Review of Drell-Yan Experiments

- Highlights from proton-induced DY
- Pion-induced DY
- Spin-dependent DY
- Future experiments

Caroline Riedl

International Workshop on Hadron Structure and Spectroscopy
Appetizer: Drell-Yan at highest-energy pp(-) collider

Di-muon production: pp(-)→μ+μ- X

- LHC and Tevatron: Drell-Yan widely explored
 - Major background in searches.
 - Probe for new physics, e.g. through angular dependences (A_{FB}).
 - Constraints on PDFs, e.g. s(x) in W- and Z-production.

- Studies of proton structure:
 - Dilepton-p_T \uparrow \sqrt{s}
 - Q^2-evolution of Sivers effect
 - Cannot probe valence quarks.

- Need more than “Physics at the Terascale”
Probing the partonic structure of hadrons

DIS

\[\text{DF} \otimes \text{FF} \]

Drell-Yan (DY)

\[\text{DF} \otimes \text{DF} \]

Caveat: factorization applies

Assumption:

Caveat: might break down @ high-x

Probe universality
Hadron structure explored through DY scattering

- Cleanest hard hadron-hadron scattering process

- But: experimentally challenging: small cross section.
 Continuum varies as $\frac{d\sigma}{dm_{\mu\mu}} \approx \frac{10^{-32}}{m_{\mu\mu}^5} \cdot \text{cm}^2/\text{GeV}^2$

- Crucial role in studying quark structure in hadrons:
 - nucleons
 - nuclei
 - mesons

- Spin-orbit correlations,
 TMDs = transverse-momentum dependent PDFs

- Add polarization to our DY experiments to cover the missing spin program:
 spin-dependent TMDs in Drell-Yan

Milestone will be measurement of Sivers-function sign switch (?) in polarized Drell-Yan
Drell-Yan as selective probe of sea distributions

Fixed target experiment
example: Fermilab di-muon spectrometer [E866]

favors $x_{\text{Feynman}} (= x_{\text{beam}} - x_{\text{target}}) \approx 0$
large x_{beam} (quark) in valence region
small x_{target} (anti-quark) in sea region

dipole spectrometer & forward boost of dileptons

(proton-induced Drell-Yan)

dipole spectrometer & forward boost of dileptons

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t s} \times$$
$$\sum e^2[\bar{q}_t(x_t)q_b(x_b) + \bar{q}_b(x_b)q_t(x_t)]$$
suppressed

$$\frac{m_{\mu\mu}}{s} = x_b x_t$$
scaling analog to DIS

criedl@illinois.edu - Review of Drell-Yan Experiments
What about pion-induced Drell-Yan?

- Valence anti-u quark in the pion: allows to create large-mass dileptons. Proton-induced DY needs to generate the dilepton from sea-quark object with small x.

- Pions as alternative probe to test
 - nuclear models
 - meson structure – not accessible in DIS
 - “subtleties of partonic structure”

- Flavor dependence: pion (or meson in general) is specific $qq\bar{q}$ compound

Recent review: arXiv:1306.3971
W.-C. Chang and D. Dutta,
The pionic Drell-Yan process: a brief survey
Selected Drell-Yan experiments of the past

meson-induced Drell-Yan

1970
Brookhaven
AGS
p-U
29 GeV

1979
FNAL
CIP
\(\pi^\pm \)
Be/Cu/W
80, 225, 252 GeV

1980
FNAL
CERN
Omega
\(\pi^\pm, K^\pm, p^\pm \)
Cu/W
40 GeV

1981
FNAL
CERN
NA3
\(\pi^- p/\text{Pt} \)
150, 200, 280 GeV
p-Cu

1985
FNAL
CERN
NA10
\(\pi^- C/\text{Cu/W} \)
200, 280 GeV

1986
FNAL
E772
pd

1988
FNAL
E789
pp & pd
800 GeV

1991
FNAL
E866
(Cu/W)

1994
FNAL
E866
(NuSea)

1996

First dbar/ubar measurement

First measurement:
Observation of Massive Muon Pairs in Hadron Collisions

Nuclear Dependence of Drell-Yan and Quarkonium Production

Search for Two-Body Decays of Heavy Quark Mesons

Determination of anti-d / anti-u Ratio of the Proton via Drell-Yan
A typical Drell-Yan experiment

Omega @ CERN (1980)

39.5 GeV beam

93.9% π^-, 3.4% K^-, 2.7% anti-p
74.6% π^+, 3.4% K^+, 22.0% p

Cherenkov counters to identify beam particles

Heavy material to absorb secondaries

Magnetic spectrometer with muon trigger

Isospin symmetry violation in the anti-quark sea

- Inclusion of σ_{pd}/σ_{pp} into global fits: change of perception of sea-quark distributions in the nucleon

- Origin of sea quarks? $g\rightarrow q\bar{q}$ should naively give symmetric $u\bar{d}$, $d\bar{u}$.

- Non-perturbative contributions to sea-quark distributions:
 - meson-cloud model
 - chiral perturbation theory
 - instantons
 - intrinsic quark sea

Nucleons in nuclei

EMC effect in DIS

- Modification of parton distributions in nuclei?
- Can the nucleus be described in terms of quarks and gluons only?
- Explanation of EMC effect: nuclear pions?
- \(F_2 \) in DIS: charge-weighted sum of quarks and anti-quarks. What about the sea quarks?

Geesaman, Saito, Thomas, The Nuclear EMC Effect

EMC effect in Drell-Yan

- DY: no excess pions.
 Traditional meson-exchange model?
- Contemporary models:
 large effects for anti-quarks as x increases.
- Needs more statistics to confirm
 (e.g. Fermilab E906/SeaQuest)

\[
\frac{\sigma_{pA}}{\sigma_{pd}} \approx \frac{\overline{u}_A(x)}{\overline{u}_N(x)}
\]

EMC effect in DIS

\[
Q^2 = 5 \text{ GeV}^2
\]

\[
Q^2 = 50 \text{ GeV}^2
\]

E772: PRL 64 (1990) 2479
E866: PRL 83 (1999) 2304
Flavor-dependent EMC effect in pion-induced DY

- Flavor-dependent modification of quark distributions in the nuclear medium?
- Distinguish between different nuclear models
- Cloet, Bentz, Thomas (CBT) model:
 isovector mean field in a N≠Z nucleus affects u- and d-quarks differently

\[
\frac{\sigma_{DY}(\pi^- + A)}{\sigma_{DY}(\pi^- + D)} \approx \frac{u_A(x)}{u_D(x)}
\]

Dutta, Peng, Cloet, Gaskell, arXiv:1007.3916
Flavor-dependent EMC effect in pion-induced DY

\[
\frac{\sigma^{DY}(\pi^+ + A)}{\sigma^{DY}(\pi^- + A)} \approx \frac{d_A(x)}{4u_A(x)} \quad \frac{\sigma^{DY}(\pi^- + A)}{\sigma^{DY}(\pi^- + D)} \approx \frac{u_A(x)}{u_D(x)}
\]

Important new information from COMPASS-II Drell-Yan data with pion beams

160 GeV pion beam @Q^2=25 GeV^2
Pion-induced exclusive Drell-Yan \(\pi^- N \rightarrow N' \mu^- \mu^+ \)

DVCS

![Diagram of DVCS](image)

- **Hard exclusive pion production (DVMP)**
 - **Space-like**
 - **Time-like**

- Preferred @lower beam energy to enhance exclusive cross section

crield@illinois.edu - Review of Drell-Yan Experiments

@larger momentum transfer to the target: involves TDA = nucleon-to-pion Transition Distribution Amplitude
Angular dependence of the (spin-integrated) DY cross section

\[
\frac{d\sigma}{d\Omega} \propto 1 + \cos^2 \theta
\]

(1+\cos^2\theta) “naive DY”
+ k_T + higher O(\alpha_s):

\[
\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2 \theta + \mu \sin(2\theta) \cos \phi + \frac{\nu}{2} \sin^2 \theta \cos(2\phi)
\]

Lam-Tung relation

\[
1 - \lambda = 2\nu
\]

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447

- Basic derivation from structure-function formalism
- Reflects spin-\(\frac{1}{2}\) nature of quarks (DIS-Callan-Gross-like)
- Widely insensitive to QCD corrections
- “unique opportunity to test the QCD-improved quark-parton model”
Lam-Tung in proton- and pion-induced DY

- **Proton-induced Drell-Yan (E866)**
 - consistent with LT-relation
 - no $\cos(2\Phi)$ dependence
 - no p_T dependence

- **Pion-induced Drell-Yan (NA10, E615)**
 - violates LT-relation
 (independent of nucleus – no nuclear effect)
 - large $\cos(2\Phi)$ dependence
 - strong with p_T

- The **Boer-Mulders (BM) TMD** enters the stage:
 correlation between
 - quark transverse spin &
 - quark transverse momentum

- **Pionic DY probes BM (valence), target=proton**
 - BM (sea) small compared to BM (valence)
 - from Drell-Yan, we can learn something about spin-orbit correlations!

Spin-orbit correlations from Drell-Yan?

- **Boer and Mulders 1998**: distribution function of the unpolarized nucleon with intrinsic k_T dependence.
 - Describes correlation between quark transverse spin and momentum.
 - Induces $\cos(2\Phi)$ modulation of the DY cross section.

- **Other theoretical interpretations**:
 - QCD higher-twist effect causes change of virtual-photon polarization from transversely ($\lambda=1$) to longitudinally ($\lambda=-1$) polarized for $x_\pi \rightarrow 1$?
 - Data taken at different \sqrt{s}: pion: 11 GeV and 16 GeV; proton: 39 GeV.
 - Such effect should be seen in E906/SeaQuest data.
 - Spin correlations between annihilating quark and anti-quark?
 - Glauber gluons, QCD instantons, ...

More measurements in wider kinematic range, and kaon/anti-proton beams will help to differentiate the interpretations.
The missing spin program: TMDs in spin-dependent Drell-Yan

- Are Sivers function and Boer-Mulders universal?
 - Observed to be clearly different from zero in SIDIS.
 - Expect sign switch of these time-reversal-odd TMDs in \(\text{DY} \) wrt \(\text{SIDIS} \): fundamental QCD prediction due to gauge invariance

- Experimental verification: crucial test of non-perturbative QCD and TMD physics
 - origin of large SSAs?
 - validity of QCD factorization?

\[S^N \quad s^q \quad k^q \]

\(N \) nucleon transverse spin
\(q \) quark transverse spin
\(k \) quark transverse momentum

Transversity

Manifest as ISR
Manifest as FSR

More details on TMDs in G. Schnell’s talk
Theoretical overview in M. Radici’s talk @ this workshop
Future Drell-Yan experiments

- Programs for future Drell-Yan measurements:
 - nucleon-nucleon at
 - SeaQuest (Fermilab)
 - RHIC (Brookhaven)
 - J-PARC (KEK)
 - IHEP (Protvino)
 - JINR (Dubna)
 - anti(p)-nucleon at
 - FAIR (GSI)
 - pion-nucleon at
 - COMPASS (CERN)

Only existing meson plan!

- Past measurements exclusively considered the unpolarized cross section, future ones also aim for polarization measurements.
 - transversely polarized DY: spin-dependent TMDs
 - longitudinally polarized DY: quark helicity

More details on FAIR in K. Peter’s talk @ this workshop
More details on JINR in I. Savin’s and A. Nagaytsev’s talk

The RHIC Spin program, arXiv:1304.0079
Fermilab E906/SeaQuest

- Unpolarized proton-induced Drell-Yan
 - Significant increase in physics reach: high-x structure of the proton
 - Extend sea-quark measurements to larger x by using 120 GeV protons from Fermilab Main Injector.
 - Will start physics run in the nearest future.

- Probed physics:
 - What is dbar / ubar?
 - What are the origins of the sea quarks?
 - How are quark spin and orbital motion correlated?
 - Where are the nuclear pions?
 - Is anti-shadowing a valence effect?
 - Do colored partons lose energy in cold nuclear matter?

- Polarized SeaQuest: plans to polarize the proton beam and maybe even the target.

Click: Opportunities for polarized physics at Fermilab, workshop May 20-22, 2013
Key elements:
1. Transversely polarized NH$_3$ target
2. Tracking system
 (Large and Small Angle Spectrometer)
3. Muon trigger
4. RICH-I, calorimetry
5. Hadron absorber

More details on COMPASS-II in A. Ferrero’s talk @ this workshop

adapted from O. Denisov
COMPASS-II DY will probe the valence-quark region, where the Sivers function has its largest magnitude.

\[\pi p \rightarrow \mu^+ \mu^- X: \text{sensitivity to } u \text{-quark Sivers function} \]

DY with trans. pol. NH3 target:
- a) Sivers \(\sin(\Phi_S) \): magnitude and sign
- b) Pretzelosity \(\sin(2\Phi + \Phi_S) \)
- c) Transversity \(\sin(2\Phi - \Phi_S) \)

DY with unpolarized NH3 target:
- d) Boer-Mulders \(\cos(2\Phi) \)

DY SSA with trans. pol. NH3 target:
low-mass dimuon events to study a)-d)

Projection: 2 years running and 140 days pa, about 230k DY events above J/Psi threshold

Optimal conditions for the observation of **Sivers sign-switch**: kinematic overlap between SIDIS and DY.
Drell-Yan at COMPASS-II

Possible additional physics with approved measurements:

- Modification of the λ, μ, ν parameters as $x \to 1$ (existing data are for λ only).

- Violation of the Lam-Tung relation as $x \to 1$.

- Dependence of $<p_T>$ on the kinematic variables (e.g. x)

- x-dependence of the valence-quark distribution of pions.

- Low-mass, high p_T DY events as alternative for direct-photon production.

+ if a solid nuclear target is placed in the beam:

 - Quark energy loss in nuclei.

 - Test of flavor-dependent EMC effect.

 - Nuclear-dependence of the Boer-Mulders function.

New measurements using liquid hydrogen and liquid deuterium targets:

- Measure d/u ratios at large-x.

- Determine pion valence quark distributions.

- Test charge-symmetry-breaking of parton distributions in nucleons.

- Measure $d\bar{u}/u\bar{d}$ at large-x using $(\pi^+ + d) / (\pi^+ + p)$ DY ratios.

In this region, DY is related to high p_T direct photon production by the electromagnetic coupling α multiplied by a factor that is essentially a measure of the virtuality of the intermediate photon.

based on priv. comm. with Jen-Chieh Peng, 2011 / 2013
Summary

Drell-Yan: explore the flavor and spin structure of nucleons and nuclei

- Pion-induced Drell-Yan provides important additional information compared to the proton-induced case.
- To cover the full Drell-Yan program: need
 - proton, anti-proton and meson beams
 - unpolarized H, D & nuclear targets
 - polarized targets and / or desirably polarized beams

This review would not have been possible without material from Wen-Chen Chang, Jen-Chieh Peng, Paul Reimer, Wolfgang Lorenzon, Markus Diefenthaler, Oleg Denisov, and others.

Thank you!
Nucleon Tomography in DIS

Correlation between spin and transverse momentum?

Transverse Momentum dependent PDFs

TMDs $f(x, k_\perp)$

k_\perp-integration

semi-inclusive measurements

inclusive measurements

Correlation between longitudinal momentum and transverse position?

Generalized Parton Distributions

GPDs $H(x, b_\perp)$

\leftrightarrow FT $\leftrightarrow H(x, \xi, t)$

$x = 0$, $t = 0$

exclusive measurements

PDFs $q(x)$, 1D:

Parton Distribution Functions

Courtesy A. Bacchetta (Università di Pavia)
Transverse-Momentum Dependent PDFs (TMDs)

Distribution Functions (DF)

<table>
<thead>
<tr>
<th>nucleon</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>f_1</td>
<td>g_1</td>
<td>$h_{1\perp}$</td>
</tr>
<tr>
<td></td>
<td>Number Density</td>
<td>Helicity</td>
<td>Boer Mulders</td>
</tr>
<tr>
<td>L</td>
<td>g_1</td>
<td>h_{1L}</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>f_{1T}</td>
<td>g_{1T}</td>
<td>h_T</td>
</tr>
<tr>
<td></td>
<td>Sivers</td>
<td>Worm-gear</td>
<td>Transversity</td>
</tr>
</tbody>
</table>

Diagonal ‘survives’ integration over transverse momentum k_T.

“Collinear analysis”

Fragmentation Function (FF)

$\sigma^{ep \to ehX} = \sum_q (\text{FF} \otimes \text{DF})$

TMDs depend on the longitudinal and transverse momentum of a parton inside a hadron.

Describe strength of various spin-spin or spin-orbit correlations of the parton-hadron system.