Light-Meson Spectroscopy
A Selection of Recent Results

Boris Grube

Physik-Department E18
Technische Universität München,
Garching, Germany

7th International Conference on Quarks and Nuclear Physics
Valparaíso, 03. March 2015
Introduction

Scalar Mesons

$J^{PC} = 1^{-+}$ spin-exotic mesons

Narrow states around 1.4 GeV $/c^2$

The light X states

Conclusions and outlook
1. Introduction

2. Scalar Mesons

3. $J^{PC} = 1^{--} \text{ spin-exotic mesons}$

4. Narrow states around 1.4 GeV / c^2

5. The light X states

6. Conclusions and outlook
Mesons in the Constituent Quark Model (CQM)

Mesons

- Color-singlet $|qq'\rangle$ states, grouped into $SU(3)_{\text{flavor}}$ multiplets

Spin-parity rules for bound $q\bar{q}$ system

- Quark spins couple to total intrinsic spin $S = 0$ or 1

- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$

- Parity $P = (-1)^{L+1}$

- Charge conjugation $C = (-1)^{L+S}$

- Forbidden J^{PC}: 0^{--}, even$^{++}$, odd$^{--}$
Mesons in the Constituent Quark Model (CQM)

Mesons
- Color-singlet $|qq'\rangle$ states, grouped into $SU(3)_{\text{flavor}}$ multiplets

Spin-parity rules for bound $q\bar{q}$ system
- Quark spins couple to total intrinsic spin $S = 0$ or 1
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0^{--}, even $^{+-}$, odd $^{--}$
Mesons in the Constituent Quark Model (CQM)

Mesons
- Color-singlet $|q\bar{q}'\rangle$ states, grouped into $SU(3)_{\text{flavor}}$ multiplets

Spin-parity rules for bound $q\bar{q}$ system
- Quark spins couple to total intrinsic spin $S = 0$ or 1
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0^{--}, even $^{+-}$, odd $^{--}$
Constituent Quark Model

Light-quark Meson Spectrum

\[v = n + L - 1 \]

\[\frac{1}{2}S_0 = 0^{--} \]

\[\frac{3}{2}S_1 = 1^{--} \]

\[\frac{1}{2}S_0 = 0^{-+} \]

\[\frac{3}{2}S_1 = 1^{--} \]

\[\frac{1}{2}S_0 = 0^{-+} \]

\[\frac{3}{2}S_1 = 1^{--} \]

\[3^1P_0 = 0^{++} \]

\[3^1P_1 = 1^{++} \]

\[3^3P_2 = 2^{++} \]

\[3^1P_1 = 1^{++} \]

\[2S + 1 \]

\[nL_j = J^{PC} \]

\(Amsler \ et \ al., \ Phys. \ Rept. \ 389 \ (2004) \ 61 \)
Constituent Quark Model
Light-quark Meson Spectrum

\[v = n + L - 1 \]

- \(\pi(1800) \)
- \(K(1830) \)
- \(\eta(1760) \)
- \(a_2(1320) \)
- \(K_2^*(1980) \)
- \(f_2(2010) \)
- \(f_2(1950) \)
- \(a_1(1640) \)
- \(K_1 \)
- \(f_1(1285) \)
- \(f_1(1420) \)
- \(a_0(1450) \)
- \(K_0^*(1430) \)
- \(f_0(1370) \)
- \(f_0(1710) \)
- \(b_1(1235) \)
- \(K_{1b} \)
- \(h_1(1170) \)
- \(h_1(1380) \)

“Light-meson frontier”

- Many missing and disputed states in mass region \(m \approx 2 \text{ GeV}/c^2 \)
 - Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

Constituent Quark Model

Light-quark Meson Spectrum

\[\nu = n + L - 1 \]

\[
\begin{array}{c|c|c|c|c}
\pi(1800) & K(1830) & \eta(1760) \\
1 & 2 & \frac{1}{2} S_0 = 0^{--} & \frac{3}{2} S_1 = 1^{--} \\
\pi(1300) & K(1460) & \eta(1295) & \eta(1440) \\
1 & 1 & \frac{1}{2} S_0 = 0^{--} & \frac{3}{2} S_1 = 1^{--} \\
\pi & K & \eta & \eta' \\
0 & 0 & \frac{1}{2} P_0 = 0^{++} & \frac{1}{2} P_1 = 1^{++} \\
\end{array}
\]

\[a_2(1700) \]
\[f_2(1950) \]
\[K_2^*(1980) \]
\[f_2(2010) \]
\[\rho_3(1690) \]
\[\phi_3(1850) \]
\[K_2(1820) \]

\[a_1(1640) \]
\[f_1(1285) \]
\[f_1(1420) \]
\[K_1^b \]
\[h_1(1170) \]
\[h_1(1380) \]

\[a_0(1450) \]
\[K_0^*(1430) \]
\[f_0(1285) \]
\[f_1(1420) \]
\[b_1(1235) \]
\[K_{1b} \]

\[\rho(1700) \]
\[K_1^a \]
\[\eta_2(1450) \]
\[\eta_2(1870) \]
\[\rho(1700) \]
\[K_1^a \]

\[a_2(1320) \]
\[K_2^*(1430) \]
\[f_2(1525) \]
\[K_2^*(1430) \]
\[f_0(1370) \]
\[f_0(1710) \]
\[b_1(1235) \]
\[b_1(1380) \]

\[a_1(1260) \]
\[K_{1a} \]
\[f_1(1285) \]
\[f_1(1420) \]

\[\rho_3(1690) \]
\[\phi_3(1850) \]
\[K_2(1820) \]

\[a_1(1640) \]
\[f_1(1285) \]
\[f_1(1420) \]
\[K_1^b \]
\[h_1(1170) \]
\[h_1(1380) \]

\[\rho(1700) \]
\[K_1^a \]

“Light-meson frontier”

- Many missing and disputed states in mass region \(m \approx 2 \text{ GeV} / c^2 \)
- Identification of higher excitations becomes exceedingly difficult
 - Wider states + higher state density
 - More overlap and mixing

\[2S+1 \]
\[nL_J = J^{PC} \]
Possible New Forms of Matter

Hybrids \(|q\bar{q}g\rangle\): states with **excited gluonic fields**
- Glue component contributes to quantum numbers
 - *All* \(J^{PC}\) allowed
- Lightest predicted hybrid: **spin-exotic** \(J^{PC} = 1^{-+}\)

Glueballs \(|gg\rangle\): states with **no valence quarks**
- Lightest predicted glueball: ordinary \(J^{PC} = 0^{++}\)
 - Will strongly mix with nearby conventional \(J^{PC} = 0^{++}\) states

Multi-quark states
- Tetraquarks \(|qq\bar{q}\bar{q}\rangle\): **compact**
- Molecules \(|q\bar{q}qq\rangle\): **extended**

Physical states defined by quantum numbers
- Linear superpositions of *all* allowed basis states: \(|q\bar{q}\rangle, |q\bar{q}g\rangle, |gg\rangle, |q^2\bar{q}^2\rangle, \ldots\); amplitudes not directly observable
Possible New Forms of Matter

Hybrids $|q\bar{q}g\rangle$: states with excited gluonic fields
- Glue component contributes to quantum numbers
 - *All* J^{PC} allowed
- Lightest predicted hybrid: *spin-exotic* $J^{PC} = 1^{-+}$

Glueballs $|gg\rangle$: states with no valence quarks
- Lightest predicted glueball: *ordinary* $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states

Multi-quark states
- Tetraquarks $|qq\bar{q}\bar{q}\rangle$: compact
- Molecules $|q\bar{q}q\bar{q}\rangle$: extended

Physical states defined by quantum numbers
- Linear superpositions of *all* allowed basis states: $|q\bar{q}\rangle, |q\bar{q}g\rangle, |gg\rangle, |q^2\bar{q}^2\rangle, \ldots$; amplitudes not directly observable
Possible New Forms of Matter

Hybrids \(|q\bar{q}g\rangle \): states with **excited gluonic fields**
- Glue component contributes to quantum numbers
 - *All* \(J^{PC} \) allowed
 - Lightest predicted hybrid: **spin-exotic** \(J^{PC} = 1^{-+} \)

Glueballs \(|gg\rangle \): states with **no valence quarks**
- Lightest predicted glueball: **ordinary** \(J^{PC} = 0^{++} \)
 - Will strongly mix with nearby conventional \(J^{PC} = 0^{++} \) states

Multi-quark states
- Tetraquarks \(|qq\bar{q}\bar{q}\rangle \): **compact**
- Molecules \(|q\bar{q}q\bar{q}\rangle \): **extended**

Physical states defined by quantum numbers
- Linear superpositions of *all* allowed basis states: \(|q\bar{q}\rangle, |q\bar{q}g\rangle, |gg\rangle, |q^2\bar{q}^2\rangle, \ldots \); amplitudes not directly observable
Possible New Forms of Matter

Hybrids $|q\bar{q}g\rangle$: states with **excited gluonic fields**
- Glue component contributes to quantum numbers
 - *All* J^{PC} allowed
- Lightest predicted hybrid: **spin-exotic** $J^{PC} = 1^{-+}$

Glueballs $|gg\rangle$: states with **no valence quarks**
- Lightest predicted glueball: **ordinary** $J^{PC} = 0^{++}$
 - Will strongly mix with nearby conventional $J^{PC} = 0^{++}$ states

Multi-quark states
- *Tetraquarks* $|qq\bar{q}\bar{q}\rangle$: **compact**
- *Molecules* $|q\bar{q}q\bar{q}\rangle$: **extended**

Physical states defined by quantum numbers
- Linear superpositions of *all* allowed basis states: $|q\bar{q}\rangle, |q\bar{q}g\rangle, |gg\rangle, |q^2\bar{q}^2\rangle, \ldots$; amplitudes not directly observable
Connection to QCD

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

- QCD Lagrangian not calculable using perturbation theory

Frist-principles numerical method: Lattice QCD

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- Challenge: extrapolation to physical point
 - Heavier u and d quarks than in reality
 - Extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \to \infty$
 - Extrapolation to zero lattice spacing $a \to 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states
Connection to QCD

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$

- QCD Lagrangian not calculable using perturbation theory

Frist-principles numerical method: Lattice QCD

- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- **Challenge:** extrapolation to physical point
 - Heavier u and d quarks than in reality
 \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \to \infty$
 - Extrapolation to zero lattice spacing $a \to 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

See Derek Leinweber’s talk on Thu
QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$
- QCD Lagrangian *not calculable* using perturbation theory

Frist-principles numerical method: Lattice QCD
- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- **Challenge:** extrapolation to physical point
 - Heavier u and d quarks than in reality
 \Rightarrow extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \to \infty$
 - Extrapolation to zero lattice spacing $a \to 0$
 - Rotational symmetry broken due to cubic lattice
- Tremendous progress in past years
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

See Derek Leinweber’s talk on Thu
Connection to QCD

QCD in the confinement regime: $\alpha_s = \mathcal{O}(1)$
- QCD Lagrangian not calculable using perturbation theory

Frist-principles numerical method: Lattice QCD
- Simulation of QCD on finite discreet space-time lattice using Monte Carlo techniques
- **Challenge:** extrapolation to physical point
 - Heavier u and d quarks than in reality \implies extrapolation to physical quark masses
 - Extrapolation to infinite volume $L \to \infty$
 - Extrapolation to zero lattice spacing $a \to 0$
 - Rotational symmetry broken due to cubic lattice
- **Tremendous progress in past years**
 - Finer lattices: spin-identified spectra
 - Larger operator bases: many excited states
 - Access to gluonic content of calculated states

See Derek Leinweber’s talk on Thu
Light-Meson Spectrum in Lattice QCD

State-of-the-art Calculation

[Dudek et al., PRD 88 (2013) 094505]

\[P = - \]

\[P = + \]

Exotics

\[m_{\pi} = 392 \text{ MeV} \]

\[24^3 \times 128 \]

isoscalar

isovector

Boris Grube, TU München

Light-Meson Spectroscopy
Reproduces mainly the quark-model pattern

Calculations not reliable yet for $J^{PC} = 0^{++}$ sector
Additional non-\(q\bar{q}\) states

- Set of hybrid mesons with \(0^{-+}, 1^{--}, 2^{-+}\) and spin-exotic \(1^{-+}\)
Resonance widths and decay modes still very difficult
Introduction

Scalar Mesons

$J^{PC} = 1^{-+}$ spin-exotic mesons

Narrow states around 1.4 GeV/c^2

The light X states

Conclusions and outlook
Nature of $J^{PC} = 0^{++}$ states still unclear

- **Data:** heavy-meson decays + production and formation experiments
- **Extraction of resonances from data difficult**
 - Some states have large widths
 - Distortions of line shapes due to openings of additional channels (e.g. $K\bar{K}, \eta\eta, \ldots$)
- **Glueballs and multi-quark states** predicted to contribute to spectrum
Nature of $J^{PC} = 0^{++}$ states still unclear

- Data: heavy-meson decays + production and formation experiments
- Extraction of resonances from data difficult
 - Some states have large widths
 - Distortions of line shapes due to openings of additional channels (e.g. $K\bar{K}$, $\eta\eta$, ...)
- Glueballs and multi-quark states predicted to contribute to spectrum
Nature of $J^{PC} = 0^{++}$ states still unclear

- Data: heavy-meson decays + production and formation experiments
- Extraction of resonances from data difficult
 - Some states have large widths
 - Distortions of line shapes due to openings of additional channels (e.g. $K\bar{K}, \eta\eta, \ldots$)
- Glueballs and multi-quark states predicted to contribute to spectrum
Scalar Mesons with Isospin $I = 0$

Most complex sector

- At least 5 established states: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$

Isoscalar scalars above 1 GeV/c^2

- $f_0(1370)$ and $f_0(1500)$ decay mainly into pions (2π or 4π)
- $f_0(1710)$ mainly into $K\bar{K} \rightarrow$ large $s\bar{s}$ component
- Quark-model nonet:
 - $f_0(1370)$, $a_0(1450)$, $K^*_0(1430) + f_0(1710)$
- $q\bar{q}$ assignment for $f_0(1500)$ difficult
- $f_0(1500)$ mainly glue? Would imply
 - Weak coupling to $\gamma\gamma$
 - Enhanced production in “gluon-rich” reactions
 - Central production
 - Radiative J/ψ decays

Enhanced production in “gluon-rich” reactions

Central production

Radiative J/ψ decays
Scalar Mesons with Isospin $I = 0$

Most complex sector
- At least 5 established states: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$

Isoscalar scalars above 1 GeV/c2
- $f_0(1370)$ and $f_0(1500)$ decay mainly into pions (2π or 4π)
- $f_0(1710)$ mainly into $K\bar{K}$ \implies large $s\bar{s}$ component
 - Quark-model nonet:
 - $f_0(1370)$, $a_0(1450)$, $K_0^*(1430) + f_0(1710)$
 - $q\bar{q}$ assignment for $f_0(1500)$ difficult
 - $f_0(1500)$ mainly glue? Would imply
 - Weak coupling to $\gamma\gamma$
 - Enhanced production in “gluon-rich” reactions
 - Central production
 - Radiative J/ψ decays
Scalar Mesons with Isospin $I = 0$

Most complex sector
- At least 5 established states: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$

Isoscalar scalars above 1 GeV/c^2
- $f_0(1370)$ and $f_0(1500)$ decay mainly into pions (2π or 4π)
- $f_0(1710)$ mainly into $K\bar{K} \Rightarrow$ large $s\bar{s}$ component
- **Quark-model nonet:**
 - $f_0(1370)$, $a_0(1450)$, $K_0^*(1430) + f_0(1710)$
- $q\bar{q}$ assignment for $f_0(1500)$ difficult
- $f_0(1500)$ mainly glue? Would imply
 - Weak coupling to $\gamma\gamma$
 - Enhanced production in “gluon-rich” reactions
 - Central production
 - Radiative J/ψ decays
Scalar Mesons with Isospin $I = 0$

Most complex sector

- At least 5 established states: $f_0(500)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$, and $f_0(1710)$

Isoscalar scalars above 1 GeV/c^2

- $f_0(1370)$ and $f_0(1500)$ decay mainly into pions (2π or 4π)
- $f_0(1710)$ mainly into $K\bar{K} \implies$ large $s\bar{s}$ component
- Quark-model nonet: $f_0(1370), a_0(1450), K^*_0(1430) + f_0(1710)$
- $q\bar{q}$ assignment for $f_0(1500)$ difficult
- $f_0(1500)$ mainly glue? Would imply
 - Weak coupling to $\gamma\gamma$
 - Enhanced production in “gluon-rich” reactions
 - Central production
 - Radiative J/ψ decays
Radiative J/ψ Decays

$e^+ \rightarrow J/\psi \rightarrow \gamma (\eta \eta)$ ideal channel to look for scalar and tensor glueballs

- $\eta \eta$ final state: only $I = 0$ and $J^{PC} = \text{even}^{++}$ allowed
- "Gluon-rich" environment
 - Glueball production should be enhanced
Radiative J/ψ Decays

$e^+ + e^- \rightarrow J/\psi \rightarrow \gamma (\eta \eta)$

- $\eta \eta$ final state: only $I = 0$ and $J^{PC} = \text{even}^{++}$ allowed
- "Gluon-rich" environment
 - Glueball production should be enhanced
- $J/\psi \rightarrow \gamma (\eta \eta)$ ideal channel to look for scalar and tensor glueballs
Decomposition into J^P states: *partial-wave analysis* (PWA)

- Sequential decay: calculable quasi-two-body amplitudes
- Intermediate resonance X described by Breit-Wigner propagator
- Same initial and final state \implies different X interfere
- Magnitudes, phases and parameters of X determined from kinematic distribution of final-state particles
J/ψ → γ(ηη) at BESIII

Decomposition into J^P states: partial-wave analysis (PWA)

- Sequential decay: calculable quasi-two-body amplitudes
- Intermediate resonance X described by Breit-Wigner propagator
- Same initial and final state → different X interfere
- Magnitudes, phases and parameters of X determined from kinematic distribution of final-state particles
PWA of $J/\psi \rightarrow \gamma (\eta \eta)$ at BESIII

$\begin{align*}
\text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 \\
M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) \\
\text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 \\
M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) \\
\text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 \\
M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) \\
\text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 \\
M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) \\
\text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 & \quad \text{Events / 20 MeV/c}^2 \\
M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) & \quad M_{\text{mm}}(\text{GeV/c}^2) \\
\end{align*}$

$\begin{align*}
f_0(1500) & \quad f_0(1710) & \quad f_0(2100) \\
f_2'(1525) & \quad f_2(1810) & \quad f_2(2340) \\
0^{++} \text{ PS} & \quad \text{Total } 0^{++} & \quad \text{Total } 2^{++} \\
\end{align*}$

Boris Grube, TU München
Light-Meson Spectroscopy
Result

- Largest signals from $f_0(1710)$ and $f_0(2100)$
- Clear but smaller $f_0(1500)$ signal
- No $f_0(1370)$ signal

$B(J/\psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$ of $f_0(1710)$ 10× larger than that of $f_0(1500)$

- $B(J/\psi \rightarrow \gamma f_0(1710)) \approx 2$ to $3 \cdot 10^{-3}$
- $B(J/\psi \rightarrow \gamma f_0(1500)) \approx 1$ to $3 \cdot 10^{-4}$

- (Quenched) lattice QCD prediction for pure gauge scalar glueball:

$B(J/\psi \rightarrow \gamma G_{0^{++}}) = 3.8(9) \cdot 10^{-3}$ [Gui et al., PRL 110 (2013) 021601]

- $f_0(1500)$ production rate much smaller
- Large glueball component in $f_0(1710)$?
Result

- Largest signals from $f_0(1710)$ and $f_0(2100)$
- Clear but smaller $f_0(1500)$ signal
- No $f_0(1370)$ signal
- $\mathcal{B}(J/\psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$ of $f_0(1710)$ is $10 \times$ larger than that of $f_0(1500)$
 - $\mathcal{B}(J/\psi \rightarrow \gamma f_0(1710)) \approx 2 \text{ to } 3 \cdot 10^{-3}$
 - $\mathcal{B}(J/\psi \rightarrow \gamma f_0(1500)) \approx 1 \text{ to } 3 \cdot 10^{-4}$

- (Quenched) lattice QCD prediction for pure gauge scalar glueball:
 $\mathcal{B}(J/\psi \rightarrow \gamma G_{0^{++}}) = 3.8(9) \cdot 10^{-3}$
 - $f_0(1500)$ production rate much smaller
 - Large glueball component in $f_0(1710)$?
PWA of $J/\psi \to \gamma (\eta \eta)$ at BESIII

Result

- Largest signals from $f_0(1710)$ and $f_0(2100)$
- Clear but smaller $f_0(1500)$ signal
- No $f_0(1370)$ signal
- $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ of $f_0(1710)$ 10× larger than that of $f_0(1500)$
 - $\mathcal{B}(J/\psi \to \gamma f_0(1710)) \approx 2 \text{ to } 3 \cdot 10^{-3}$
 - $\mathcal{B}(J/\psi \to \gamma f_0(1500)) \approx 1 \text{ to } 3 \cdot 10^{-4}$
- (Quenched) lattice QCD prediction for pure gauge scalar glueball:
 $\mathcal{B}(J/\psi \to \gamma G_{0^{++}}) = 3.8(9) \cdot 10^{-3}$ [Gui et al., PRL 110 (2013) 021601]
 - $f_0(1500)$ production rate much smaller
 - Large glueball component in $f_0(1710)$?
Source of mesons with even C-parity

Gives access to two-photon coupling $\Gamma_{\gamma \gamma}$ of X

For glueball $\Gamma_{\gamma \gamma} \ll 1 \text{ eV} / c^2$ expected
Data taken at energies around Υ(2S), Υ(4S), and Υ(5S) (total 972 fb⁻¹)

Study production of $f_J (I = 0)$ and $a_J (I = 1)$ mesons with even spin J

- Peaks near 1.3, 1.5, and 1.8 GeV/c^2
- Additional enhancements at 2.3 and 2.6 GeV/c^2
Scalar Mesons in $\gamma\gamma \rightarrow K_S^0 \bar{K}_S^0$ at Belle

- Data taken at energies around $\Upsilon(2S)$, $\Upsilon(4S)$, and $\Upsilon(5S)$ (total 972 fb$^{-1}$)
- Study production of f_J ($I = 0$) and a_J ($I = 1$) mesons with even spin J

- Peaks near 1.3, 1.5, and 1.8 GeV/c^2
- Additional enhancements at 2.3 and 2.6 GeV/c^2

Graph:
- σ (nb) vs. M_{KK} (GeV)
- Systematic uncertainty

Boris Grube, TU München
Light-Meson Spectroscopy
PWA of $\gamma\gamma \to K_S^0\bar{K}_S^0$ at Belle

Spin-parity decomposition of mass spectrum based on **angular distribution** of final-state particles

- Range $1.2 < M_{KK} < 2.0$ GeV/c^2 fitted by **S- and D-waves**
- Data described best by **S-wave with $f_0(1710)$ + non-resonant contribution**
PWA of $\gamma \gamma \rightarrow K_S^0 \overline{K}_S^0$ at Belle

No signal for $f_0(1500)$

- Consistent with glueball interpretation
PWA of $\gamma\gamma \rightarrow K_S^0 \overline{K}_S^0$ at Belle

First measurement of $\Gamma_{\gamma\gamma} \mathcal{B}(K_S^0 \overline{K}_S^0)$

- 12^{+3+227}_{-2-8} eV/c^2 for $f_0(1710)$
- For glueball $\Gamma_{\gamma\gamma} \ll 1$ eV/c^2 expected
 - $f_0(1710)$ unlikely to be glueball
 - Favors interpretation of $f_0(1710)$ as $s\bar{s}$ state
PWA of $\gamma \gamma \rightarrow K_S^0 \bar{K}_S^0$ at Belle

- Range $2.0 < M_{KK} < 3.0$ GeV/c^2 fitted by S-, D-, and G-waves
- Data described best by including $f_0(2540)$ into S-wave
- First time this state is seen:
 $M = 2539 \pm 14^{+38}_{-14}$ MeV/c^2, $\Gamma = 274^{+77+126}_{-61-163}$ MeV/c^2
- Needs confirmation
Scalar Mesons in Central Production

p_{beam} → p_{target} → X^0 → p_{fast} → $\pi^+ \pi^0 K^+ \ldots$

$\pi^- \pi^0 K^- \ldots$

"Glue rich" process

- Glueball production should be enhanced
COMPASS

S-wave intensity in K^+K^-

- Phase information available
- Working on improved analysis model

[PoS(Bormio 2013)014]
Central Production: Upcoming Data

COMPASS

S-wave intensity in K^+K^-

![Graph showing S-wave intensity for COMPASS 2009](image)

Intensity of S0 wave

Phase information available
Working on improved analysis model

ALICE

$\pi^+\pi^-$ invariant mass spectrum

![Graph showing ALICE result](image)

pp @ $\sqrt{s} = 7$ TeV

V0-FMD-SPD-TPC Double gaps
Counts / (20 MeV/c²)
Like sign
Unlike sign

ALICE Performance
13/04/2011

[PoS(Bormio 2013)014]
[arXiv:1110.3693]
Outline

1 Introduction

2 Scalar Mesons

3 $j^{PC} = 1^{-+}$ spin-exotic mesons

4 Narrow states around 1.4 GeV/c^2

5 The light X states

6 Conclusions and outlook
Meson Production in High-Energy Scattering

$\pi^- \pi^+ \pi^-$ Production with 190 GeV/c π^- Beam at COMPASS

- Soft scattering of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- Beam particle gets excited into intermediate resonance X
- Decay of X into 3 forward-going pions
 - Measured by spectrometer
- Same final state \implies interference of different X

COMPASS: $50 \cdot 10^6 \pi^- \pi^+ \pi^-$ events

Boris Grube, TU München
Light-Meson Spectroscopy
Meson Production in High-Energy Scattering

$\pi^- \pi^+ \pi^-$ Production with 190 GeV/$c \pi^-$ Beam at COMPASS

- **Soft scattering** of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- **Beam particle** gets excited into intermediate resonance X
- **Decay of X into 3 forward-going pions**
 - Measured by spectrometer
- **Same final state** \Rightarrow interference of different X

COMPASS: $50 \cdot 10^6 \pi^- \pi^+ \pi^-$ events
Meson Production in High-Energy Scattering

$\pi^- \pi^+ \pi^-$ Production with 190 GeV/c π^- Beam at COMPASS

- **Soft scattering** of beam particle off target via strong interaction
 - Small momentum and energy transfer to target
 - Target particle stays intact
- **Beam particle gets excited into intermediate resonance** X
- **Decay of X into 3 forward-going pions**
 - Measured by spectrometer
- **Same final state** \Rightarrow interference of different X

COMPASS: $50 \cdot 10^6 \, \pi^- \pi^+ \pi^-$ events
Meson Production in High-Energy Scattering

$\pi^- \pi^+ \pi^-$ Production with 190 GeV/c π^- Beam at COMPASS

PWA assumption: X^- decays via intermediate $\pi^+ \pi^-$ resonances
Meson Production in High-Energy Scattering

$\pi^- \pi^+ \pi^-$ Production with 190 GeV/c π^- Beam at COMPASS

π^- Beam

Bachelor

Isobar

ρ_{target}

ρ_{recoil}

ρ_{target}

ρ_{recoil}

ρ_{target}

ρ_{recoil}

Bachelor

PWA assumption: X^- decays via intermediate $\pi^+ \pi^-$ resonances
\(J^{PC} = 1^{-+} \) Spin-Exotic Mesons

The Checkered History of \(\pi_1(1600) \rightarrow 3\pi \)

BNL E852 analyses: 18 GeV/c \(\pi^- \) beam on \(p \) target

\[[\text{PRL 81 (1998) 5760}] \]

- 250,000 events
- \(0.1 < t' < 1.0 \) (GeV/c\(^2\))
- Model with 21 waves
\[J^{PC} = 1^{--} \text{ Spin-Exotic Mesons} \]

The Checkered History of \(\pi_1(1600) \rightarrow 3\pi \)

BNL E852 analyses: 18 GeV/c \(\pi^- \) beam on \(p \) target

- [PRL 81 (1998) 5760]
- [PRD 73 (2006) 072001]

1500
1000
500

\(M(\pi^+\pi^-\pi^-) \) (GeV)

- 250 000 events
- \(0.1 < t' < 1.0 \) (GeV/c)^2
- Model with 21 waves

0.1

1.0

1.5

2.0

\(M[3\pi] \) GeV/c^2

- 2.6 \(\cdot 10^6 \) events
- \(0.1 < t' < 0.5 \) (GeV/c)^2
- Model with 21/36 waves
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS
Spin-Exotic Signal with $I = 1$ and $J^{PC} = 1^{-+}$ in $\rho(770)\pi$ Decay Channel

- **190 GeV/c** π^- beam on p target
- **50 \cdot 10^6** events
- **0.1 < t' < 1.0 \text{ (GeV/c)}^2**
- Largest model used up to now: **88 waves**
- Broad intensity bump
- Similar in both channels

\[
\begin{align*}
\pi^- \pi^0 \pi^0 \\
\pi^- \pi^+ \pi^- \text{ scaled}
\end{align*}
\]
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS

Spin-Exotic Signal with $I = 1$ and $J^{PC} = 1^{-+}$ in $\rho(770)\pi$ Decay Channel

- 190 GeV/c π^- beam on p target
- $50 \cdot 10^6$ events
- $0.1 < t' < 1.0$ (GeV/c)2
- Largest model used up to now: 88 waves
- Broad intensity bump
- Similar in both channels

$\pi^- \pi^0 \pi^0$

$\pi^- \pi^+ \pi^-$ scaled

COMPASS 2008 ($\pi^- p \rightarrow (3\pi)^- p$)

$1^+1^+ \rho(770) \pi P$

$\pi^- \pi^0 \pi^0$, $\pi^- \pi^- \pi^+$ (scaled)

$0.100 < t' < 1.000$ GeV2/c2

(incoherent sum)

Preliminary
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS

Analysis in t' bins

"Low" $t' \approx 0.1 \text{ (GeV/c)}^2$

- Strong modulation of mass spectra with t'
- Dominant non-resonant contribution
- Needs to be understood in order to extract resonances

"High" $t' \approx 0.8 \text{ (GeV/c)}^2$

1$^{+}1^{+}$ $\rho(770)\pi P$

$0.100 \leq t' \leq 0.113 \text{ GeV}^2/c^2$

0.96%

$0.724 \leq t' \leq 1.000 \text{ GeV}^2/c^2$

0.66%

1$^{+}1^{+}$ $\rho(770)\pi P$

Intensity (20 MeV/c²) vs. Mass of the $\pi\pi\pi^+$ System (GeV/c²)
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS

Model for Non-Resonant Component

Deck effect

- MC pseudodata generated according to Deck amplitude
- Analyzed like real data
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS

Deck-Model for Non-Resonant Component

“Low” $t' \approx 0.1 \ (\text{GeV}/c)^2$

$p_{\pi\pi\pi\pi} \rightarrow p_{\pi\pi\pi\pi} (\text{COMPASS 2008})$

0.66%

$1^+1^+ \rho(770) \pi P$

$0.100 \leq t' \leq 0.113 \ (\text{GeV}^2/c^2)$

“High” $t' \approx 0.8 \ (\text{GeV}/c)^2$

$p_{\pi\pi\pi\pi} \rightarrow p_{\pi\pi\pi\pi} (\text{COMPASS 2008})$

0.96%

$1^+1^+ \rho(770) \pi P$

$0.724 \leq t' \leq 1.000 \ (\text{GeV}^2/c^2)$

- **Deck MC** scaled to t'-integrated intensity
- Include amplitude in PWA?
1 Introduction

2 Scalar Mesons

3 $J^{PC} = 1^{-+}$ spin-exotic mesons

4 Narrow states around 1.4 GeV/c^2

5 The light X states

6 Conclusions and outlook
PWA of $\pi^- p \rightarrow (3\pi)^- p_{\text{recoil}}$ at COMPASS

Unexpected $I = 1$ Signal with $J^{PC} = 1^{++}$ in $f_0(980)\pi$ Decay Channel

- PWA model with 88 partial waves
- Peak around 1.4 GeV/c^2
- Small intensity: $\approx 0.25\%$

\[\pi^- \pi^0 \pi^0 \]
\[\pi^- \pi^+ \pi^- \text{ scaled} \]
Consistent with Breit-Wigner resonance

- $a_1(1420)$:
 - $M_0 = 1414^{+15}_{-13}$ MeV/c^2
 - $\Gamma_0 = 153^{+8}_{-23}$ MeV/c^2
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

Consistent with Breit-Wigner resonance

$a_1(1420)$:

- $M_0 = 1414^{+15}_{-13}$ MeV/c^2
- $\Gamma_0 = 153^{+8}_{-23}$ MeV/c^2
Consistent with Breit-Wigner resonance

\(a_1(1420): \)

\[M_0 = 1414^{+15}_{-13} \text{ MeV} / c^2 \]

\[\Gamma_0 = 153^{+8}_{-23} \text{ MeV} / c^2 \]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

Nature of $a_1(1420)$ unclear

- No quark-model states expected at 1.4 GeV/c^2
- Ground state $a_1(1260)$ very close and wider
- Seen only in $f_0(980)\pi$ decay mode
- Isospin partner of narrow $f_1(1420)$?
- Suspiciously close to $K\bar{K}^*$ threshold
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

$1^{++} f_0(980) \pi P$

$0.1 < t' < 1.0 \ (\text{GeV/c})^2$

(1) Mass-dependent fit
(2) Resonance
(3) Non-resonant term

Several proposed explanations

- Re-scattering corrections in Deck process [Basdevant et al., arXiv:1501.04643]
- Branching point in triangle diagram [Mikhasenko et al., arXiv:1501.07023]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p_{\text{recoil}}$ at COMPASS

$1^{++} f_0(980) \pi P$

$0.1 < t' < 1.0$ (GeV/c)2

(1) Mass-dependent fit
(2) Resonance
(3) Non-resonant term

Several proposed explanations

- Re-scattering corrections in Deck process [Basdevant et al., arXiv:1501.04643]
- Branching point in triangle diagram [Mikhasenko et al., arXiv:1501.07023]
First observation of decay $\eta(1405) \rightarrow f_0(980)\pi^0$

Large isospin breaking:

$$\frac{\mathcal{B}(\eta(1405) \rightarrow f_0(980)\pi^0)}{\mathcal{B}(\eta(1405) \rightarrow a_0^*(980)\pi^0)} = (17.9 \pm 4.2)\%$$

Anomally narrow $f_0(980): \Gamma_0 \approx 10 \text{ MeV}/c^2$
First observation of decay $\eta(1405) \rightarrow f_0(980)\pi^0$

Large isospin breaking:

$$\frac{\mathcal{B}(\eta(1405) \rightarrow f_0(980)\pi^0)}{\mathcal{B}(\eta(1405) \rightarrow a_0^+(980)\pi^0)} = (17.9 \pm 4.2)\%$$

Anomalously narrow $f_0(980)$: $\Gamma_0 \approx 10$ MeV / c^2
Proposed explanation

- Only one state \(\eta(1440) \) instead of \(\eta(1405) \) and \(\eta(1475) \)
- Different mass spectra in \(3\pi, \eta\pi\pi, \) and \(K\bar{K}\pi \) due to triangle singularity, e.g.
Outline

1. Introduction
2. Scalar Mesons
3. $J^{PC} = 1^{--}$ spin-exotic mesons
4. Narrow states around 1.4 GeV / c^2
5. The light X states
6. Conclusions and outlook
Threshold Enhancement $X(p\bar{p})$ at BESIII

- Seen in $J/\psi \to \gamma (p\bar{p})$
 - First observed by BESII; confirmed by CLEO
- PWA: Breit-Wigner for $X + p\bar{p}$ final-state-interaction model
 - $J^{PC} = 0^{-+}$, sub-threshold mass, width $< 76 \text{ MeV}/c^2$ at 90% C.L.
- Seen in $\psi(2S) \to \gamma (p\bar{p})$ with 5.08% of the rate in J/ψ
Threshold Enhancement $X(p\bar{p})$ at BESIII

- Seen in $J/\psi \rightarrow \gamma(p\bar{p})$
 - First observed by BESII; confirmed by CLEO
- PWA: Breit-Wigner for $X + p\bar{p}$ final-state-interaction model
 - $J^{PC} = 0^{-+}$, sub-threshold mass, width < 76 MeV/c² at 90% C.L.
- Seen in $\psi(2S) \rightarrow \gamma(p\bar{p})$ with 5.08% of the rate in J/ψ
Threshold Enhancement $X(p\bar{p})$ at BESIII

- $p\bar{p}$ baryonium?
- Multi-quark state?
- Pure final-state-interaction (FSI) effect?
 - Unlikely: FSI model included in fit + no threshold enhancement in
 - $Y(1S) \rightarrow \gamma (p\bar{p})$ [CLEO, PRD 73 (2006) 032001]
 - $J/\psi \rightarrow \pi^0 (p\bar{p})$ [BESIII, PRL 91 (2003) 022001]
 - $J/\psi \rightarrow \omega (p\bar{p})$ [BESIII, PRD 87 (2013) 112004]

Boris Grube, TU München
Light-Meson Spectroscopy
Threshold Enhancement $X(p\bar{p})$ at BESIII

- $p\bar{p}$ baryonium?
- Multi-quark state?
- Pure final-state-interaction (FSI) effect?
 - Unlikely: FSI model included in fit + no threshold enhancement in
 - $\Upsilon(1S) \rightarrow \gamma (p\bar{p})$ [CLEO, PRD 73 (2006) 032001]
 - $J/\psi \rightarrow \pi^0 (p\bar{p})$ [BESIII, PRL 91 (2003) 022001]
 - $J/\psi \rightarrow \omega (p\bar{p})$ [BESIII, PRD 87 (2013) 112004]
Threshold Enhancement $X(p\bar{p})$ at BESIII

- $p\bar{p}$ baryonium?
- Multi-quark state?
- Pure final-state-interaction (FSI) effect?
 - Unlikely: FSI model included in fit + no threshold enhancement in
 - $\Upsilon(1S) \to \gamma(p\bar{p})$ [CLEO, PRD 73 (2006) 032001]
 - $J/\psi \to \pi^0(p\bar{p})$ [BESIII, PRL 91 (2003) 022001]
 - $J/\psi \to \omega(p\bar{p})$ [BESIII, PRD 87 (2013) 112004]
$X(1810)$ in $J/\psi \rightarrow \gamma (\omega \phi)$ at BESIII

- $\omega \phi$ final state doubly-OZI suppressed
- Anomalous threshold enhancement
 - Tetraquark, hybrid, glueball?
 - Rescattering effect?
 - $f_0(1710)$ below threshold?

![Graph showing event distribution](image-url)
PWA assuming sequential decay chain: $J/\psi \rightarrow \gamma X, \ X \rightarrow \omega \phi$

- X parametrized by simple Breit-Wigner
- S- and P-waves included; D-waves suppressed at threshold
- $J^{PC} = 0^{++}$ preferred by data
- $f_0(1710)$ as bound system of 2 vector mesons?
- $\omega \phi$ final-state-interaction effect not excluded
$M_0 = 1842.2 \pm 4.2^{+7.1}_{-2.6} \text{ MeV} / c^2, \Gamma_0 = 83 \pm 14 \pm 11 \text{ MeV} / c^2$

- New state or decay mode of other X?
- PWA needed to determine J^P
At least two different J^P

Common origin?

Need J^P for all states

Study more decay modes and production channels
X-States around $p\bar{p}$ Threshold seen by BESIII

- At least **two different** J^P
- **Common origin?**
- **Need** J^P **for all states**
- **Study more decay modes and production channels**

Graphical Information:

- **$X(1840)$** J^P = $?$, $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$: PRD 88 (2013) 091502(R)
- **$X(1870)$** J^P = $?$, $J/\psi \rightarrow \omega (\eta\pi\pi)$: PRL 107 (2011) 182001
- **$X(1835)$** J^P = 0^-, $J/\psi \rightarrow \gamma (\eta'\pi\pi)$: PRL 106 (2011) 072002
- **$X(p\bar{p})$** J^P = 0^-, $J/\psi \rightarrow \gamma (p\bar{p})$: PRL 108 (2012) 112003
- **$X(1810)$** J^P = 0^+, $J/\psi \rightarrow \gamma (\omega\phi)$: PRD 87 (2013) 032008

[PRD 88 (2013) 091502(R)]
1 Introduction

2 Scalar Mesons

3 $J^{PC} = 1^{−+}$ spin-exotic mesons

4 Narrow states around 1.4 GeV/c^2

5 The light X states

6 Conclusions and outlook
Conclusions and Outlook

Light-meson spectroscopy is an active field

- Large data sets reveal ever new details; many still puzzling
- Pattern similar to heavy-meson sector: narrow enhancements at thresholds
 - Common mechanism?
- High-precision data require improved analysis tools
 - Strong collaboration between theory and experiment indispensable

Hadrons reflect workings of QCD at low energies

- Measurement of hadron spectra and hadron decays gives valuable input to theory and phenomenology
- Also input for measurement of CP-violation in multi-body decays of heavy mesons

New data sets keep on coming

- BESIII (BEPCII) and VES (IHEP Protvino) will take more data
- GlueX + CLAS12 (Jlab), and Belle II (KEK) will start soon
- Panda (FAIR) in somewhat further future
Conclusions and Outlook

Light-meson spectroscopy is an active field

- Large data sets reveal ever new details; many still puzzling
- Pattern similar to heavy-meson sector: narrow enhancements at thresholds
 - Common mechanism?
- High-precision data require improved analysis tools
 - Strong collaboration between theory and experiment indispensable

Hadrons reflect workings of QCD at low energies

- Measurement of hadron spectra and hadron decays gives valuable input to theory and phenomenology
- Also input for measurement of CP-violation in multi-body decays of heavy mesons

New data sets keep on coming

- BESIII (BEPCII) and VES (IHEP Protvino) will take more data
- GlueX + CLAS12 (Jlab), and Belle II (KEK) will start soon
- Panda (FAIR) in somewhat further future
Conclusions and Outlook

Light-meson spectroscopy is an active field

- Large data sets reveal ever new details; many still puzzling
- Pattern similar to heavy-meson sector: narrow enhancements at thresholds
 - Common mechanism?
- High-precision data require improved analysis tools
 - Strong collaboration between theory and experiment indispensable

Hadrons reflect workings of QCD at low energies

- Measurement of hadron spectra and hadron decays gives valuable input to theory and phenomenology
- Also input for measurement of CP-violation in multi-body decays of heavy mesons

New data sets keep on coming

- BESIII (BEPCII) and VES (IHEP Protvino) will take more data
- GlueX + CLAS12 (Jlab), and Belle II (KEK) will start soon
- Panda (FAIR) in somewhat further future