Charged hadron multiplicities and quark fragmentation functions from COMPASS

Fabienne KUNNE CEA /IRFU Saclay, France

On behalf of the COMPASS Collaboration

- Charged hadron multiplicities
- Quark fragmentation functions into pions from LO fit
- Outlook

COMPASS at CERN

dipole2

Fixed target 160-200 GeV muon beam and 190 hadron beams from CERN SPS \rightarrow Multipurpose setup

μ filter

ECal HCal

Polarized muon beam & polarized target: d, p

Polarized

target

Hadron beam π / K / p & LH₂ or nuclei

Meson spectroscopy π , K polarizabilities

Future: GPDs from DVCS TMDs from Polarized Drell-Yan

50 m μ filter RICH dipole1 **MWPC** Straws **RICH GEMs Drift chambers** π / K / p thresholds: COMPASS 2006 Micromegas 3/10/20 GeV/c Preliminary Silicon SciFi NIMA 577 (2007) 455 es p [GeV/c]

Quark Fragmentation Functions (FF)

- Non perturbative objects
- Process independent
- Needed to access strange quark polarization Δs from polarized SIDIS.

strange quark FF = largest uncertainty in this extraction.

Data sensitive to FFs exist from e⁺e⁻ and pp reactions, but are unsufficient for good flavour separation and at too high Q²

 \rightarrow extract FFs from unpolarized COMPASS SIDIS data

Quark FFs from SIDIS

Measurement of multiplicities of π , K, p in **SIDIS**

Hadron multiplicitiy = mean number of hadrons h per DIS event

PDFs depend on \mathbf{x} , while FFs depend on \mathbf{z}

$$\sum_{h=0}^{h} \int_{0}^{1} z D_q^h(z) dz = 1$$

Data can be obtained in a fine binning in x, z, Q²

→ Input to global QCD analyses to extract quark FFs

Data analysis - hadron multiplicities

- 3 Weeks of 2006 data (1/4 of total stat.)
 ⁶LiD target : isoscalar
- Kinematic cuts :
 - Inclusive events:
 - Q² > 1 GeV²/c²
 - ▶ 0.1 < y < 0.7</p>
 - ▶ 0.004 < x < 0.7</p>
- Analysis :
 - Calculate **raw** multiplicities of h^{+-} , π^{+-} and K^{+-}
 - in 3D-binning: (x, y, z), $\langle Q^2 \rangle$ evaluated in each bin
 - RICH likelihood cuts are used for identification
 - Apply corrections:
 - Efficiency/ purity of RICH detector for π/K identification
 - Spectrometer acceptance including efficiency of detectors and event reconstruction
 - Electron contamination of π sample
 - Diffractive vector meson production ρ^0 and ϕ

Hadrons :

> $10 < p_h < 40 \text{ GeV/c}$

Data cover 5 < W < 17 GeV

RICH performance matrices

Need to evaluate absolute efficiency / purity of RICH detector

- "pure" π , K and p samples, well identified from parent decays:
- Look at RICH responses

→ Probabilities \mathscr{P} of identification and misidentification of $\pi^{+/-}$, K^{+/-} and p

pions : $K_S^0 \rightarrow \pi^+ + \pi^$ kaons : $\Phi \rightarrow K^+ + K^$ protons : $\Lambda^0 \rightarrow p + \pi^-$

F. Kunne

Acceptance calculation

Includes geometric acceptance plus detector and reconstruction efficiency

Monte Carlo Simulation :

Spectrometer acceptance for h⁺ and h⁻

Prelim. results from MC simulation: A(z) in 29 (x-y) bins 0.0040.010.02 0.03 0.04 0.06 0.1 0.15 0.7 0.1 COMPASS acceptance 2006 3+2[#] Preliminary 0.5 A^{h+}≈ A^{h-}≈ 0.6 0.15 h+ ***[†]**<u>†</u>‡+ 0.5 h⁻ 0.2 0.5 C 0.3 -----Sec. 0.5 0.5 -h+ ----0.5 —h-0.7 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.5 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 7

Contribution from diffractive meson production

The data sample includes SIDIS events but also π and K from diffractive meson production, without quark hadronization.

Contribution from diffractive meson production

c. (x.v.z

F. Thibaud, QCD Montpellier-2014

- MC simulation, using LEPTO for SIDIS and HEPGEN for VM production
- In total, contribution from VM small : few %

However in some bins, it reaches:

- 40% for π (high z, low Q²) there, π multiplicities are very small
- 20% for K (z~0.6, low Q²)

• Multiplicity data will be published with and without correction

Ex: Correction for contribution of π from ρ^0 in the data sample, vs z, in 35 (x,y) bins

HEPGEN : A. Sandacz and P. Sznajder - arXiv:1207.0333 [hep-ph] F. Kunne

π^+ and π^- multiplicities vs z in (x,y) bins

NB- Also measured: p_T dependence (see talk of N.Makke) and 2h multiplicities

K⁺ and K⁻ multiplicities vs z in (x,y) bins

Quark FFs into π , from COMPASS LO fits

Assume isospin and charge symmetry: $D_{\text{fav}}^{\pi \neq} = D_{u}^{\pi^{+}} = D_{\overline{d}}^{\pi^{-}} = D_{\overline{d}}^{\pi^{-}}$ $D_{\text{unf}}^{\pi \neq} = D_{d}^{\pi^{+}} = D_{u}^{\pi^{-}} = D_{u}^{\pi^{-}}$ Assume also $D_{s}^{\pi^{+}} = D_{s}^{\pi^{-}} = D_{unf}^{\pi^{+}}$

Choose functional forms for FFs (z); use DGLAP. Fit π^+ and π^- multiplicities and extract the 2 independent FFs:

Summary

Multiplicities for h⁺,h⁻, π^+ , π^- , K⁺,K⁻

in a fine binning of x,y,z; 5 < W < 17 GeV Important input to global QCD fit of FFs at NLO

Quark FF into pions from LO fit of π +, π - multiplicities

 $D_{fav}^{\pi} \& D_{unfav}^{\pi}(z,Q^2)$: Promising results already at LO

In progress

Finalize pion and kaon multiplicities with improved MC and RICH treatment Extract quark FF into kaons Analyze data on H₂ target (2012) \rightarrow more input for flavor separation

Future

2016-2017 : large set of proton data (in parallel to GPD program: μ beam, H₂ target & upgraded RICH detector).

Systematic uncertainties

- Acceptance :
 > different sets of PDF in Lepto
 > different JETSET tunings
- RICH PID efficiency
 - pions : 1 % 3 %
 - kaons : 5 % 10 %
- Diff. ρ⁰ and φ correction
 - > 30 % theoretical uncertainty on HEPGEN cross-section
 - 12 % max uncertainty on correction
- Electron correction
 - > 25 % MC/data difference -> 50 % conservative syst. error

Quark FFs into π , from COMPASS fits

N.Dufresnes at DIS-2014 Starting from π multiplicities, extract 2 FFs.

 $D_{\text{fav}}^{\pi +} = D_{u}^{\pi^{+}} = D_{\overline{d}}^{\pi^{+}} = D_{d}^{\pi^{-}} = D_{\overline{u}}^{\pi^{-}}$ $D_{\text{unf}}^{\pi +} = D_{d}^{\pi^{+}} = D_{u}^{\pi^{-}} = D_{u}^{\pi^{-}}$

And assuming $D_{unf}^{\pi^+} = D_s^{\pi^+} = D_s^{\pi^-}$

$$M^{\pi^{+}}(x,Q^{2},z) = \frac{(4(u+d)+\overline{u}+\overline{d})\mathcal{D}_{fav}+(u+d+4(\overline{u}+\overline{d})+2(s+\overline{s}))\mathcal{D}_{unf}}{5(u+d+\overline{u}+\overline{d})+2(s+\overline{s})}$$
$$M^{\pi^{-}}(x,Q^{2},z) = \frac{(u+d+4(\overline{u}+\overline{d}))\mathcal{D}_{fav}+(4(u+d)+\overline{u}+\overline{d}+2(s+\overline{s}))\mathcal{D}_{unf}}{5(u+d+\overline{u}+\overline{d})+2(s+\overline{s})}$$

 $u, d, \overline{u}, \overline{d}, s, \overline{s}(x, Q^2) =$ parton distribution functions (MSTW08)

LO fit of experimental multiplicities :

> Functional form : $zD_{fav} = zD_{unf} = Nz^{\alpha}(1-z)^{\beta} \left[1+\gamma(1-z)^{\delta}\right]$ at a given Q_0^2

 \succ Evolution from Q^2_0 to Q^2 of data points with DGLAP

Sum M(K⁺) + M(K⁻)

N.Makke, DIS 2013

Electron contamination of pion sample

Electrons can be misidentified as pions

- ➢ 3 8 GeV/c :
 - e/π separation possible
 - difference MC/data 25 %

- 10 40 GeV/c (analysis range) :
 - Contamination evaluated by MC
 - > 50 % systematic uncertainty

Correction of pions yields : <1% (high z) to 5% (low z)