Recent Key Measurements for Accessing the Transverse Spin and Momentum Structure of the Nucleon

Anna Martin

Trieste University & INFN, Italy

- introduction on TMDs in SIDIS
- review of recent results

apologies for the many plots I will show mainly to give an idea of the amount and precision of the data and for the many plots and results I will not be able to show

manifests itself in many phenomena, some of those known since a long time *Argonne*,

- Λ polarisation
- LR asymmetries in $pp \rightarrow \pi^{\pm}X$
- azimuthal asymmetries in Drell-Yan and SIDIS
- elastic pp scattering ...

Anna Martin

EMC, 1987

Argonne, ZGS, 1977

today the information is encoded in the **TMD PDFs** which describe the correlations between: - nucleon spin and quark spin

- nucleon spin and quark transverse momentum
- quark transverse momentum and spin

8 at twist 2

today the information is encoded in the **TMD PDFs** which describe the correlations between: - nucleon spin and quark spin

- nucleon spin and quark transverse momentum
- quark transverse momentum and spin

8 at twist 2

today the information is encoded in the **TMD PDFs** which describe the correlations between: - nucleon spin and quark spin

- nucleon spin and quark transverse momentum

. . .

- quark transverse momentum and spin

8 at twist 2

two of them are T-odd Sivers f_{IT}^{\perp} nucleon transverse spin \leftrightarrow parton transverse momentum Boer-Mulders h_{I}^{\perp} parton transverse spin \leftrightarrow parton transverse spin \leftrightarrow

all of great interest and almost unknown

studied in different processes *SIDIS, Drell-Yan, pp reactions* today most of the knowledge on TMD PDFs comes from SIDIS

 $d\sigma^{\ell p \to \ell h X} \sim \sum_{a} f_q(x, \boldsymbol{k}_{\perp}; Q^2) \otimes d\sigma^{\ell q \to \ell q} \otimes D_a^h(z, \boldsymbol{p}_T; Q^2)$

SIDIS cross-section

$$\frac{d\sigma}{dxdydzdP_{hT}^{2}d\varphi_{h}d\psi} = \begin{bmatrix} \frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{y^{2}}{2x}\right) \end{bmatrix} \times \left(F_{UU,T} + \varepsilon F_{UU,L}\right)$$
14 azimuthal modulations
14 azimuthal asymmetries
$$\times \left\{1 + \cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}}$$
2+1
$$+ S_{L} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi_{h}A_{UL}^{\sin\varphi_{h}} + \varepsilon \sin(2\varphi_{h})A_{UL}^{\sin(2\varphi_{h})}\right]$$
2+1
$$+ S_{L}\lambda \left[\sqrt{1-\varepsilon^{2}}A_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\varphi_{h}A_{UL}^{\cos\varphi_{h}}\right]$$
2+1
$$+ S_{T}\left[\sin(\varphi_{h} - \varphi_{S}) \times \left(A_{UT}^{\sin(\varphi_{h} - \varphi_{S})}\right) + \sin(\varphi_{h} + \varphi_{S}) \times \left(\varepsilon A_{UT}^{\sin(\varphi_{h} - \varphi_{S})}\right) + \sin(3\varphi_{h} - \varphi_{S}) \times \left(\varepsilon A_{UT}^{\sin(3\varphi_{h} - \varphi_{S})}\right) + \sin\varphi_{S} \times \left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(2\varphi_{h} - \varphi_{S})}\right) + \sin(2\varphi_{h} - \varphi_{S}) \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(2\varphi_{h} - \varphi_{S})}\right) + \sin\varphi_{S} \times \left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\cos(\varphi_{h} - \varphi_{S})}\right) + \sin(2\varphi_{h} - \varphi_{S}) \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(2\varphi_{h} - \varphi_{S})}\right) + \cos(2\varphi_{h} - \varphi_{S}) \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(2\varphi_{h} - \varphi_{S})}\right) + \cos\varphi_{S} \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(\varphi_{h} - \varphi_{S})}\right) + \cos\varphi_{S} \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(\varphi_{h} - \varphi_{S})}\right) = \frac{1-y-\frac{1}{4}y^{2}y^{2}}{1-y+\frac{1}{4}y^{2}y^{2}}, \quad \gamma = \frac{2Mx}{Q}$$

SIDIS cross-section

$$\frac{d\sigma}{dxdydzdP_{hT}^{2}d\varphi_{h}d\psi} = \begin{bmatrix} \frac{\alpha}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \end{bmatrix} \times \left(F_{UU,T}+\varepsilon F_{UU,L}\right)$$
14 azimuthal modulations
14 azimuthal asymmetries
$$\times \begin{bmatrix} 1+\cos\varphi_{h} \times \sqrt{2\varepsilon(1+\varepsilon)}A_{UU}^{\cos\varphi_{h}} + \cos(2\varphi_{h}) \times \varepsilon A_{UU}^{\cos(2\varphi_{h})} + \lambda \sin\varphi_{h} \times \sqrt{2\varepsilon(1-\varepsilon)}A_{LU}^{\sin\varphi_{h}}$$
2+1
$$+ S_{L} \begin{bmatrix} \sqrt{2\varepsilon(1+\varepsilon)}\sin\varphi_{h}A_{UL}^{\sin\varphi_{h}} + \varepsilon \sin(2\varphi_{h})A_{UL}^{\sin(2\varphi_{h})} \end{bmatrix}$$

$$+ S_{T} \begin{bmatrix} \sin(\varphi_{h}-\varphi_{S}) \times \left(A_{UT}^{\sin(\varphi_{h}-\varphi_{S})}\right) + \sin(\varphi_{h}+\varphi_{S}) \times \left(\varepsilon A_{UT}^{\sin(\varphi_{h}+\varphi_{S})}\right) + \sin(3\varphi_{h}-\varphi_{S}) \times \left(\varepsilon A_{UT}^{\sin(3\varphi_{h}-\varphi_{S})}\right)$$

$$+ \sin\varphi_{S} \times \left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin\varphi_{S}}\right) + \sin(2\varphi_{h}-\varphi_{S}) \times \left(\sqrt{2\varepsilon(1+\varepsilon)}A_{UT}^{\sin(2\varphi_{h}-\varphi_{S})}\right) \end{bmatrix}$$

$$+ S_{T}\lambda \begin{bmatrix} \cos(\varphi_{h}-\varphi_{S}) \times \left(\sqrt{(1-\varepsilon^{2})}A_{UT}^{\cos(\varphi_{h}-\varphi_{S})}\right) + \sin(2\varphi_{h}-\varphi_{S}) \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos(2\varphi_{h}-\varphi_{S})}\right) \end{bmatrix}$$

$$+ \cos\varphi_{S} \times \left(\sqrt{2\varepsilon(1-\varepsilon)}A_{UT}^{\cos\varphi_{S}}\right) \end{bmatrix}$$

$$\frac{A_{U}^{u(\varphi_{h},\varphi_{S})}}{B_{U}(L),T}} = \frac{F_{U(L),T}^{u(\varphi_{h},\varphi_{S})}}{F_{UU,T} + \varepsilon F_{UU,L}}}$$

$$\varepsilon = \frac{1-y-\frac{1}{4}\gamma^{2}y^{2}}{1-y+\frac{1}{4}\gamma^{2}y^{2}}, \quad \gamma = \frac{2Mx}{Q}$$

azimuthal asymmetries in SIDIS (U,T: 11→10)

$$\begin{aligned} A_{UU}^{\cos\phi_{h}} \propto Q^{-1} \left(f_{1}^{q} \otimes D_{1q}^{h} - h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + ... \right) \\ A_{UU}^{\cos 2\phi_{h}} \propto h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + Q^{-1} \left(f_{1}^{q} \otimes D_{1q}^{h} + ... \right) \\ A_{UT}^{\sin(\phi_{h}-\phi_{s})} \propto f_{1T}^{\perp q} \otimes D_{1q}^{h} \\ A_{UT}^{\sin(\phi_{h}+\phi_{s})} \propto h_{1}^{q} \otimes H_{1q}^{\perp h} \\ A_{UT}^{\sin(3\phi_{h}-\phi_{s})} \propto h_{1}^{\perp q} \otimes H_{1q}^{\perp h} \\ A_{UT}^{\cos(\phi_{h}-\phi_{s})} \propto g_{1T}^{q} \otimes D_{1q}^{h} \\ A_{UT}^{\sin(\phi_{s})} \propto Q^{-1} \left(h_{1}^{q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + ... \right) \\ A_{UT}^{\sin(2\phi_{h}-\phi_{s})} \propto Q^{-1} \left(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + ... \right) \\ A_{UT}^{\cos(\phi_{s})} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ... \right) \\ A_{LT}^{\cos(2\phi_{h}-\phi_{s})} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ... \right) \end{aligned}$$

leading twist

$$\begin{split} & A_{UU}^{\cos\phi_{h}} \propto Q^{-1} \left(f_{1}^{q} \otimes D_{1q}^{h} - h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + ... \right) \\ & A_{UU}^{\cos 2\phi_{h}} \propto h_{1}^{\perp q} \otimes H_{1q}^{\perp h} + Q^{-1} \left(f_{1}^{q} \otimes D_{1q}^{h} + ... \right) \\ & A_{UT}^{\sin(\phi_{h} - \phi_{s})} \propto f_{1T}^{\perp q} \otimes D_{1q}^{h} \\ & A_{UT}^{\sin(\phi_{h} + \phi_{s})} \propto h_{1}^{\perp q} \otimes H_{1q}^{\perp h} \\ & A_{UT}^{\sin(3\phi_{h} - \phi_{s})} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} \\ & A_{UT}^{\cos(\phi_{h} - \phi_{s})} \propto g_{1T}^{q} \otimes D_{1q}^{h} \\ & A_{UT}^{\sin(\phi_{s})} \propto Q^{-1} \left(h_{1}^{q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + ... \right) \\ & A_{UT}^{\sin(2\phi_{h} - \phi_{s})} \propto Q^{-1} \left(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + ... \right) \\ & A_{UT}^{\cos(\phi_{s})} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ... \right) \\ & A_{LT}^{\cos(2\phi_{h} - \phi_{s})} \propto Q^{-1} \left(g_{1T}^{q} \otimes D_{1q}^{h} + ... \right) \end{split}$$

 $A_{UU}^{\cos\phi_h} \propto Q^{-1} \left(f_1^q \otimes D_{1q}^h - (h_1^{\perp q}) \otimes H_{1q}^{\perp h} + \ldots \right)$ $A_{UU}^{\cos 2\phi_h} \propto h_1^{\perp q} \otimes H_{1q}^{\perp h} + Q^{-1} \left(f_1^q \otimes D_{1q}^h + \dots \right)$ $A_{UT}^{\sin(\phi_h - \phi_s)} \propto f_{1T}^{\perp q} \otimes D_{1q}^h$ $A_{UT}^{\sin(\phi_h+\phi_s)} \propto h_1^q \otimes q$ $A_{UT}^{\sin(3\phi_h-\phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$ $A_{IT}^{\cos(\phi_h-\phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$ $A_{UT}^{\sin(\phi_s)} \propto Q^{-1} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + \dots \right)$ $A_{UT}^{\sin(2\phi_h-\phi_s)} \propto Q^{-1} \left(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^{h} + \dots \right)$ $A_{LT}^{\cos(\phi_s)} \propto Q^{-1} \left(g_{1T}^q \otimes D_{1q}^h + \dots \right)$ $A_{LT}^{\cos(2\phi_h-\phi_s)} \propto Q^{-1} \left(g_{1T}^q \otimes D_{1q}^h + \ldots \right)$

Collins FF

Collins FF

Collins FF

first information on these new objects came in 2004, with the measurements of the **Collins and Sivers asymmetries**

1

first evidence for non-zero u-quark transversity and Collins FF ~ opposite u- d- quark contributions

Transversity

HERMES p, COMPASS d, Belle data well described by theory first extraction of transversity and Collins FF

Х

Ζ

Vogelsang, Yuan PRD72, 2005

Sivers asymmetry

Sivers asymmetry

X_{Bj}

first extraction of Sivers function

Sivers function

M. ANSELMINO¹, M. BOGLIONE¹, J. C. COLLINS², U. D'ALESIO³, A. V. EFREMOV⁴, K. GOEKE⁵, A. KOTZINIAN¹, S. MENZEL⁵, A. METZ⁵, F. MURGIA³, A. PROKUDIN¹, P. SCHWEITZER⁵, W. VOGELSANG^{6,7}, F. YUAN⁷

proceedings of Transversity2005 hep-ph/0511017

Sivers function

M. ANSELMINO¹, M. BOGLIONE¹, J. C. COLLINS², U. D'ALESIO³, A. V. EFREMOV⁴, K. GOEKE⁵, A. KOTZINIAN¹, S. MENZEL⁵, A. METZ⁵, F. MURGIA³, A. PROKUDIN¹, P. SCHWEITZER⁵, W. VOGELSANG^{6,7}, F. YUAN⁷

proceedings of Transversity2005 hep-ph/0511017

very positive conclusion from 2004-2005 data: transversity and Sivers PDFs different from zero ! all data fit well in the TMDs framework

still

Collins and Sivers asymmetries

evidence from HERMES only

zero asymmetries from COMPASS due to isoscalar target or to higher Q²?

Collins and Sivers asymmetries

evidence from HERMES only

zero asymmetries from COMPASS due to isoscalar target or to higher Q²?

COMPASS took data with p↑ in 2007 and 2010: an important step forward!

Collins and Sivers asymmetries

evidence from HERMES only

zero asymmetries from COMPASS due to isoscalar target or to higher Q²?

COMPASS took data with p↑ in 2007 and 2010: an important step forward!

in the last years a lot has been learn on TMDs thanks to the new SIDIS results which have been produced by HERMES, COMPASS, JLab on

- Sivers asymmetry
- Collins and di-hadron asymmetries
- other TSA
- unpolarised asymmetries

many of them are key results !

10⁻¹

x

in the following, some of the SIDIS results on

- Sivers asymmetry
- Collins asymmetry
- di-hadron asymmetry
- other TSA
- unpolarised asymmetries

PR103, 2009

2009na Martin

 HERMES asymmetries larger than COMPASS asymmetries Q² evolution of TMDs ?

TMDs evolution

a lot of work in the last years, progressing fast from very strong to weak

several papers with fits of SIDIS data and predictions for DY at COMPASS

TMDs evolution c1 – high Q²

COMPASS has measured the TSA in the Q² "golden" range of the Drell-Yan measurement of COMPASS

COMPASS

B. Parsamyan, Transversity 2014

TMDs evolution $c1 - high Q^2$

new: multidimensional measurement of TSA at COMPASS

 \rightarrow B. Parsamyan, today

COMP**A**SS

TMDs evolution $c1 - high Q^2$

new: multidimensional measurement of TSA at COMPASS

→ B. Parsamyan, today

TMDs evolution c1 – high Q²

new: multidimensional measurement of TSA at COMPASS

 \rightarrow B. Parsamyan, today

new: similar analysis by HERMES A. Rostomyan, yesterday

 P_T^2 distributions are a hot topic: needed for Q² evolution, PDF extraction, ...

the published data have been used by several groups

P_T^2 distributions are a hot topic: needed for Q² evolution, PDF extraction, ...

 P_T^2 distributions are a hot topic: needed for Q² evolution, PDF extraction, ...

Anna Martin

 P_T^2 distributions are a hot topic: needed for Q² evolution, PDF extraction, ...

Anna Martin

• Sivers asymmetry

- Collins asymmetry
- di-hadron asymmetry
- other TSA
- unpolarised asymmetries

charged pions

Collins FF

Collins FF

Transversity

Anselmino et al., PRD87 2013 simultaneous fit of HERMES p, COMPASS p & d, and Belle data very good χ²

Anna Martin

57 H

• Sivers asymmetry

- Collins asymmetry
- di-hadron asymmetry
- other TSA
- unpolarised asymmetries

dihadron asymmetry

independent channel to access transversity in SIDIS on transversely polarised nucleons

dihadron

"Interference / Di-hadron FF"

Belle Babar

$$\boldsymbol{A_{RS}} \approx \frac{\sum_{q} \boldsymbol{e_{q}}^{2} \boldsymbol{h_{1}}^{q} \cdot \boldsymbol{H_{q}}^{2}}{\sum_{q} \boldsymbol{e_{q}}^{2} \boldsymbol{f_{1}}^{q} \cdot \boldsymbol{D_{q}}^{2h}}$$

"spin independent di-hadron FF" being measured at COMPASS

dihadron asymmetry – final results

first evidence for non-zero dihadron FF, same sign of Collins FF

dihadron asymmetry – final results

dihadron FF

 D_q^{2h} still unknown: ongoing work at Belle, Babar, COMPASS (SPIN2012)

Bacchetta Courtoy Radici JHEP 1303 2013

 D_q^{2h} from PYTHIA plus HERMES p, COMPASS p and d (2h), Belle data

 \rightarrow linear combinations of transversity for u and d valence quark

fit with parametrisations \rightarrow transversity PDFs

also possible: point-to-point extraction

using

- the "analysing power" from Pavia group
- the COMPASS p and d results (same x-bins)

one can extract in each x-bin the transversity PDF

(new charged pion results, DIS2014)

results \rightarrow G. Sbrizzai, this Session

also possible: point-to-point extraction

using

- the "analysing power" from Pavia group
- the COMPASS p and d results (same x-bins)

one can extract in each x-bin the transversity PDF

(new charged pion results, DIS2014)

results \rightarrow G. Sbrizzai, this Session

or one can use directly the Belle data (and some "reasonable" assumptions) to evaluate the analysing power

advantages:

- no MC nor parametrisation is needed
- the same technique can be used for the Collins asymmetries
 - → F. Bradamante, today

also possible: point-to-point extraction

using

- the "analysing power" from Pavia group
- the COMPASS p and d results (same x-bins)

COMPASS

one can extract in each x-bin the transversity PDF

(new charged pion results, DIS2014)

results → G. Sbrizzai

or one can use directly the Belle data (and some "reasonable" assumptions) to evaluate the analysing power

advantages:

- no MC nor parametrisation is needed
- the same technique can be used for the Collins asymmetries
 - → F. Bradamante, today

there are other new ideas on the extraction of information on transversity from SIDIS and e+e- data only

dihadron asymmetry - new ideas

Partial Wave expansion

|1,1> Collins moments for $\pi\pi$

van Hulse, Transversity 2014 Gliske Bacchetta Radici arXiv:1408.5721

dihadron asymmetry - new ideas

interplay between dihadron and single hadron asymmetries

intriguing results

- Collins asymmetry for h+ and for h-*"mirror symmetry"*
- dihadron asymmetry vs Collins asymm. only somewhat larger

this motivated the study of the correlations between the relevant azimuthal angles and the corresponding asymmetries

[F. Bradamante , Como2013, D-SPIN2013]

COMPASS

conclusion: hints for a common physical origin for the Collins mechanism and the polarised dihadron FF

[PLB 736 (2014) 124]

dihadron asymmetry - new ideas

interplay between dihadron and single hadron asymmetries

new developments:

dependence of the asymmetries on $\Delta \phi = \phi_{h+} - \phi_{h-}$ first results: Transversity2014

presently a consistent description of the h+ and h- Collins asymmetries and of the dihadron asymmetries

 \rightarrow F. Bradamante, this Session

accessing Transversity at RHIC

accessing Transversity at RHIC

- Sivers asymmetry
- Collins asymmetry
- di-hadron asymmetry
- other TSA
- unpolarised asymmetries in SIDIS

COMPASS

all measured on p (HERMES, COMPASS) and d (COMPASS)

all measured on p (HERMES, COMPASS) and d (COMPASS)

COMPASS

A_N in pp collisions

origin not yet clear

to understand it, measurement of A_N in $\ell N^{\uparrow} \rightarrow \pi X$

A_N in lepton nucleon collinsion

X_F

A_N in lepton nucleon collinsion

- Sivers asymmetry
- Collins asymmetry
- di-hadron asymmetry
- other TSA
- unpolarised asymmetries in SIDIS

unpolarisd azimuthal asymmetries - reminder

summary

many new results, not all easy to explain; a lot of work ongoing ...

- the SIDIS data collected in so far are unique
- the analysis are not yet over

more multidimensional measurements, gluon Sivers from high pT and J/ $\Psi \rightarrow$ K. Kurek interplay 1h-2h, weighted asymmetries,

 new interesting results on transversity and TMD observables will come soon from

SIDIS at JLab, HERMES, COMPASS

pp at RHIC

e+e- at Belle / Babar

while waiting for the results of the new experiments

Drell-Yan measurements

JLab12, eN Collider, high energy ep experiments

Thank you