2$

$\times 10^3$

Intensity $/ (20 \text{ MeV/c}^2)$

$a_2(1320)$

3 MeV/c^2
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

- $2^{++} 2^+ \rho(770) \pi D$
- $4^{++} 1^+ \rho(770) \pi G$
- $0^- 0^+ f_0(980) \pi S$

\[\text{Intensity / (20 MeV/c}^2) \]

- $2^{++}2^+ \rho(770)\pi D$
- $4^{++}1^+ \rho(770)\pi G$

\[\text{Intensity / (20 MeV/c}^2) \]

- $a_2(1320)$
- $a_4(2040)$
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

- $2^{++} 2^+ \rho(770) \pi D$
- $4^{++} 1^+ \rho(770) \pi G$
- $0^{-+} 0^+ f_0(980) \pi S$

[arXiv:1509.00992]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

A New $a_1(1420)$ Meson?

- $1^{++} 0^+ f_0(980) \pi P$
- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%$

$$1^{++} 0^+ f_0(980) \pi P$$

$$0.3\% \quad 0.100 < t' < 1.000 \text{ (GeV/c)}^2$$

Intensity / (20 MeV/c^2)

$m_{3\pi} \text{ [GeV/c}^2\text{]}$

Notes

- Boris Grube, TU München
- Meson Spectroscopy at COMPASS
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$: Selected Small Waves

A New $a_1(1420)$ Meson?

- $1^{++} 0^+ f_0(980) \pi P$
- Unexpected peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.3\%

$\pi^- \pi^0 \pi^0$ final state

- Very different detector acceptance
- Similar signal

$\pi^- \pi^0 \pi^0$

$\pi^- \pi^+ \pi^-$ scaled

COMPASS 2008 ($\pi^- p \rightarrow (3\pi)^- p$)

$1^{++} 0^+ f_0(980) \pi P$

$\pi^- \pi^0 \pi^0$, $\pi^- \pi^+ \pi^-$ (scaled)

$0.100 < t' < 1.000$ GeV2/c2

(incoherent sum)

Preliminary
Coherent sum of resonant (Breit-Wigner) and nonresonant terms

$1^{++} f_0(980) \pi P$

$0.1 < t' < 1.0 \text{ (GeV/c)}^2$
Coherent sum of resonant (Breit-Wigner) and nonresonant terms
1\(^{++}\) peak consistent with Breit-Wigner resonance

\(a_{1}(1420)\):
\(M_0 = 1414^{+15}_{-13}\) MeV/\(c^2\)
\(\Gamma_0 = 153^{+8}_{-23}\) MeV/\(c^2\)

Work in progress: extension to more partial waves
Resonance-Model Fit

- **1^{++} peak consistent with Breit-Wigner resonance**
- **$a_1 (1420)$:**

 \[M_0 = 1414^{+15}_{-13} \text{ MeV/c}^2 \]
 \[\Gamma_0 = 153^{+8}_{-23} \text{ MeV/c}^2 \]

- **Work in progress: extension to more partial waves**
- **1**++ peak consistent with Breit-Wigner resonance

- \(a_1(1420) \):
 \[M_0 = 1414^{+15}_{-13} \text{ MeV/}c^2 \]
 \[\Gamma_0 = 153^{+8}_{-23} \text{ MeV/}c^2 \]

- **Work in progress:** extension to more partial waves
Resonance-Model Fit

- 1++ peak consistent with Breit-Wigner resonance
- $a_1(1420)$:
 - $M_0 = 1414^{+15}_{-13}$ MeV/c^2
 - $\Gamma_0 = 153^{+8}_{-23}$ MeV/c^2

- **Work in progress**: extension to more partial waves

Boris Grube, TU München
Meson Spectroscopy at COMPASS
Is the $a_1(1420)$ a Model Artifact?

- Calculation of decay amplitudes $A_{\text{wave}}(\tau)$ needs precise knowledge of isobar $\rightarrow \pi^+ \pi^-$ amplitude
- At least 3 isobars with $J^{PC} = 0^{++}$
 - $[\pi\pi]_{S\text{-wave}}$
 - $f_0(980)$
 - $f_0(1500)$
- Parametrization of $m_{\pi^+ \pi^-}$ dependence difficult
Is the $a_1(1420)$ a Model Artifact?

- Calculation of decay amplitudes $A_{\text{wave}}(\tau)$ needs precise knowledge of isobar $\rightarrow \pi^+\pi^-$ amplitude
- At least 3 isobars with $J^{PC} = 0^{++}$
 - $[\pi\pi]_{S}$-wave
 - $f_0(980)$
 - $f_0(1500)$
- Parametrization of $m_{\pi^+\pi^-}$ dependence difficult
Is the $a_1(1420)$ a Model Artifact?

Novel analysis method inspired by E791 analysis [PRD 73 (2006) 032204]

- Replace $J^{PC} = 0^{++}$ isobar parametrizations by piece-wise constant amplitudes in $m_{\pi^+\pi^-}$ bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data
 - **Advantage:** drastic reduction of model bias
 - **Caveat:** significant increase in number of fit parameters

![Graph showing the dependence of $f_0(980)$ and $f_0(1500)$ on $m_{\pi^+\pi^-}$](image1)

![Graph showing the dependence on $m_{\pi^+\pi^-}$](image2)
Is the $a_1(1420)$ a Model Artifact?

Novel analysis method

- Replace $J^{PC} = 0^{++}$ isobar parametrizations by piece-wise constant amplitudes in $m_{\pi^+\pi^-}$ bins
- Extract $m_{3\pi}$ dependence of $J^{PC} = 0^{++}$ isobar amplitude from data

Advantage: drastic reduction of model bias

Caveat: significant increase in number of fit parameters
Correlation of 3π intensity around 1.4 GeV/c^2 with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
\[\pi \pi \ S\text{-Wave Amplitude in } J^{PC} = 1^{++} 3\pi \text{ Wave} \]

- Correlation of 3π intensity around 1.4 GeV/c^2 with $f_0(980)$
- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
Correlation of 3π intensity around $1.4\text{ GeV}/c^2$ with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
Correlation of 3π intensity around 1.4 GeV/c² with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
Correlation of 3π intensity around 1.4 GeV/c^2 with $f_0(980)$

- $f_0(980)$ semicircle in Argand diagram
- Confirms that $f_0(980)\pi$ signal is not an artifact of isobar parametrization
What is the Nature of the $a_1(1420)$?

Still unclear

- $J^{PC} = 1^{++}$ ground state is $a_1(1260)$
 - Mass: 1230 ± 40 MeV/c^2
 - Width: 250 to 400 MeV/c^2
- No quark-model states expected at 1.4 GeV/c^2
 - First excited 1^{++} state expected to be heavier and wider
- Isospin partner of narrow $f_1(1420)$?
- $a_1(1420)$ has peculiar decay mode
 - Only seen in $f_0(980)\pi$ decay
 - $f_0(980)$ has large $s\bar{s}$ content
 - Some models explain $f_0(980)$ as tetra-quark state
- $a_1(1420)$ lies suspiciously close to $K\bar{K}^*$ threshold

$1^{++} 0^+ f_0(980) \pi P$
- $0.1 < t' < 1.0$ (GeV/c^2)
- (1) Model curve
- (2) $a_1(1420)$ resonance
- (3) Non-resonant term

Int. / (20 MeV/c^2)

Int. / (20 MeV/c^2)
What is the Nature of the $a_1(1420)$?

Still unclear

- $J^{PC} = 1^{++}$ ground state is $a_1(1260)$
 - Mass: $1230 \pm 40 \text{ MeV}/c^2$
 - Width: 250 to 400 MeV/c^2
- No quark-model states expected at $1.4 \text{ GeV}/c^2$
 - First excited 1^{++} state expected to be heavier and wider
- Isospin partner of narrow $f_1(1420)$?
- $a_1(1420)$ has peculiar decay mode
 - Only seen in $f_0(980)\pi$ decay
 - $f_0(980)$ has large $s\bar{s}$ content
 - Some models explain $f_0(980)$ as tetra-quark state
- $a_1(1420)$ lies suspiciously close to $K\bar{K}^*$ threshold

Boris Grube, TU München
Meson Spectroscopy at COMPASS
What is the Nature of the $a_1(1420)$?

Several proposed explanations

Genuine resonance
- **Two-quark-tetraquark** mixed state [Wang, arXiv:1401.1134]
- **Tetraquark** with mixed flavor symmetry [Chen et al., PRD 91 (2015) 094022]

Effect in $a_1(1260)$ production

Effect in $a_1(1260)$ decay
- Singularity in triangle diagram [Mikhasenko et al., PRD 91 (2015) 094015]

- Similar diagrams proposed to explain some X, Y, Z states and pentaquark candidate P_c in heavy-meson sector
What is the Nature of the $a_1(1420)$?

Several proposed explanations

Genuine resonance
- Tetraquark with mixed flavor symmetry [Chen et al., PRD 91 (2015) 094022]

Effect in $a_1(1260)$ production

Effect in $a_1(1260)$ decay
- Singularity in triangle diagram [Mikhasenko et al., PRD 91 (2015) 094015]

- Similar diagrams proposed to explain some X, Y, Z states and pentaquark candidate P_c in heavy-meson sector
What is the Nature of the $a_1(1420)$?

Several proposed explanations

Genuine resonance
- Two-quark-tetraquark *mixed state*
- Tetraquark *with mixed flavor symmetry*
 [Chen *et al.*, PRD 91 (2015) 094022]

Effect in $a_1(1260)$ production
- Two-channel *unitarized Deck amplitude* + direct $a_1(1260)$ production

Effect in $a_1(1260)$ decay
- Singularity in *triangle diagram*
 [Mikhasenko *et al.*, PRD 91 (2015) 094015]
- Similar diagrams proposed to explain some *X, Y, Z states* and *pentaquark candidate* P_c in heavy-meson sector
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $(3\pi)^-$ PWA

- Broad intensity bump
- Similar in both 3π channels

COMPASS 2008 ($\pi^- p \rightarrow (3\pi)^- p$)

$1^+1^+ \rho(770) \pi P$

$\pi^- \pi^0 \pi^0$, $\pi^- \pi^- \pi^+$ (scaled)

$0.100 < t' < 1.000$ GeV2/c2

(incoherent sum)

Preliminary

$\pi^- \pi^0 \pi^0$

$\pi^- \pi^+ \pi^-$ scaled
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^-\pi^+\pi^-$ PWA

Drastic Change of Mass Spectrum with t'

"Low" $t' \approx 0.1 \text{ (GeV}/c)^2$

- $1^+1^+ \rho(770) \pi P$
- $0.100 \leq t' \leq 0.113 \text{ GeV}^2/c^2$

"High" $t' \approx 0.8 \text{ (GeV}/c)^2$

- $1^+1^+ \rho(770) \pi P$
- $0.724 \leq t' \leq 1.000 \text{ GeV}^2/c^2$

- Dominant nonresonant contribution
- Needs to be better understood in order to extract resonance content
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^- \pi^+ \pi^-$ PWA

Model for Nonresonant Component

Deck effect

- MC pseudodata generated according to model of Deck amplitude based on [ACCMOR, NPB 182 (1981) 269]
 - see D. Ryabchikov’s contribution for further details

- Analyzed like real data
Spin-Exotic $J^{PC} = 1^{-+}$ Signal in $\pi^- \pi^+ \pi^-$ PWA

Deck-Model for Nonresonant Component

"Low" $t' \approx 0.1 \text{ (GeV/c)}^2$

```
0.66%  $1^+1^+ \rho(770) \pi P$
0.100 $\leq t' \leq 0.113 \text{ GeV}^2/c^2$
```

Deck MC scaled to t'-summed intensity

- **Similar** mass spectrum at low t'
- **Different** shape at high t'

"High" $t' \approx 0.8 \text{ (GeV/c)}^2$

```
0.96%  $1^+1^+ \rho(770) \pi P$
0.724 $\leq t' \leq 1.000 \text{ GeV}^2/c^2$
```
Leptoproduction of $\psi(2S)$ and $X(3872)$ at COMPASS

- **Muon beam** with 160 to 200 GeV/c on 6LiD and NH$_3$ targets
- $\psi(2S)$ and $X(3872)$ observed in $J/\psi \pi^+ \pi^-$
- Production = “reversal” of $\psi(2S)$ and $X(3872)$ decays
 - Possible mechanism

- Full muon-beam data set (2003 to 2010)
- 87 exclusive $(J/\psi \pi^+ \pi^-)\pi^\pm$ events
One Last Thing...

Leptoproduction of $\psi(2S)$ and $X(3872)$ at COMPASS

- **Muon beam** with 160 to 200 GeV/c on 6LiD and NH$_3$ targets
- $\psi(2S)$ and $X(3872)$ observed in $J/\psi \pi^+ \pi^-$
- **Production** = “reversal” of $\psi(2S)$ and $X(3872)$ decays
 - Possible mechanism

Full muon-beam data set (2003 to 2010)

- 87 exclusive $(J/\psi \pi^+ \pi^-) \pi^\pm$ events
Leptoproduction of $\psi(2S)$ and $X(3872)$ at COMPASS

- **Muon beam** with 160 to 200 GeV/c on 6LiD and NH$_3$ targets
- $\psi(2S)$ and $X(3872)$ observed in $J/\psi \pi^+ \pi^-$
- **Production** = “reversal” of $\psi(2S)$ and $X(3872)$ decays
 - Possible mechanism

- Full muon-beam data set (2003 to 2010)
- 87 exclusive $(J/\psi \pi^+ \pi^-) \pi^\pm$ events
Leptoproduction of $\psi(2S)$ and $X(3872)$ at COMPASS

$J/\psi \pi^+ \pi^-$ invariant mass spectrum

$M_{\psi(2S)} = 3680 \pm 8 \text{ MeV}/c^2$

$M_{X(3872)} = 3860 \pm 8 \text{ MeV}/c^2$
Conclusions

World’s largest $\pi^- \pi^+ \pi^-$ data set
- PWA reliably extracts even very small signals

Novel analysis techniques
- PWA in bins of t'
 - Better separation of resonant and nonresonant contribution
- Extraction of $\pi \pi$ S-wave amplitude from $\pi^- \pi^+ \pi^-$ system
 - Study dependence on 3π source
 - Study rescattering effects

Unexpected new axial-vector signal $a_1(1420)$
- Independently confirmed in $\pi^- \pi^0 \pi^0$
- Nature still unclear; several possible explanations
- COMPASS data will put models to the test

Nonresonant contributions play important role
- First studies using Deck models
- Improved models needed \implies collaboration with JPAC
 - see contributions by A. Szczepaniak, A. Jackura, V. Pauk, and V. Mathieu
Conclusions

World’s largest $\pi^- \pi^+ \pi^-$ data set
- PWA reliably extracts even very small signals

Novel analysis techniques
- PWA in bins of t'
 - Better separation of resonant and nonresonant contribution
- Extraction of $\pi \pi$ S-wave amplitude from $\pi^- \pi^+ \pi^-$ system
 - Study dependence on 3π source
 - Study rescattering effects

Unexpected new axial-vector signal $a_1(1420)$
- Independently confirmed in $\pi^- \pi^0 \pi^0$
- Nature still unclear; several possible explanations
- COMPASS data will put models to the test

Nonresonant contributions play important role
- First studies using Deck models
- Improved models needed \Rightarrow collaboration with JPAC
 see contributions by A. Szczepaniak, A. Jackura, V. Pauk, and V. Mathieu
Conclusions

World’s largest $\pi^- \pi^+ \pi^-$ data set
- PWA reliably extracts even very small signals

Novel analysis techniques
- PWA in bins of t'
 - Better separation of resonant and nonresonant contribution
- Extraction of $\pi\pi$ S-wave amplitude from $\pi^- \pi^+ \pi^-$ system
 - Study dependence on 3π source
 - Study rescattering effects

Unexpected new axial-vector signal $a_1(1420)$
- Independently confirmed in $\pi^- \pi^0 \pi^0$
- Nature still unclear; several possible explanations
- COMPASS data will put models to the test

Nonresonant contributions play important role
- First studies using Deck models
- Improved models needed \Rightarrow collaboration with JPAC
 see contributions by A. Szczepaniak, A. Jackura, V. Pauk, and V. Mathieu
Conclusions

World’s largest \(\pi^- \pi^+ \pi^- \) data set
- PWA reliably extracts even very small signals

Novel analysis techniques
- PWA in bins of \(t' \)
 - Better separation of resonant and nonresonant contribution
- Extraction of \(\pi\pi \) S-wave amplitude from \(\pi^- \pi^+ \pi^- \) system
 - Study dependence on \(3\pi \) source
 - Study rescattering effects

Unexpected new axial-vector signal \(a_1(1420) \)
- Independently confirmed in \(\pi^- \pi^0 \pi^0 \)
- Nature still unclear; several possible explanations
- COMPASS data will put models to the test

Nonresonant contributions play important role
- First studies using Deck models
- Improved models needed \(\Rightarrow \) collaboration with JPAC
 - see contributions by A. Szczepaniak, A. Jackura, V. Pauk, and V. Mathieu
Outlook

Other ongoing analyses

- **Pion diffraction into** $\pi^- \eta^{'(i)}$, $\pi^- \eta \eta$, $\pi^- \pi^0 \omega$, $K\bar{K}\pi$, $K\bar{K}\pi\pi$, ...
- **Kaon diffraction into** $K^- \pi^+ \pi^-$
- **Central-production reactions**
- **$\pi\gamma$ scattering using Primakoff reactions** on heavy targets
- **Leptoproduction of $X(3872)$**
Backup slides
- PWA of diffractively produced 3π final states
- PWA of diffractively produced $\pi^-\eta$ and $\pi^-\eta'$ final states
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: Low t' vs. High t'

$2^{++} 1^+ \rho \pi D$
- Peak does not change with t'

$1^{++} 0^+ \rho \pi S$
- Peak moves with t'
- Strong nonresonant contribution

$\pi^- \pi^0 \pi^0$

$\pi^- \pi^+ \pi^-$ scaled for each plot

COMPASS 2008 ($\pi p \rightarrow (3\pi) p$)

Preliminary
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$: Low t' vs. High t'

$2^{++} 1^+ \rho \pi D$
- Peak does not change with t'

$1^{++} 0^+ \rho \pi S$
- Peak moves with t'
- Strong nonresonant contribution

$\pi^- \pi^0 \pi^0$
$\pi^- \pi^+ \pi^-$ scaled for each plot

COMPASS 2008 ($\pi^- p \rightarrow (3\pi)^- p$)
- $2^+ 1^+ \rho(770) \pi D$
 - $\pi^0 \pi^0$, $\pi^- \pi^+$ (scaled)
 - $0.100 < t' < 0.116 \text{ GeV}^2/c^2$
 - $0.100 < t' < 0.113 \text{ GeV}^2/c^2$

COMPASS 2008 ($\pi^- p \rightarrow (3\pi)^- p$)
- $1^+ 0^+ \rho(770) \pi S$
 - $\pi^0 \pi^0$, $\pi^- \pi^+$ (scaled)
 - $0.100 < t' < 0.116 \text{ GeV}^2/c^2$
 - $0.100 < t' < 0.113 \text{ GeV}^2/c^2$
\[\pi \pi \ S\text{-Wave Amplitude in } J^{PC} = 0^{-+} \ 3\pi \ Wave \]

- Coupling of \(\pi(1800) \) to \(f_0(980)\pi \) and \(f_0(1500)\pi \) decay modes
Correlation of intensity around $m_{3\pi} = 1.9$ GeV/c^2 with $f_0(980)$

$f_0(980)$ semicircle in Argand diagram

Coupling of $\pi_2(1880)$ to $f_0(980)\pi$ decay mode
\[\pi\pi \quad 2^{-+} [\pi\pi]_{0+} \pi D \]

- Correlation of intensity around \(m_{3\pi} = 1.9 \text{ GeV/}c^2 \) with \(f_0(980) \)
- \(f_0(980) \) semicircle in Argand diagram
- Coupling of \(\pi_2(1880) \) to \(f_0(980)\pi \) decay mode

[arXiv:1509.00992]
Spin-Exotic $J^{PC} = 1^{--}$ Signal in $\pi^- \pi^+ \pi^-$ PWA

Relative Phase w.r.t. $1^{++} 0^+ \rho(770) \pi S$ Wave

$\pi p \rightarrow \pi \pi \pi p$ (COMPASS 2008)

- $1^{+1+} \rho(770) \pi P - 1^{++0+} \rho(770) \pi S$

\begin{align*}
0.113 \leq t' &\leq 0.128 \text{ GeV}^2/c^2 \\
0.262 \leq t' &\leq 0.326 \text{ GeV}^2/c^2 \\
0.189 \leq t' &\leq 0.220 \text{ GeV}^2/c^2 \\
0.449 \leq t' &\leq 0.724 \text{ GeV}^2/c^2
\end{align*}

- Slow phase 60° motion in 1.6 GeV/c² region independent of t'
PWA of $\pi^- p \rightarrow \pi^- \eta^{(1)} p_{\text{recoil}}$

- Odd-spin waves: spin-exotic quantum numbers
 - Disputed $J^{PC} = 1^{-+}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$
- Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^- \pi^+ \pi^- \gamma\gamma$ final state

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+ \pi^- \eta$ with $\eta \rightarrow \gamma\gamma$
PWA of $\pi^- p \rightarrow \pi^- \eta^{(')} p_{\text{recoil}}$

- Odd-spin waves: spin-exotic quantum numbers
 - Disputed $J^{PC} = 1^{-+}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$
- Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^- \pi^+ \pi^- \gamma\gamma$ final state

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+ \pi^- \eta$ with $\eta \rightarrow \gamma\gamma$

$\pi^- \eta$ invariant mass

![Graph showing $m(\eta\pi^-)$ in GeV/c^2 with entries and acceptance]
PWA of $\pi^- p \rightarrow \pi^- \eta^{(')} p_{\text{recoil}}$

- Odd-spin waves: spin-exotic quantum numbers
 - Disputed $J^{PC} = 1^{-+}$ resonance signals
 - $\pi_1(1400)$ in $\pi\eta$ and $\pi_1(1600)$ in $\pi\eta'$
- Comparison of $\pi\eta$ and $\pi\eta'$: information about flavor structure

Reconstruction from exclusive $\pi^- \pi^+ \pi^- \gamma\gamma$ final state

- $\eta \rightarrow \pi^+ \pi^- \pi^0$ with $\pi^0 \rightarrow \gamma\gamma$
- $\eta' \rightarrow \pi^+ \pi^- \eta$ with $\eta \rightarrow \gamma\gamma$

$\pi^- \eta$ invariant mass

```
Entries / 4 MeV/c^2
0 400 800 1200 1600 2000
m(\eta\pi^-) [GeV/c^2]
```

$\pi^- \eta'$ invariant mass

```
Entries / 20 MeV/c^2
0 100 200 300 400 500 600
m(\eta'\pi^-) [GeV/c^2]
```
Quark-line picture for \(n = (u, d) \) and pointlike resonances

- \(\pi^- \eta \) and \(\pi^- \eta' \) partial-wave intensities for spin \(J \) related by
 - Different phase space and barrier factors
 - Branching fraction ratio \(b \) of \(\eta \) and \(\eta' \) into \(\pi^- \pi^+ \gamma \gamma \)

\[
N^\pi\eta'(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N^\pi\eta(m)
\]

- \(q \) = breakup momentum
Comparison of $J^{PC} = 2^{++}$ Partial Waves

Quark-line picture for $n = (u,d)$ and pointlike resonances

- $\pi^-\eta$ and $\pi^-\eta'$ partial-wave intensities for spin J related by
 - Different phase space and barrier factors
 - Branching fraction ratio b of η and η' into $\pi^-\pi^+\gamma\gamma$

$$N_J^{\pi\eta'}(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N_J^{\pi\eta}(m)$$

- $q = \text{breakup momentum}$

Graphs

- $\pi^-\eta$ final state
- $\pi^-\eta'$ final state
Comparison of $J^{PC} = 2^{++}$ Partial Waves

Quark-line picture for $n = (u, d)$ and pointlike resonances

- $\pi^- \eta$ and $\pi^- \eta'$ partial-wave intensities for spin J related by
- Different phase space and barrier factors
- Branching fraction ratio b of η and η' into $\pi^- \pi^+ \gamma \gamma$

$$N_J^{\pi\eta'}(m) \propto b \left[\frac{q^{\pi\eta'}(m)}{q^{\pi\eta}(m)} \right]^{2J+1} N_J^{\pi\eta}(m)$$

- $q = \text{breakup momentum}$

\begin{itemize}
 \item $\pi^- \eta$ final state
 \item $\pi^- \eta'$ final state; $\pi^- \eta$ scaled
\end{itemize}
Even-Spin Waves

\[J^{PC} = 4^{++} \]

Phase: \(4^{++} - 2^{++} \)

- **Similar even-spin waves**
- Intermediate states couple to same final-state flavour content
- **Similar physical content** also in nonresonant high-mass region

\(\pi^- \eta' \) final state; \(\pi^- \eta \) scaled

Graphs:
- Events / 40 MeV/c² vs. \(m(\eta'\pi^-) \) [GeV/c²]
- Events / 40 MeV/c² vs. \(m(\eta'\pi^-) \) [GeV/c²]
- \(\phi_4 - \phi_2 \) [deg] vs. \(m(\eta'(\pi^-) \) [GeV/c²]
- \(\phi_4 - \phi_2 \) [deg] vs. \(m(\eta'(\pi^-) \) [GeV/c²]
Even-Spin Waves

\[J^{PC} = 4^{++} \]

\begin{align*}
\mathcal{N}(a_2 \rightarrow \pi\eta') / \mathcal{N}(a_2 \rightarrow \pi\eta) &= (5 \pm 2) \% \\
\mathcal{N}(a_4 \rightarrow \pi\eta') / \mathcal{N}(a_4 \rightarrow \pi\eta) &= (23 \pm 7) \%
\end{align*}

- Resonance-model fit (Breit-Wigner)
- First-time measurement of \(\pi^-\eta' \) final state; \(\pi^-\eta \) scaled
$J^{PC} = 1^{-+}$ Spin-Exotic Wave

Spin-exotic $J^{PC} = 1^{-+}$

Phase: $1^{-+} - 2^{++}$

- 1^{-+} intensities very different
- Suppression in $\pi\eta$ channel predicted for intermediate $|q\bar{q}g\rangle$ state
- Different phase motion in $1.6 \text{ GeV}/c^2$ region

$\pi^-\eta'$ final state; $\pi^-\eta$ scaled
Spin-exotic $J^{PC} = 1^{-+}$

Phase: $1^{-+} - 2^{++}$

- 1^{-+} resonance interpretation requires better understanding of
 - 2^{++} wave
 - Nonresonant contributions

$\pi^{-} \eta'$ final state; $\pi^{-} \eta$ scaled
Spin-exotic $J^{PC} = 1^{--}$

Phase: $1^{--} - 2^{++}$

Multi-Regge exchange, e.g.

π^-_{beam} η

ρ_{target} a_2

ρ_{recoil}