#### **COMPASS** results

**COmmon Muon and Proton Apparatus for Structure and Spectroscopy** 

COMPASS

SPS

LHC

D.Peshekhonov on behalf of the COMPASS Collaboration

#### **Historical Introduction**

"....We understand the proton spin structure via the quark parton model and measuring the spin structure functions would not be fruitful..."

|                  | BARYON                                           | MAGNETIC MOMENTS                                                                                |
|------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|
| BARYON           | WAVE<br>FUNCTION                                 | QUARK MODEL EXPERIMENT<br>MAG. MOMENT (MN)                                                      |
| $\Omega^{-}$     | $f_{\mathcal{S}}$ ts $f_{\mathcal{S}}$           | Mr= 3 ms = -2.1 mn -2.02 ±.05                                                                   |
| $\wedge^{\circ}$ | ts tubd                                          | $\mu_{\Lambda} = \mu_{S} = -0.7 \mu_{N} - 0.613 \pm -0.05$                                      |
| °                | ts ts tu, ts ts ut,<br>st st ut<br>KNOWN WEIGHTS | $\mu_{=0} = \frac{4\mu_{5}}{3} = -\frac{1}{6}\mu_{N} = -\frac{1}{25\pm.014}$                    |
|                  | tststd                                           | $\mu = = = 4\mu_{s} - \mu_{d} = -0.6\mu_{w} - 0.651$                                            |
| Ź                | tstutu                                           | $\mu_{z^{+}} = \frac{4\mu_{u} - \mu_{s}}{3} = +2.9\mu_{w} + 2.458 \pm 0.00$                     |
| É                | tstate                                           | $\mu_{z}^{-} = \frac{4\mu_{d} - \mu_{s}}{3} = -\frac{1}{1}\mu_{w} - \frac{1}{16} + \frac{1}{5}$ |
| Р                | ↑u <sup>4</sup> u <sup>4</sup> d                 | $\mu_{p} = \frac{4\mu_{u} - \mu_{d}}{3} = 3.0\mu_{N}  2.793$                                    |
| n                | t d " d t u                                      | Ma = 4 Ma - Mu = -2.0 m - 1.913                                                                 |

#### FRACTION OF NUCLEON'S SPIN CARRIED BY QUARKS:-



#### **Laboratories &**



## & Experiments



A worldwide effort since decades

# Tools to study the nucleon structure



#### **Deep inelastic scattering**



Bjorken-*x*: fraction of longitudinal momentum carried by the struck quark in infinite- momentum frame (Breit)

#### Structure: Parton Distribution Functions



#### unpolarised PDF

quark/gluon with momentum xP in a nucleon

well known – unpolarized DIS

#### helicity PDF

quark/gluon with spin parallel to the nucleon spin in a longitudinally polarised nucleon

known – polarized DIS



#### transversity PDF

quark with spin parallel to the nucleon spin in a transversely polarised nucleon

chiral odd, fairly known

#### Photoabsorption & long. spin structure



• Measure cross-section asymmetry

$$\frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

• Need polarised beam & target (for longitudinal spin structure)



$$\frac{A_{\rm exp}}{f P_{\mu} P_T D} \simeq A_1$$

• Inclusive scattering

$$A_{1} = \frac{\sum_{q} e_{q}^{2} g_{1}^{q}(x, Q^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x, Q^{2})}$$

• Semi-inclusive scattering

$$A_1^h = \frac{\sum_q e_q^2 g_1^q(x, Q^2) D_{1q}^h(z, Q^2)}{\sum_q e_q^2 f_1^q(x, Q^2) D_{1q}^h(z, Q^2)}$$

$$\mu, e \xrightarrow{(E, k)} \eta$$

$$z = E_h/\nu$$

#### **Questions:**

- > What is helicity contribution of quarks to nucleon spin  $\Delta \Sigma$ ?
- How do contributions of different flavours \(\Delta\q(x)\), q=u,d,s and antiquarks look like?
- > Is gluon helicity distrbution  $\Delta G = \int \Delta g(x) dx$  small or not?
- > How does  $\Delta g(x)$  look like?

#### After almost 40 years

 $\Delta \Sigma = \Delta u + \Delta d = 1$ 

SQM: valence quarks carry the nucleon spin!

EMC: Quarks spins contribute little (1987/88)  $\Delta\Sigma = 0.12 \pm 0.09 \pm 0.14$ 







## **COMPASS** experimeent



#### nucleon spin-structure (μ)

- helicity distributions of gluons and quarks
- transverse spin structure
- 3D structure of the nucleon

#### hadron spectroscopy (p, π, K)

- light mesons, glue-balls
- exotic mesons
- polarisability of pion and kaon
- members:
  - 220 physicists,
     23 institutes,
     12 countries



#### **COMPASS** spectrometer



#### **COMPASS Beams**



#### Muon beam

- Energy: 160 GeV
- Intensity: 2x10<sup>8</sup>/spill
- Polarization: 80%

#### Hadron beams

- Pions(97%), kaons(2.6%), anti-p(0.6%)
- Energy: 190 GeV
- Intensity: up to 10<sup>8</sup>/spill

#### **Electron beam**

 40 GeV, few 10<sup>3</sup>/spill, used for calibration





#### **Polarized target system**



#### Helicity structure of the nucleon



## Structure function $g_1(x,Q^2)$

- very precise data
- only COMPASS for x < 0.01 (Q<sup>2</sup> > 1)
- deuteron data:

 $\Delta \Sigma = 0.33 \pm 0.03 \pm 0.05$ 

 $\Delta s + \Delta s =$ = -0.08±0.01±0.02



#### **Sum rules**

• first moment  $\Gamma_1$  of  $g_1$  with  $\Delta q = \int_0^1 \Delta q(x) dx$ 

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx \stackrel{proton}{=} \frac{1}{2} \left\{ \frac{4}{9} \Delta u + \frac{1}{9} \Delta d + \frac{1}{9} \Delta s \right\}$$



• Bjorken sum rule:

$$\Gamma_1^{\mathsf{p}} - \Gamma_1^{\mathsf{n}} = \frac{1}{6} (\Delta u - \Delta d)$$



#### **DIS & SIDIS asymmetries - deuteron**



## **DIS & SIDIS asymmetries - proton**



Leading Order (LO) fit of the 10 asymmetries (2x5)

► Determine 6 flavor separated PDFs :  $\Delta u, \Delta d, \Delta \overline{u}, \Delta \overline{d}, \Delta s, \Delta \overline{s}$ 

#### **Helicity distributions**



 $\Delta$ s: Truncated first moment: (with DSS FF)  $\int_{0.004}^{0.3} \Delta s(x) dx = -0.01 \pm 0.01 \pm 0.01$ 

#### **Results**



Double spin asymmetries for production of charged pions and kaons in semi inclusive deep inelastic muon scattering off longitudinally polarized protons have been measured.

A leading order evaluation of the helicity distributions for the three lightest quarks and anti-quark flavors, derived from these asymmetries and from previous deuteron data, are performed

The resulting values for u and d quarks have opposite signs. The sea quark distributions are small and do not show sizable dependence on x in the range of the measurements. No significant difference is observed between the strange and anti-strange helicity distributions, both compatible with zero. The integrated value of the flavor asymmetry of the helicity distribution of the light quark sea,  $\Delta \bar{u}$ - $\Delta \bar{d}$ , is found to be slightly positive, about 1.5 standard deviations away from zero.

х

#### **Gluon polarization measurements**

 open charm: single D meson cleanest process wrt physics background





• high- $p_T$  hadron pairs with  $Q^2 > 1$  GeV<sup>2</sup> high- $p_T$  hadron pairs with  $Q^2 < 1$  GeV<sup>2</sup> single hadron production  $Q^2 < 0.1$  GeV<sup>2</sup>

#### $\Delta G$ : summary for open charm & high $p_T$



The gluon polarization,  $\Delta g/g$ , in the nucleon is measured by several methods. One of them is based on the longitudinal double spin asymmetry of SIDIS events with a pair of large transverse momentum hadrons in the final state. The gluon polarization is evaluated at leading order OCD by a Neural Network approach for three intervals of the gluon momentum fraction  $x_g$  covering the range  $0.04 < x_g < 0.27$ . The values obtained do not show significant dependence on  $x_g$ .

|              | $x_g$ range     |                   |                 |                 |  |
|--------------|-----------------|-------------------|-----------------|-----------------|--|
|              | [0.04, 0.27]    | [0.04, 0.12]      | [0.06, 0.17]    | [0.11, 0.27]    |  |
| $x_g^{av}$   | 0.09            | 0.07              | 0.10            | 0.17            |  |
| $\Delta g/g$ | $0.125\pm0.060$ | $0.147 \pm 0.091$ | $0.079\pm0.096$ | $0.185\pm0.165$ |  |

The average is:  $\Delta g/g=0.125 \pm 0.060$  (stat.)  $\pm 0.063$  (syst.) at  $x_g=0.09$  and at a scale of  $\mu^2 = 3$  (*GeV/c*)<sup>2</sup>. ( $\Delta g/g$  evaluations in NLO QCD are in preparation for publication)

## $\Delta g/g$ using "all $p_T$ " events

- The main goal is to improve the extraction by removing few sources of systematic effects.
- However, also a considerable reduction of the statistical error of  $\Delta g/g$  was achieved.
- Three processes contribute to the cross-section

$$A_{LL}^{h}(x) = R_{LO} D A_{1}^{LO}(x) + R_{PQCD} a_{LL}^{QCDC} A_{1}^{LO}(x_{C}) + R_{PGF} a_{LL}^{PGF} \frac{\Delta g}{g}(x_{g})$$



- Simultaneous extraction of  $\Delta g/g$ , and  $A_1^{LO}$
- Extraction based on effective Monte Carlo description of all processes giving the relative weights  $(R_i)$  and analyzing powers  $(a_{LL}^i)$
- Process weights depends on  $p_T$  (at small  $p_T$  LO contribution is > 0.95)

#### $\Delta g/g$ using "all $p_T$ " events: correlations



#### $\Delta g/g$ using "all $p_T$ " events: results



$$\Delta g/g\Big|_{\langle x_g \rangle = 0.10} = 0.113 \pm 0.038 \pm 0.035$$

| $\langle x_g \rangle$ | $x_g$ range | $\Delta g/g$      |
|-----------------------|-------------|-------------------|
| $x_g = 0.08$          | 0.04 - 0.13 | $0.087 \pm 0.050$ |
| $x_g = 0.12$          | 0.07 - 0.21 | $0.149 \pm 0.051$ |
| $x_g = 0.19$          | 0.13 - 0.28 | $0.154 \pm 0.122$ |

#### Global NLO QCD fits to world data on $g_1$

#### 138 out of 679 points are from COMPASS



 $g_{1} = \frac{1}{2} \langle e^{2} \rangle (C^{S}(\alpha_{s}) \otimes \Delta q_{s} + C^{NS}(\alpha_{s}) \otimes \Delta q_{NS} + C^{g}(\alpha_{s}) \otimes \Delta g)$  $\Delta q_{s} = \Delta u + \Delta d + \Delta s; \Delta q_{NS} \text{ is a combination of } \Delta q_{3} = \Delta u - \Delta d \text{ and } \Delta q_{8} = \Delta u + \Delta d - 2\Delta s$ 

Evolving as  

$$\frac{d}{d \ln Q^2} \Delta q_{NS} = \frac{\alpha_s(Q^2)}{2\pi} \qquad \Delta P_{qq} \qquad \otimes \Delta q_{NS}$$

$$\frac{d}{d \ln Q^2} \begin{pmatrix} \Delta q_S \\ \Delta g \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{pmatrix} \Delta P_{qq} & 2n_f \Delta P_{qg} \\ \Delta P_{qg} & \Delta P_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Delta q_S \\ \Delta g \end{pmatrix}$$

First moments of  $\Delta q_3$  and  $\Delta q_8$  fixed by baryon decay constants (F + D) and (3F - D) assuming  $SU(2)_f$  and  $SU(3)_f$  symmetries.

$$\Delta f_k(x) = \Delta q_k \frac{x^{\alpha_k} (1-x)^{\beta_k} (1+\gamma_k x + \rho \sqrt{x})}{\int_0^1 x^{\alpha_k} (1-x)^{\beta_k} (1+\gamma_k x + \rho \sqrt{x})}$$

#### **Results**

## 3 initial $\Delta g$ shapes; positive, negative with node.



## Summary I

- > Many results on the helicity distributions  $\Delta q$  and  $\Delta g$
- > Full flavor decomposition  $\Delta u$ ,  $\Delta d$ ,  $\Delta s$  and antiquarks
  - Δu and Δd are rather well-known
  - open questions:  $\Delta u = \Delta d$  and  $\Delta s = \Delta s$ ?
- $\succ \Delta \Sigma = 0.25 \pm 0.05; \Delta G \approx 0 \pm 0.5$
- > Nucleon spin puzzle is still not solved



## **Transverse spin structure**



### **TMD** parton distributions

- 8 intrinsic-transverse-momentum dependent PDFs at leading twist
- Azimuthal asymmetries with different angular modulations in the hadron and spin azimuthal angles,  $\mathcal{P}_h$  and  $\mathcal{P}_s$
- Vanish upon integration over  $k_{\tau}$  except  $f_1$ ,  $g_1$ , and  $h_1$



#### TMD effects in nucleon structure Sivers and Collins asymmetries

 $N_{h}^{\pm}(\Phi_{s}) = N_{h}^{0} [1 \pm P_{T} \cdot A_{Siv} \cdot \sin \Phi_{s}]$ 

Sivers PDF

"Collins FF"

#### **Collins asymmetry**

#### (used for extraction Transversity PDF)

transversity

 $\mathbf{A}_{\mathbf{Coll}} \approx \frac{\sum_{q} e_{q}^{2} (\mathbf{h}_{lq}) \otimes (\mathbf{H}_{lq}^{\perp \mathbf{h}})}{\sum_{q} e_{q}^{2} (\mathbf{f}_{lq}) \otimes (\mathbf{D}_{lq}^{\perp \mathbf{h}})}$ 

amplitude of the  $\sin \Phi_{\rm C}$  modulation  $N_{\rm h}^{\pm}(\Phi_{\rm C}) = N_{\rm h}^{0} \left[ 1 \pm P_{\rm T} \cdot D_{\rm NN} \cdot A_{\rm Coll} \cdot \sin \Phi_{\rm C} \right]$ in the azimuthal distribution of the final state hadrons



#### Sivers asymmetry

amplitude of the  $\sin \Phi_{\rm S}$  modulation in the azimuthal distribution of the final state hadrons





The Collins asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the *u*quark transversity is opposite in sign and somewhat larger than the *d* quark transversity distribution function. The high statistics of the data also allow for more detailed investigations of the dependence on the kinematic variables. These studies confirm the leading-twist nature of the Collins asymmetry.

The Sivers asymmetry is found to be compatible with zero for negative hadrons and positive for positive hadrons, a clear indication of a spinorbit coupling of quarks in a transversely polarised proton.

#### **Physics with hadron beams**

- Proton, pion (and kaon) beams
- hydrogen, nickel and lead targets



Not discussed today

## COMPASS-II (2012-2016)



The COMPAS-II measurements have started in 2012 with a pion/kaon polarisability via Primakoff reactions and with GPD feasibility test using partially upgraded COMPASS-II spectrometer.

The further measurements will start in 2014 after the accelerator shutdown.

They will be focused on studies of transverse momentum dependent (TMD) distributions of partons in nucleons via Drell-Yan lepton pair production and measurements of generalized parton distributions (GPDs) via hard exclusive meson production and DVCS.

In parallel with the GPD program, high statistic data for unpolarized SIDIS will be taken.

## Exploring the 3-dimensional phase-space structure of the nucleon



#### **COMPASS-II** schedule

2012 Primakoff scattering: DVCS pilot run:
2013 Accelerator shutdown
2014/15 Drell-Yan:
2016/17 DVCS and DVMP:

Unpolarized SIDIS:

Polarizabilities of p and K t-slope, transverse size

Universality of TMDs Study GPDs, "nucleon tomography" FF, strangeness PDF, TMDs

#### **Summary II**

- COMPASS has a rich programme on QCD and hadron physics
- Nucleon spin
  - Essential contributions to clarify the spin structure of the nucleon both longitudinal and transverse
  - Gluon polarisation
  - Flavour separation (SIDIS)
- Huge data set on hadron spectroscopy
  - tests of chiral perturbation theory
  - new meson discovered, exotic mesons being studied
  - many more channels, e.g.  $\pi^0$ ,  $\eta$ ,  $\eta'$ ,  $pp \rightarrow p_{\text{fast}}\pi^+\pi^-p_{\text{slow}}$
  - just the beginning…
- Future experiments
  - Starting future program on GPDs and TMD PDFs
  - Maybe come back to spectroscopy

## Thank you!

## Backup

#### **Sum Rules**



#### **Collins Asymmetries**

- large asymmetry for proton ~10%
- zero deuteron result important  $\Rightarrow$  opposite sign of u and d



PLB717 (2012) 326

#### **Proton Sivers Asymmetry**

- compatible with zero for the deuteron
- non-zero asymmetry for pos. hadrons



## The strange quark polarization puzzle

- DIS (only) data:
  - Sensitive to the integral value of ∆s(x); assuming that SU(3) is valid and using hyperon decay data:

$$\prod_{0} \mathsf{D}\mathbf{s}(\mathbf{x}) + \mathsf{D}\overline{\mathbf{s}}(\mathbf{x}) d\mathbf{x} = 0.08 \pm 0.01 \pm 0.01$$

- SIDIS data:
  - Measures the  $\Delta s(x)$  directly; assuming that the fragmentation functions, specifically  $D_s^{\kappa}$ , is known:  $D s(x) \approx 0$
- Possible explanations:
  - 1. Changing sign of  $\Delta s(x)$ DSSV and LSS global QCD fits
  - 2. Assume strong SU(3) violation Bass and Thomas, PLB 684(2010)216.
  - 3. Large uncertainty on the D<sub>s</sub><sup>K</sup> fragmentation function 2013: data from Hermes and Compass

