

Measurements of transversity and TMD observables at COMPASS

Adam Szabelski National Centre for Nuclear Research, Warsaw On behalf of the COMPASS collaboration

Outline

- Transverse Momentum Dependent (TMD) functions
- The SIDIS cross-section of the transversely polarized nucleon
- The COMPASS experiment
- COMPASS results on transversity and TMDs from SIDIS:
 - single hadron Collins and Sivers asymmetries
 - two-hadron asymmetry
 - 6 other asymmetries (single hadron)
- Summary and outlook

Spin structure of the nucleon

The inner structure of the nucleon **independent of the transverse momentum k**_T can be described with three **Parton Distribution Functions** (PDF)

probability distribution of finding a quark with momentum fraction x

difference of probability distributions of finding a quark with momentum fraction x with spin parallel and antiparallel to the parent nucleon in a longitudinally polarized nucleon

... in a transversely polarized nucleon

Transverse Momentum Dependent

Taking into account the intrinsic parton transverse momentum the nucleon structure description requires 8 Transverse Momentum Dependent PDF dependent on x and k_{T} . TMDs describe the correlations between the spin and the momentum of quarks and spin of the parent nucleon.

Spin-Praha-2013

SIDIS cross-section

Twist-2 Twist-3

Azimuthal angles

COMPASS Experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Fixed target experiment at CERN SPS Data taking since 2002

Nucleon spin structure

with high energy muon beams on longitudinally polarized targets: -gluon polarization -helicity PDF Transversely polarized targets: transversity PDF TMDs Meson and baryon spectroscopy with high energy hadron beam

Longitudinally polarized µ⁺ beam (160 Gev/c). Longitudinally or Transversely polarized ⁶LiD or NH₃ target Momentum, tracking and calorimetric measurements, PID Hadron & Muon high energy beams. Beam rates: 10⁸ muons/s, 5·10⁷ hadrons/s.

COMPASS data taken with transversely polarized targets

 deuteron (⁶LiD) target, 160 GeV muon beam: 2002, 2003, 2004

 proton (NH³) target, 160 GeV muon beam: 2007, 2010

SIDIS event selection

Spin-Praha-2013

Adam Szabelski COMPASS

SIDIS off transversely polarized trargets at COMPASS

• Sivers asymmetry

related to quark orbital angular momentum (OAM)

- Collins asymmetry sensitive to transversity
- Two hadron azimuthal asymmetry sensitive to transversity
- 6 other azimuthal asymmetries

sensitive to transversity, Sivers function, worm-gear, pretzelosity

Spin-Praha-2013

results Collins asymptoty proportional to convolution of transversity and Collins FF obtained from BaBar and Belle measuremens transversity $A^{raw} = \sum_{k=1}^{\infty} e^{2}h^{q}(x,k^{2}) \otimes H^{\perp}(x,n^{2})$

$$A_{Coll}(x, z, p_T^h) = \frac{A_{Coll}^{raw}}{P_T \cdot f \cdot D_{nn}} = \frac{\sum_q e_q^2 h_1^q(x, k_\perp^2) \otimes H_{1,q}^\perp(z, p_\perp^2)}{\sum_q e_q^2 f_1^q(x, k_\perp^2) \otimes D_{1,q}(z, p_\perp^2)}$$

 P_T – target polarisation, f – dilution factor D_{nn} – spin transfer coeff. from initial to struck quark

Collins FF

Collins asymmetry. Deuteron

final results 2002-2004 data

PRL 94 (2005) 202002, NPB 765 (2007) 31, PLB 673 (2009) 127

COMPASS

Spin-Praha-2013

Adam Szabelski COMPASS

Collins asymmetry on proton

charged hadrons – published 2007 & 2010 data results PLB 692 (2010) 240 PLB 717 (2012) 376

very good agreement between the two data sets

combined 2007 & 2010 results

- precise measurements
- clear signal for x>0.03 with opposite signs for h+ and h-

Collins asymmetry on proton.

charged pions and kaons

combined 2007 – 2010 results

Collins asymmetry on proton

charged pions (and kaons), 2010 data, x > 0.032 region

comparison with HERMES

good agreement between experiments despite different Q² ranges (at given x: $\langle Q^2 \rangle_{COMPASS} \simeq (2 \div 4) \langle Q^2 \rangle_{HERMES}$) \Rightarrow mostly LO effect

Spin-Praha-2013

Adam Szabelski COMPASS

COMP_ASS

results Two-hadron asymmetry related to the transversity function

Two-hadron angle

 $\Phi_{RS} = \phi_R + \phi_S - \pi$

Two-hadron asymmetry

Transversity extracted from two-hadron asymmetry

Using interference FF from Belle following approach of Baccheta, Courtoy and Radici PRL 107:012001, 2001

transversity of u_v and d_v extracted from COMPASS deuteron and 2010 proton data

Adam Szabelski COMPASS

COMP**A**S

results Sivers asymmetry connected to orbital angular momentum Sivers function $A_{Siv}(x, z, p_T^h) = \frac{A_{Siv}^{raw}}{P_T \cdot f} = \frac{\sum_q e_q^2 f_{1T}^q(x, k_\perp^2) \otimes D_{1,q}(z, p_\perp^2)}{\sum_q e_q^2 f_1^q(x, k_\perp^2) \otimes D_{1,q}(z, p_\perp^2)}$

Sivers asymmetry on deuteron

charged hadrons, results from 2002-2004 PRL 94 (2005) 202002, NPB 765 (2007) 31, PLB 673 (2009) 127

Spin-Praha-2013

Adam Szabelski COMPASS

charged hadrons – published 2007 & 2010 data results PLB 692 (2010) 240 PLB 717 (2012) 376

good agreement between the two data sets

combined 2007 & 2010 results

clear signal down to low x, in the previously unmeasured region

charged pions and kaons

combined 2007 – 2010 results

charged pions (and kaons), 2010 data, x > 0.032 region

comparison with HERMES

Adam Szabelski COMPASS

*COMP*ASS

charged pions (and kaons), 2010 data, x > 0.032 region

COMPASS

comparison with HERMES

Spin-Praha-2013

Adam Szabelski COMPASS

charged hadrons 2010 data – Q² evolution comparison with S. M. Aybat, A. Prokudin and T. C. Rogers calculations PRL 108 (2012) 242003

results 6 other azimuthal asymmetries

6 other azimuthal asymmetries compass

$$\begin{aligned} A_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h, \quad \text{"Worm Gear" PDF } g_{1T}^q \\ A_{LT}^{\cos\phi_s} \propto \frac{M}{Q} \left(g_{1T}^q \otimes D_{1q}^h + ... \right), \quad \text{"Worm Gear" PDF } g_{1T}^q \\ A_{LT}^{\cos(2\phi_h - \phi_s)} \propto \frac{M}{Q} \left(g_{1T}^q \otimes D_{1q}^h + ... \right), \quad \text{"Worm Gear" PDF } g_{1T}^q \\ A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}, \quad \text{"Pretzelosity" PDF } h_{1T}^{\perp q} \\ A_{UT}^{\sin\phi_s} \propto \frac{M}{Q} \left(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + ... \right), \quad \text{"Transversity" PDF } h_1^q \\ & \text{"Sivers" PDF } f_{1T}^{\perp q} \\ A_{UT}^{\sin(2\phi_h - \phi_s)} \propto \frac{M}{Q} \left(h_{1T}^{\perp q} \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + ... \right), \quad \text{"Pretzelosity" PDF } h_1^q \\ & \text{"Sivers" PDF } f_{1T}^{\perp q} \end{aligned}$$

6 other azimutal asymmetries

- All 6 (beyond Collins and Sivers) asymmetries measured on deuteron target are compatible with zero within uncertainties
- <u>On proton</u> (2007 & 2010 data) all 6 asymmetries are consistent with zero except:

 $A_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$, "Worm Gear" PDF g_{1T}^q

 $A_{UT}^{\sin\phi_s} \propto \frac{M}{Q} \Big(h_1^q \otimes H_{1q}^{\perp h} + f_{1T}^{\perp q} \otimes D_{1q}^h + ... \Big), \text{"Transversity" PDF } h_1^q \\ \text{"Sivers" PDF } f_{1T}^{\perp q}$

$A_{LT}^{\cos(\phi_h - \phi_s)}$ asymmetry on proton & deuteron *compass*

 $A_{LT}^{\cos(\phi_h - \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$, "Worm Gear" PDF g_{1T}^q

Adam Szabelski COMPASS

$A_{UT}^{\sin \phi_s}$ asymmetry on proton & deuteron compass

"Sivers" PDF $f_{1T}^{\perp q}$

Theoretical predictions for the 6 asymmetries

"UT" asymmetries and theoretical predictions for the x dependence

S. Boffi, A.V. Efremov, B. Pasquini and P. Schweitzer PRD79:094012(2009)

COMP_ASS

"LT" asymmetries and theoretical predictions for the x dependence

Spin-Praha-2013

Adam Szabelski COMPASS

COMPAS.

Summary.

Collins, Sivers and dihadron asymmetries

 COMPASS has measured Collins, Sivers and dihadron asymmetries on d and p for charged and identified hadrons

On deuteron:

- All azimuthal asymmetries measured on transversely polarized target are compatible with zero
 - approximate cancelation of u and d quark contributions
 - important for global fits to disentagle flavour contributions

On proton:

- Collins asymmetry significantly different from zero down to x=0.03, no significant dependence on Q^2/y
- h+ and h- Collins asymmetry show mirror symmetry
- Two hadron asymmetry: large in valence region, no clear dependence on M^{h+h-}
- h+ Sivers asymmetry: clear signal different from zero. Signature of nonzero OAM, dependence on Q²/y over all x range
- h- Sivers asymmetry : compatible with zero
 Spin-Praha-2013
 Adam Szabelski COMPASS

COMPA

Summary 6 other azimuthal asymmetries

Six beyond Collins and Sivers transverse spin asymmetries

have been extracted from COMPASS deuteron 2002-2004 and proton 2007-2010 data

On deuteron:

all asymmetries found to be consistent with zero within the statistical uncertainty

On proton:

- nonzero values for $A_{LT}^{\cos(\phi_h \phi_s)}$ and $A_{UT}^{\sin \phi_s}$ amplitudes
- COMPASS results for $A_{LT}^{\cos(\phi_h \phi_s)}$ show good agreement with theoretical predictions
- precise measurements enables to discriminate between theoretical models

Spin-Praha-2013

Adam Szabelski COMPASS

COMPAS

Outlook

to be done soon:

- 6 asymmetries (beyond Collins and Sivers) for kaons and pions
- multidimentional analysis for all azimuthal asymmetries
- Sivers asymmetry of gluons

Thank you!

Backup slides

$A_{LT}^{\cos \phi_s}$ asymmetry on proton & deuteron *compass*

Asymmetries both for proton and deuteron are compatible with zero within uncertainties

At low $|\mathbf{P}_{hT}|$ expected to be suppressed by a factor of $\sim |\mathbf{P}_{hT}|$ with respect to the Collins and Sivers Asymmetries for both proton and deuteron are compatible with zero within uncertainties Spin-Praha-2013 Adam Szabelski COMPASS 44/41

$\frac{\sin(3\phi_h - \phi_s)}{T}$ asymmetry on proton & deuteron

 $A_{UT}^{\sin(3\phi_h - \phi_s)} \propto h_{1T}^{\perp q} \otimes H_{1q}^{\perp h}$, "Pretzelosity" PDF $h_{1T}^{\perp q}$

Expected to be suppressed by a factor of $\sim |\mathbf{P_{hT}}|^2$ with respect to the Collins and Sivers amplitudes Asymmetries for both proton and deuteron are compatible with zero within uncertainties

Spin-Praha-2013

Adam Szabelski COMPASS

At low $|\mathbf{P}_{hT}|$ expected to be suppressed by a factor of $\sim |\mathbf{P}_{hT}|$ with respect to the Collins and SiversAsymmetries for both proton and deuteron are compatible with zero within uncertaintiesSpin-Praha-2013Adam Szabelski COMPASS