The OZI rule and spin alignment of vector mesons at COMPASS

Karin Schönning, Uppsala University, Sweden, and CERN, Geneva for the COMPASS collaboration

> International Conference on the Structure of Baryons Glasgow, UK, June 24-28th <u>2013</u>

Outline

- Introduction
- The COMPASS experiment
- Analysis
 - Event selection
 - Acceptance and background subtraction
- Results
 - $M(p_{fast}V)$
 - $R(\phi/\omega)$ as a function of $x_F(p_{fast})$ and p_V
 - Spin alignment in the helicity frame
 - Spin alignment in the exchange particle frame
 - The relation between spin alignment and $R(\phi/\omega)$
- What do we learn from this?

Introduction: The OZI rule

- The Okubo-Zweig-Iizuka (OZI)* rule states that processes with disconnected quark lines are supressed.
- Production of ϕ should then be allowed only thanks to deviation from ideal mixing, $\delta_V = 3.7^{\circ}$, and be suppressed w.r.t. ω production according to

$$(AB \rightarrow \phi X)/(AB \rightarrow \omega X) = \tan^2 \delta_V = 4.2 \cdot 10^{-3**}$$

where A, B and X are non-strange hadrons.

* S. Okubo, Phys. Lett. 5 (1963) 165, G. Zweig, CERN report TH-401 (1964), J. lizuka, Prog. Theor. Suppl. 38 (1966) 21 ** H.J. Lipkin, Phys. Lett. B 60 (1976) 371

Introduction: the OZI rule

- The OZI rule is generally well fulfilled*
- Apparent violations have been observed in

-proton-antiproton annihilations at rest-NN collisions-reactions near the kinematic threshold.

- Apparent violation are usually interpreted as
 - Intermediate gluonic states**
 - A polarised strangeness component in the nucleon***
 - Features of the meson-nucleon interaction

* V.P. Nomokonov, M.G. Sapozhnikov, Particles and Nuclei 24 (2003) 184 ** S. J. Lindenbaum, Nouvo Cim. 65 A (1981) 222 *** J. Ellis et al. Phys. Lett. B 353 (1995) 319, J. Ellis et al. Nucl. Phys. A 673 (2000) 256

Introduction: spin alignment of vector mesons

- Sensitive to the production mechanism^{*}
- Low energy *pd* experiments show that ω is produced arbitrarily aligned ^{**} whereas ϕ is produced aligned with the incoming beam.^{***}
- The differential cross section of the decay of a vector meson into 2 or 3 pseudoscalaras can be parametrised in terms of spin density matrix element and angles, a lengthy expression which in the case of unpolarised beam and unpolarised target reduces to

$$W(\cos\theta) = \frac{3}{4}(1 - \rho_{00} + (3\rho_{00} - 1)\cos^2\theta)$$

where ρ_{oo} is the zeroth element of the spin-density matrix and θ is the angle between the analyser and some reference axis.

Analyser:

- the normal of the decay plane in the 3-body case ($\omega \rightarrow \pi \pi \pi$)
 - the direction of one of the decay kaons in the 2-body case (φ→KK)
 - * K. Gottfried & J.D. Jackson, Nuovo Cim. 33 (1964) 302.
 ** K. Schönning *et al.*, Phys. Lett. B 668 (2008) 258.
 ***F. Belleman *et al.*, Phys. Rev. C 75 (2007) 015204

The COMPASS experiment

Two-stage magnetic spectrometer:

Beam: 190 GeV positive (p, π^+ , K⁺) or negative (π^- , K⁻) hadron beam. **Targets**: Liquid H₂, Nuclear targets (Pb, Ni, W). **Final states**: charged (π^\pm , p, ...), neutral (π^0 , η , η' , ...), kaonic (K[±], K_S, ...) See also: talks by *e.g.* B. Grube, Y. Bedfer...

The COMPASS experiment

At the COMPASS beam momentum (190 GeV/c) and with the Recoil Proton Detector Trigger, events produced by mainly three types of mechanisms are selected:

Resonant diffractive Non-resonant diffractive

Central Production

Concerning the vector meson dynamics, we consider two cases :

1) The vector meson dynamics depends on the exchange Pomeron/Reggeon (central production and knock-out of a preformed $q\bar{q}$ state)

2) The vector meson dynamics depends on the intermediate N^*

Analysis: Event selection

Common cuts for ϕ / ω :

- primary vertex in target volume
- three charged tracks, charge conservation
- beam proton (tagged with CEDARs)
- recoil proton (tagged by RPD)
- exclusivity and coplanarity
- $0.6 < x_F(p_{fast}) < 0.9$
- $0.1 < t' < 1.0 \ (GeV/c)^2$

Specific cuts for ω:

- >1 photon in any of the ECALs
- exactly one π^{o}
- one π^+ in RICH
- •1.8 < M($p\omega$) < 4.0 GeV/c^2

Specific cuts for ϕ :

- one K⁺ in RICH
- 2.1 < M($p\phi$) < 4.3 GeV/ c^2

Analysis

Background subtraction:

A Breit-Wigner function, convoluted with a single (ϕ) or a double (ω) gaussian and a polynomial background was fitted to the data in order to extract the ϕ and ω yields.

Acceptance corrections:

Event-by-event weighting using a 3D-acceptance matrix in $x_F(p_{fast})$, t', $M(p_{fast}\phi)$

Overall systematic uncertainty: 12.5% ECAL and RICH efficiencies

The M(p_{fast} V) invariant mass

- Clear structures in the $M(p_{fast}\omega)$ spectrum
- No visible structures in the $M(p_{fast}\varphi)$ spectrum
- Poor acceptance at low $M(p_{fast}\varphi)$

The M(p_{fast} V) invariant mass

• The $M(p_{fast}\omega)$ spectrum varies with x_F

• Structures near 1800 MeV/c², 2100 MeV/c² and 2600 MeV/c²

OMPA

$R(\phi / \omega)$ as a function of x_F

The cross section ratio

$$R(\phi / \omega) = \frac{\frac{d\sigma}{dx_F}(pp \to p\phi p)}{\frac{d\sigma}{dx_F}(pp \to p\omega p)}$$

has been calculated in 3 bins in x_F .

The OZI violation factor is defined by $R(\varphi/\omega)/4.2 \cdot 10^{-3}$ and varies between 2.9 and 4.5, depending on x_F .

This is consistent with results from SPHINX*

We learned that ω mesons in this kinematic region is produced to a large extent *via* intermediate baryon resonances.

What if we remove the resonant region?

* S.V. Golovkin et al., Z. Phys. A 359 (1997) 435.

$R(\phi / \omega)$ as a function of x_F

The visible resonances are below $M(p\omega) = 3.3 \text{ GeV/c}^2$. This corresponds to a vector meson momentum in the rest system of the resonance $\sqrt{(M_{pV}^2 - (m_V + m_p)^2)(M_{pV}^2 - (m_V - m_p)^2)}$

$$p_{V} = \frac{\sqrt{(m_{pV} - (m_{V} + m_{p}))(m_{pV} - (m_{V} - m_{p}))}}{2M_{pV}}$$

of
$$p_V = 1.41 \, \text{GeV/c.}$$

Requiring $p_V > 1.41$ GeV/c gives an OZI violation factor of ~8.

This is consistent with SPHINX but also with near threshold *pp* measurements from ANKE, DISTO and COSY-TOF.

The ρ_{00} in the helicity frame

Reference axis: the direction of flight of the N^* resonance in the rest system of the vector meson

The ρ_{00} w.r.t $M(p_{fast}V)$ for ϕ

No significant deviation from isotropy.

The ρ_{00} w.r.t $M(p_{fast}V)$ for ω

The ρ_{00} in the exchange particle frame

The ρ_{00} w.r.t x_F for ϕ

Strong alignment with respect to the exchange Pomeron/Reggeon
 Alignment increases with x_F

The ρ_{00} in the exchange particle frame

The ρ₀₀ w.r.t x_F for ω
Strong alignment, though weaker than for φ
Cutting in p_V gives similar results as for φ

Relation between $R(\phi / \omega)$ and the spin alignment

\mathbf{x}_{F}	p _V (MeV/c)	$\rho^{hel}{}_{oo}, \phi$	$\rho^{hel}{}_{oo},\omega$	$\rho^{EX}{}_{oo}, \phi$	$\rho^{EX}{}_{oo}, \omega$	OZI viol.
0.6-0.7	> 0	0.38±0.03	0.289±0.004	0.51±0.03	0.492±0.003	4.5±0.6
0.7-0.8	> 0	0.35±0.02	0.330±0.003	0.58±0.02	0.582±0.002	4.0±0.5
0.8-0.9	> 0	0.39±0.04	0.449±0.003	0.67±0.04	0.572±0.002	2.9±0.4
0.6-0.7	> 1.0	-	0.34±0.01	-	0.39±0.01	7.6±1.0
0.7-0.8	> 1.0	-	0.306±0.006	-	0.527±0.005	9.0±1.1
0.8-0.9	> 1.0	-	0.463±0.003	-	0.577±0.002	4.5±0.6
0.7-0.8	> 1.4	-	-	-	-	7.9±1.1
0.8-0.9	>1.4	-	0.37±0.03	-	0.601±0.005	7.6±1.0

What do we learn from this?

- The role of baryon resonances is ω production is confirmed by the $M(p\omega)$ distributions and the spin alignment in the helicity frame.
- No evidence for baryon resonances decaying into $p\phi$ was observed: a consequence of the OZI rule which supresses $N^* \rightarrow p \phi$.
- The OZI violation (by a factor 2.9-4.5) in the resonant region would then be caused by other contributing processes.
- In the non-resonant region, *i.e.* $p_V > 1.41$ GeV/c, the OZI violation factor is ~8.
- The spin alignment for ω and ϕ have the same behaviour in the helicity frame (isotropic) and in the exchange particle frame (strong alignment that increases with x_F).

What do we learn from this?

Possible non-resonant mechanisms:

- Bremsstrahlung with subsequent fluctuation into a vector meson : low cross section and weak sensitivity to the exchange particle
- Central Pomeron-Pomeron fusion Forbidden due to G-parity conservation!
- Central Pomeron-Odderon fusion: completely OZI violating, would give a much larger OZI violation than the observed one.
- Central Reggeon-Pomeron fusion
- Knock-out of a preformed $q\overline{q}$ state in the beam proton by a Pomeron from the target

