Hadron Physics at the COMPASS Experiment

Fabian Krinner
for the COMPASS collaboration

Physik-Department E18
Technische Universität München

3rd International Conference on New Frontiers in Physics
Motivations for hadron spectroscopy

The COMPASS experiment

Partial-Wave Analysis

Three-pion final states

Summary and conclusion
Motivation
The strong interaction, which describes the dynamics of quarks and gluons, gives rise to a rich spectrum of hadrons.

In principle this spectrum should be described by the Lagrangian of quantum chromodynamics (QCD):

$$\mathcal{L}_{\text{QCD}} = \sum_{i,j \in \text{quarks}} \bar{\psi}_i \left(i(\gamma^\mu D_\mu)_{ij} - m_i \delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a}$$

Due to confinement, quarks and gluons do not exist as free particles, but typically form baryons ($|q qq\rangle$) and mesons ($|q\bar{q}\rangle$).

Usual perturbation theory (as e.g. in QED) is not applicable anymore.

This talk will only be about the light meson sector.
Motivation
Mesons in the constituent quark model

- In the constituent quark model, mesons are described as bound states of a quark and an anti-quark.
- The quark spin couples to a total spin $S = 0, 1$.
- The total spin and the orbital angular momentum \vec{L} of the quarks couples to a total spin $\vec{J} = \vec{L} + \vec{S}$.
- The quantum numbers of a meson are given by J^{PC} with Parity $P = (-1)^{L+1}$ and generalized charge conjugation $C = (-1)^{L+S}$.
In the constituent quark model, mesons are described as bound states of a quark and an anti-quark.

The quark spin couples to a total spin \(S = 0, 1 \).

The total spin and the orbital angular momentum \(\vec{L} \) of the quarks couples to a total spin \(\vec{J} = \vec{L} + \vec{S} \).

The quantum numbers of a meson are given by \(J^{PC} \) with Parity \(P = (-1)^{L+1} \) and generalized charge conjugation \(C = (-1)^{L+S} \).

Forbidden \(J^{PC} \) (e.g. \(0^{--}, 0^{+-}, 1^{--}, 2^{+-}, \ldots \)) indicate states beyond the constituent quark model.
Beyond bound quark-anti-quark states, other exotic states of QCD could be possible.

Possible exotic states are:
- **Hybrids**: $|q\bar{q}g\rangle$
- **Glueballs**: $|gg\rangle$
- **Multi-quark states**:
 - Tetra-quarks: $|qq\bar{q}\bar{q}\rangle$
 - Molecules: $|(q\bar{q})(q\bar{q})\rangle$
 - ...

A physical state may be any superposition of these basic states.

Forbidden quantum numbers can’t be explained as $q\bar{q}$ pairs, they must be something else.
The COMPASS experiment
Multi-purpose fixed-target experiment at CERN

(Secondary) hadron and (tertiary) muon beams supplied by CERN’s Super Proton Synchrotron (SPS)

Broad physics program:
- Spin-structure of the nucleon (using μ^\pm and hadron beams)
 See talk: “The New Spin Physics Program of the COMPASS Experiment” by Luis Silva on Saturday
- Hadron structure and spectroscopy (using mainly hadron beams)

For the analysis presented:
- 190 GeV/c secondary hadron beam (97% π^-)
- 40 cm H_2 target
The COMPASS Experiment
COMPASS hadron setup
The Partial-Wave Analysis Method
Incoming π^- gets excited by interaction via Pomeron-exchange with the target and forms an intermediate state X^-. Example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$.

Different X^- may interfere with each other.

Main goal: Disentangle all contributing intermediate states, so called 'waves'. Use Partial-Wave Analysis to do this.
Incoming π^- gets excited by interaction via \textit{Pomeron-exchange} with the target and forms an intermediate state X^-. Many different intermediate states X^- decay into the same final state.

Example: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

- π^-_{beam}
- X^-
- π^-
- π^+
- π^-
- p_{target}
- p_{recoil}
Incoming π^- gets excited by interaction via *Pomeron-exchange* with the target and forms an intermediate state X^-. Many different intermediate states X^- decay into the same final state. Different X^- may interfere with each other.

Main goal:

Disentangle all contributing intermediate states, so called 'waves'.

Use *Partial-Wave Analysis* to do this.
Partial-Wave Analysis

The isobar model

- Dalitz plots at different m_X show a correlation between the spectrum of the 2π-subsystem and the three-pion mass

- Horizontal and vertical band structures are visible
Partial-Wave Analysis

The isobar model

- Dalitz plots at different m_X show a correlation between the spectrum of the 2π-subsystem and the three-pion mass

- Horizontal and vertical band structures are visible
Partial-Wave Analysis

The *isobar model*

- Dalitz plots at different m_X show a correlation between the spectrum of the 2π-subsystem and the three-pion mass

- Horizontal and vertical band structures are visible → describe process as subsequent two-particle decays: *isobar model*
The process is described by a complex amplitude, which takes the form:

\[A = \sum_{\text{waves}} T_{\text{wave}}(m_X)\psi_{\text{wave}}(\tau) \]
The process is described by a complex amplitude, which takes the form:

\[\mathcal{A} = \sum_{\text{waves}} T_{\text{wave}}(m_X)\psi_{\text{wave}}(\tau) \]

The \(\psi_{\text{wave}} \) describe the decay and are known functions of the phase-space variables \(\tau \).
The process is described by a complex amplitude, which takes the form:

\[A = \sum_{\text{waves}} T_{\text{wave}}(m_X)\psi_{\text{wave}}(\tau) \]

- The \(\psi_{\text{wave}} \) describe the decay and are known functions of the phase-space variables \(\tau \)
- The complex production amplitudes \(T_{\text{wave}} \) are independently fitted in bins of the mass of the intermediate state \(m_X \)
The process is described by a complex amplitude, which takes the form:

\[\mathcal{A} = \sum_{\text{waves}} T_{\text{wave}}(m_X)\psi_{\text{wave}}(\tau) \]

- The \(\psi_{\text{wave}} \) describe the decay and are known functions of the phase-space variables \(\tau \)
- The complex production amplitudes \(T_{\text{wave}} \) are independently fitted in bins of the mass of the intermediate state \(m_X \)
- Resonances show through the intensity and a phase shift of the \(T_{\text{wave}} \)
Three-Pion Final States
Three-Pion Final States

The final states

- For this analysis, COMPASS 2008 data are used
- 190 GeV secondary hadron beam (97% π^-) on hydrogen target
- Two final states: $\pi^-\pi^0\pi^0$ and $\pi^-\pi^+\pi^-$
Three-Pion Final States
The final states

- For this analysis, COMPASS 2008 data are used.
- 190 GeV secondary hadron beam (97% π^-) on hydrogen target.
- Two final states: $\pi^- \pi^0 \pi^0$ and $\pi^- \pi^+ \pi^-$.
- \sim 3.5 million events in the $\pi^- \pi^0 \pi^0$ channel.
Three-Pion Final States

The final states

- For this analysis, COMPASS 2008 data are used.
- 190 GeV secondary hadron beam (97% π^-) on hydrogen target.
- Two final states: $\pi^-\pi^0\pi^0$ and $\pi^-\pi^+\pi^-$.
- ~ 3.5 million events in the $\pi^-\pi^0\pi^0$ channel.
- ~ 50 million events in the $\pi^-\pi^+\pi^-$ channel, which is at the moment the world’s largest $3\pi^\pm$ data set.
For this analysis, COMPASS 2008 data are used.

190 GeV secondary hadron beam (97% π^-) on hydrogen target.

Two final states: $\pi^-\pi^0\pi^0$ and $\pi^-\pi^+\pi^-$

\sim 3.5 million events in the $\pi^-\pi^0\pi^0$ channel

\sim 50 million events in the $\pi^-\pi^+\pi^-$ channel, which is at the moment the world’s largest $3\pi^\pm$ data set.

Different systematics in both channels.
Three-Pion Final States
$1^{++}0^+ \rho(770) \pi S$ wave

- Spin-1 axial vector meson decaying into $\rho(770) \pi^-$
- Biggest wave in the analysis with $\sim 33\%$ of the intensity in the $\pi^-\pi^+\pi^-$ channel
- The $a_1(1260)$ resonance is clearly visible (It also shows through a phase motion which is not depicted here)
- Good agreement between both channels

\[\pi^-\pi^+\pi^- \text{ and } \pi^-\pi^0\pi^0 \text{ scaled to the integrals}\]
Three pion final states

$2^{++} 1^+ \rho(770) \pi D$ wave

- Spin-2 meson decaying into $\rho(770) \pi^-$
- Also a dominant wave with $\sim 8\%$ of the intensity in the $\pi^- \pi^+ \pi^-$ channel
- The $a_2(1320)$ resonance is clearly visible
- Good agreement between both channels
- The $a_2(1320)$ is the most beautiful resonance seen in the analysis with nearly no background

$\pi^- \pi^+ \pi^-$ and $\pi^- \pi^0 \pi^0$ scaled to the integrals

COMPASS 2008 ($\pi^- p \rightarrow (3\pi^-) p$)

$2^{++} 1^+ \rho(770) \pi D$

$\pi^- \pi^0 \pi^0, \pi^- \pi^- \pi^+ (scaled)$

$0.100 < t' < 1.000 \text{ GeV}^2/\text{c}^2$

(incoherent sum)

Preliminary
State with quantum numbers of a pion with spin 2 decaying into $f_2(1270)\, \pi^-$

The $f_2(1270)$ is a well-known state with quantum numbers $J^{PC} = 2^{++}$

Takes $\sim 7\%$ of the intensity in the $\pi^-\pi^+\pi^-$ channel

The $\pi_2(1670)$ resonance is clearly visible

Also good agreement between both channels

\[
\pi^-\pi^+\pi^- \text{ and } \pi^-\pi^0\pi^0 \text{ scaled to the integrals}
\]
With these three waves, the gross features of the mass spectrum of the two channels can be described.
- Spin-4 meson decaying into $\rho(770) \pi$
- Only 0.76% of the intensity in the $\pi^- \pi^+ \pi^-$ channel
- The $a_4(2040)$ resonance is clearly visible
- PWA also allows to clearly extract waves on sub-percent level

$\pi^- \pi^+ \pi^-$ and $\pi^- \pi^0 \pi^0$ scaled to the integrals
Three-Pion Final States

$1^{++}0^+ f_0(980) \pi P$ wave

- Intermediate state with same quantum numbers as the first wave ($J^{PC} = 1^{++}$), but decaying into $f_0(980) \pi$
- The $f_0(980)$ has the quantum numbers $J^{PC} = 0^{++}$
- Only 0.25% of the intensity in the $\pi^- \pi^+ \pi^-$ channel
- This $a_1(1420)$ was never seen before due to its small intensity, but here it appears in both channels
- Only visible because of the large COMPASS data set

NEW RESONANCE!

$1^{++}0^+ f_0(980) \pi P$

$\pi^0 \pi^0, \pi^+ \pi^- (scaled)$

$0.100 < t' < 1.000 \text{ GeV}^2/c^2$

(incoherent sum)

COMPASS 2008 ($\pi^- p \rightarrow (3\pi^-)p$)

Preliminary

$\pi^- \pi^+ \pi^-$ and $\pi^- \pi^0 \pi^0$ scaled to the integrals

Fabian Krinner (TUM E18)

Hadron Physics at the COMPASS Experiment

Jul 30th - Aug 6th 2014
Intermediate state with same quantum numbers as the first wave ($J^{PC} = 1^{++}$), but decaying into $f_0(980) \pi$

The $f_0(980)$ has the quantum numbers $J^{PC} = 0^{++}$

Only 0.25% of the intensity in the $\pi^-\pi^+\pi^-$ channel

This $a_1(1420)$ was never seen before due to its small intensity, but here it appears in both channels

Only visible because of the large COMPASS data set
Three-Pion Final States

$1^{++}0^+ f_0(980) \pi P$ wave

- Intermediate state with same quantum numbers as the first wave ($J^{PC} = 1^{++}$), but decaying into $f_0(980) \pi$

- The $f_0(980)$ has the quantum numbers $J^{PC} = 0^{++}$

- Only 0.25% of the intensity in the $\pi^-\pi^+\pi^-$ channel

- This $a_1(1420)$ was never seen before due to its small intensity, but here it appears in both channels

- Only visible because of the large COMPASS data set

NEW RESONANCE!

![Graph showing the intensity of $f_0(980) \pi$ in different channels](image)
Summary

- This data set is the largest for the $\pi^-\pi^+\pi^-$ channel with $\sim 50\,000\,000$ events, which allows for a very detailed Partial-Wave Analysis.
- This analysis allows to extract waves on the sub-percent level.
- Very precise description of the accessible light hadron spectrum ($I^G = 1^-$).
- A new resonance, the $a_1(1420)$, was seen.
 - Was not expected at all at this mass.
 - The decay into $f_0(980)$ is peculiar.
 - Lies at the KK^* threshold.
- Intensity in the spin-exotic wave with quantum numbers $J^{PC} = 1^{--}$ was also seen.

Outlook

- Publication in progress.
- Extraction of resonance parameters (work in progress).
The spin-exotic wave
\[1^{-+} 1^{+} \rho(770) \pi P \]
In the $1^{-+} 1^{+} \rho(770) \pi P$ wave, a signal was seen in the analysis.

This wave is spin-exotic, i.e. it can’t be explained by the constituent quark model.

Interpretation in terms of resonances not clear at the moment.

Shape changes with four-momentum transfer.

Compare to models for non-resonant contributions (Deck-model).

$\pi^- \pi^+ \pi^-$ and $\pi^- \pi^0 \pi^0$ scaled to the integrals.
Spin-exotic wave $1^{-+1^+}\rho(770)\pi P$

- In the $1^{-+1^+}\rho(770)\pi P$ wave, a signal was seen in the analysis.

- This wave is spin-exotic, i.e. it can’t be explained by the constituent quark model.

- Interpretation in terms of resonances not clear at the moment.

- Shape changes with four-momentum transfer.

- Compare to models for non-resonant contributions (Deck-model).

Result of the PWA and Deck-model scaled to integrated intensity.
In the $1^{-+1^+} \rho(770) \pi P$ wave, a signal was seen in the analysis.

This wave is spin-exotic, i.e. it can’t be explained by the constituent quark model.

Interpretation in terms of resonances not clear at the moment.

Shape changes with four-momentum transfer.

Compare to models for non-resonant contributions (Deck-model).
Spin-exotic wave \(1^{-+} 1^+ \rho(770) \pi P\)

- In the \(1^{-+} 1^+ \rho(770) \pi P\) wave, a signal was seen in the analysis.
- This wave is spin-exotic, i.e. it can’t be explained by the constituent quark model.
- Interpretation in terms of resonances not clear at the moment.
- Shape changes with four-momentum transfer.
- Compare to models for non-resonant contributions (Deck-model).
In the $1^{-+} 1^+ \rho(770) \pi P$ wave, a signal was seen in the analysis.

This wave is spin-exotic, i.e. it can’t be explained by the constituent quark model.

Interpretation in terms of resonances not clear at the moment.

Shape changes with four-momentum transfer.

Compare to models for non-resonant contributions (Deck-model).
Extraction of the isobar structure

(*De-isobarred PWA*)
In usual PWA, fixed shapes are assumed for the isobars, that have to be put into the analysis.
In usual PWA, fixed shapes are assumed for the isobars, that have to be put into the analysis. These add up to a complex shape.
In usual PWA, fixed shapes are assumed for the isobars, that have to be put into the analysis.

These add up to a complex shape.

This shape is replaced by a series of piecewise constant functions.
In usual PWA, fixed shapes are assumed for the isobars, that have to be put into the analysis.

These add up to a complex shape.

This shape is replaced by a series of piecewise constant functions.

With these, the (binned) shape of the isobars can be determined in the fit.
In usual PWA, fixed shapes are assumed for the isobars, that have to be put into the analysis.

These add up to a complex shape.

This shape is replaced by a series of piecewise constant functions.

With these, the (binned) shape of the isobars can be determined in the fit.

Since this analysis can also be done in bins of \(m_x \), a two dimensional picture is obtained.

This is not a Dalitz plot.
The five-pion final state
Five-pion final state

- Process is similar to the Three-Pion channels
- The state X^- decays into five pions

![Diagram of five-pion final state](image)

COMPASS 2004

$\pi^+ \text{Pb} \rightarrow \pi^- \pi^- \pi^+ \pi^- \text{Pb}$

Events: 10^3

Mass of 5π System (GeV/c2)

preliminary
Five-pion final state

- Process is similar to the Three-Pion channels
- The state X^- decays into five pions
- Again, the *isobar-model* is applied, but there are now different topologies
Process is similar to the Three-Pion channels

The state X^- decays into five pions

Again, the *isobar-model* is applied, but there are now different topologies
Five-pion final state

- Process is similar to the Three-Pion channels
- The state X^- decays into five pions
- Again, the *isobar-model* is applied, but there are now different topologies

![Diagram](image)

Graph:
- Events per (15 MeV) vs. Mass of 5π System (GeV/c²)
- COMPASS 2004
- $\pi^+\text{Pb} \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^-\text{Pb}$

Preliminary
Five-pion final state

- Process is similar to the Three-Pion channels
- The state X^- decays into five pions
- Again, the isobar-model is applied, but there are now different topologies
- This results in ~ 1700 waves and $\sim 10^{100}$ possible wave-sets
- Use a genetic algorithm to find the right wave-set

COMPASS 2004

$\pi^+ \text{ Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \text{ Pb}$

Events/15 MeV

Mass of 5π System (GeV/c²)

preliminary