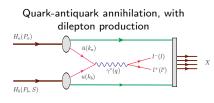


Study of Transverse Momentum Dependent Distributions from Polarised Drell-Yan at COMPASS

Márcia Quaresma, LIP - Lisbon on behalf of the COMPASS/CERN Collaboration


1st October 2013, MENU 2013 - Rome

Drell-Yan process

- $P_{a(b)}$, beam (target) hadron momentum
- $s = (P_a + P_b)^2$, centre of mass energy squared
- $x_{a(b)} = q^2/(2P_{a(b)} \cdot q)$, momentum fraction carried by the quark from $H_{a(b)}$
- $x_F = x_a x_b$, Feynman x
- $Q^2 = q^2 = M_{\mu\mu}^2 = s x_a x_b$, dimuon invariant mass squared
- k_{T a(b)}, quark intrinsic transverse momentum

If $k_{Ta(b)} \neq 0$, the dimuon has also transverse momentum: $q_T = P_T = k_{Ta} + k_{Tb}$

An experimental evidence of $k_T \neq 0$:

The angular distribution of the DY events can be written as:

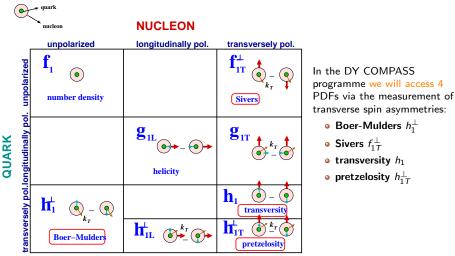
$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} = \frac{3}{4\pi}\frac{1}{\lambda+3}[1+\lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi]$$

If quarks do not have transverse momentum (collinear hypothesis): $\lambda=$ 1, $\mu=$ 0, u= 0 .

NA10 (CERN) and E615 (Fermilab) experiments measured a modulation of $\cos 2\phi$ up to 30%.

The Drell-Yan process is an excellent tool to study PDFs:

- well calculable process (W. Vogelsang et al, Phys. Rev. Lett. 105 (2010) 252003 and Phys. Rev. D83 (2011) 114023)
- no fragmentation functions involved (contrary to SIDIS)
- convolution of two PDFs $(\sigma_{DY} \propto f_{\bar{u}|\pi^-} \otimes f'_{u|p})$ \hookrightarrow dominated by annihilation of valence \bar{u} from π^- and valence u from p
- All TMD PDFs are expected to be sizeable in the valence quark region (x > 0.1)
- QCD TMD approach is applied in the region: Q (\geq 4 GeV/ $c^2) \gg p_T~(\simeq 1~{\rm GeV}/c)$


 \longrightarrow Very clean signal to access initial parton distribution functions

However there is a price to pay \Rightarrow The DY process has a very low cross-section \hookrightarrow High luminosity needed \Rightarrow High intense beam

The nucleon structure in QCD leading order, taking into account k_T , is described by 8 PDFs.

Considering an unpolarised beam and a transversely polarised target the σ_{DY} in LO can be written as:

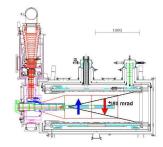
$$\frac{d\sigma}{d^4qd\Omega} = \frac{\alpha_{em}^2}{Fq^2} \hat{\sigma}_U \{ (1 + D_{[\sin^2\theta]} | A_U^{\cos 2\phi} \cos 2\phi) + |\vec{S}_T| [A_T^{\sin\phi_S} \sin\phi_S + D_{[\sin^2\theta]} (A_T^{\sin(2\phi+\phi_S)} \sin(2\phi+\phi_S) + A_T^{\sin(2\phi-\phi_S)} \sin(2\phi-\phi_S))] \}$$

The azimuthal asymmetries A contain a convolution of 2 PDFs of the beam and target hadrons:

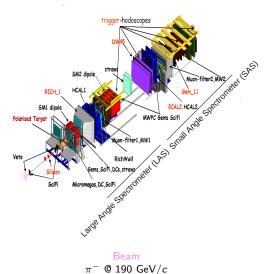
 \hookrightarrow These asymmetries will be measured by fitting the corresponding (ϕ , ϕ_S) distributions.

COMPASS @ CERN

COmmon Muon Proton Apparatus for Structure and Spectroscopy



Experimental setup

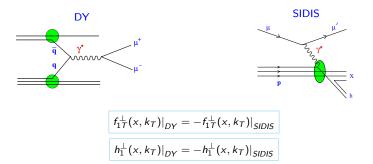

Polarised target, *NH*₃ dilution factor 22%

polarisation up to 90%

- Large angular acceptance (±180 mrad)
- Two target cells (*NH*₃) with opposite polarisations transverse to the beam

- Large angular acceptance spectrometer
- ④ High intensity (up to 10⁸ particles/s) hadron beam
- Very good resolution beam telescope
- Transversely polarised proton target (NH₃)
- O Possibility to include a hadron absorber downstream of the target
- Possibility to include a vertex detector upstream of the hadron absorber to improve the vertex resolution
- Dimuon trigger based on hodoscope signal coincidences and with target pointing capability

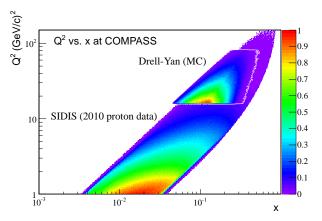
 \hookrightarrow The COMPASS II Proposal was approved by CERN for a first period of 3 years including 1 year for Drell-Yan.



The Sivers (f_{1T}^{\perp}) and the Boer-Mulders (h_1^{\perp}) functions are time-reversal odd functions

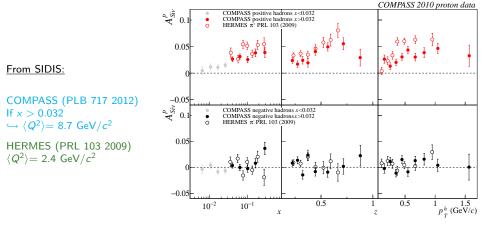
 \hookrightarrow they are process dependent

This leads to the prediction that they must change sign when accessed from DY or SIDIS¹.


The experimental confirmation of this sign change is considered a crucial test of non-perturbative QCD (TMD approach).

¹J.C. Collins, Phys. Lett. B536 (2002) 43

In COMPASS we have the opportunity to access these TMD PDFs from both DY and SIDIS processes.



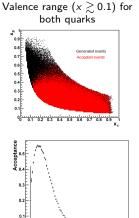
There is a phase space overlap between the two measurements.

 \hookrightarrow However to properly compare the extracted TMDs, their Q^2 evolution must be taken into account.

- $h^- \Rightarrow A^p_{Siv} \sim 0$
- $h^+ \Rightarrow A^p_{Siv} > 0$
- $A_{Siv}^{p}(\text{COMPASS}) < A_{Siv}^{p}(\text{HERMES}) \longrightarrow$ The difference may be due to TMD Q^{2} evolution.

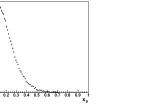
$$q ar q
ightarrow {
m J}/\psi \; X
ightarrow \mu^+ \mu^- X ~~{
m vs}~~gg
ightarrow {
m J}/\psi \; X
ightarrow \mu^+ \mu^- X$$

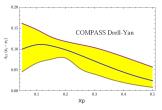
In case of duality DY $\leftrightarrow J/\psi$ $(q\bar{q} \rightarrow \gamma^*/J/\psi \ X \rightarrow \mu^+\mu^- X)$, that is, the $q\bar{q}$ annihilation J/ψ production is dominating over gg fusion J/ψ production in the COMPASS phase space:


- Possibility to study the polarised J/ψ cross-section
- Possibility to extract the TMD PDFs with much larger statistics

If gg production mechanism is dominating:

Possibility to extract the gluon Sivers TMD (related with gluons OAM)

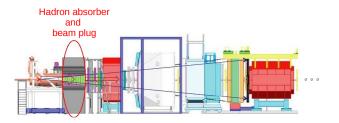




The dimuons acceptance in the HMR ($M_{\mu\mu} > 4 \text{ GeV}/c^2$) is 39%. The accepted dimuons are: $\begin{array}{rrr} \mu_1 \ (1^{st} \ spectrometer) \ \& \ \mu_2 \ (1^{st} \ spectrometer) & - & 22 \ \% \\ \mu_1 \ (1^{st} \ spectrometer) \ \& \ \mu_2 \ (2^{nd} \ spectrometer) & - & 18 \ \% \end{array}$

 μ_1 (2nd spectrometer) & μ_2 (2nd spectrometer) - 2%

Sivers prediction Sun & Yuan, http://arxiv.org/abs/arXiv:1308.5003



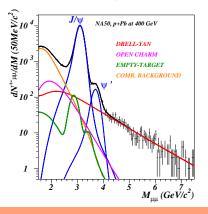
The acceptance is larger in the region in which Sivers is expected to be larger ($\sim 10\%$)

Experimental setup - Absorber

- The main goal of the hadron absorber is to stop the hadrons produced in the primary interaction.
- The task of the beam plug is to stop the non-interacting beam.

The hadron absorber also introduces multiple scattering on muons

 \Rightarrow It is important to minimise the number of radiation lengths crossed by the muons in the absorber, while maximising the number of pion interaction lengths \rightarrow Al_2O_3 .



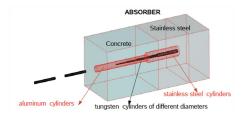
• Strong decrease of σ_{DY} with $M_{\mu\mu}$

 $\,$ $\,$ The Drell-Yan signal is very clean (background free) for ${\sf M}_{\mu\mu}>4~{\sf GeV}/c^2$

We will study DY in the HMR, nevertheless there is the possibility to use also the regions $2 < M_{\mu\mu} < 2.5 \text{ GeV}/c^2$ and $J/\psi (J/\psi \leftrightarrow \text{DY duality})$ for TMDs.

Dimuon mass distribution for p @ 400 GeV/c in a Pb target (NA50 Collaboration)

- The combinatorial background comes from uncorrelated pion and kaon decays and it is controlled using an optimised hadron absorber and a beam plug.
- ${\rm I}_{beam} \leq 10^8 \ \pi^-/{\rm s} \sim 10$ times lower than the NA50 beam intensity.
- The combinatorial background ($\propto l_{beam}^2$) ~ 100 times lower than in NA50.
- The open charm background comes from $D\bar{D}$ mesons semileptonic decays

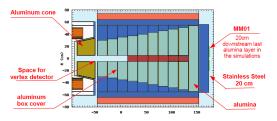


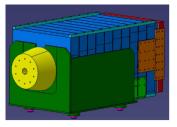
The feasibility of the measurement was proved by several beam tests done so far.

- ${\scriptstyle \bullet}$ verification of the absorber effect and the spectrometer response \checkmark
- ${\, \bullet \,}$ verification of the radiation doses \checkmark
- ${\, \bullet \,}$ verification of the detector occupancies \checkmark
- ${\scriptstyle \bullet}\,$ verification of the trigger rates \checkmark
- ${\scriptstyle \bullet}\,$ validation of the dimuon trigger \checkmark

In 2009 we did a 3 days test using:

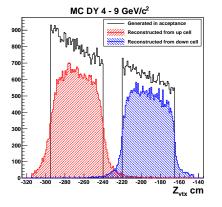
- A hadron absorber prototype
- A beam plug, inside the central part of absorber
- π^- beam @ 190 GeV/c up to I_{beam} = 1.5 $imes 10^7 \ \pi/{
 m s}$
- Two unpolarised target cells (polyethylene)

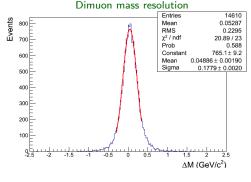




The setup for DY experiment is being optimised:

- Polarised target:
 - modified microwave cavity
 - two target cells of NH_3 (55 cm length, 4 cm diameter, spaced by 20 cm)
 - ${\scriptstyle \bullet}\,$ moved ~ 2.3 m upstream in order to have space for the hadron absorber
- Radioprotection shielding
- New SciFi based beam telescope high rate capability
- Trigger hodoscopes modifications
- Vertex detector
- New large area tracking station in the 1st spectrometer
- Hadron absorber and beam plug





z vertex and mass resolutions

z vertex distribution

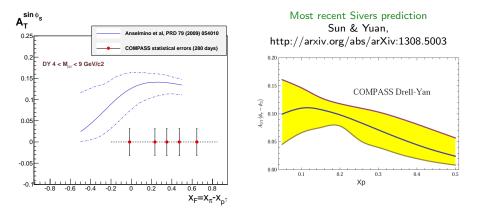
• $\Delta M \simeq 180~{
m MeV}/c^2$ (4 $< M_{\mu\mu} <$ 9 GeV $/c^2$)

- $\Delta z \simeq 6 \ \mathrm{cm} \ (4 < M_{\mu\mu} < 9 \ \mathrm{GeV}/c^2)$
- A very low level of contamination

For a π^- beam of 190 GeV/c, ${\sf I}_{beam}=6\times10^7$ particles/s and L= $1.2\times10^{32}~{\rm cm}^{-2}{\rm s}^{-1}$ one expects:

- $\,$ A DY event rate of 4300 events/day in 2 $< M_{\mu\mu} <$ 2.5 GeV/ c^2
- A DY+J/ ψ event rate of 25900 events/day in 2.9 $< M_{\mu\mu} <$ 3.2 GeV/ c^2
- A DY event rate of 900 events/day in the 4 $< M_{\mu\mu} <$ 9 GeV/ c^2

Considering two years of data taking (about 280 days) we expect 250k events in the HMR and the following statistical errors in azimuthal asymmetries:


Asymmetry error	$2 < M_{\mu\mu} < 2.5~{ m GeV}/c^2$	$2.9 < M_{\mu\mu} < 3.2 \; { m GeV}/c^2$	$4 < M_{\mu\mu} < 9~{ m GeV}/c^2$
$\delta A_U^{\cos 2\phi}$	0.0026	0.0011	0.0057
$\delta A_T^{\sin \phi_S}$	0.0065	0.0027	0.0143
$\delta A_T^{sin(2\phi+\phi_S)}$	0.0130	0.0053	0.0285
$\delta A_T^{\sin(2\phi-\phi_S)}$	0.0130	0.0053	0.0285

Different theory predictions for the spin asymmetries in COMPASS are available.

Sivers prediction at the time of the proposal

After 2 years of data taking our statistical accuracy is enough to have the asymmetry in bins of x_p .

Worldwide plans to study TMD PDFs via the polarised DY process

Facility	type	s (GeV ²)	timeline
COMPASS	fixed target, $\pi^{\pm}H^{\uparrow ightarrow}$, $\pi^{\pm}D^{\uparrow ightarrow}$	357	end of 2014
Fermilab (SeaQuest)	fixed target, $p^{\uparrow ightarrow} H$, $pH^{\uparrow ightarrow}$	234	> 2015
RHIC (STAR, PHENIX)	collider, $p^{\uparrow}p$	200 ²	> 2016
J-PARC	fixed target, $p^{\uparrow ightarrow} D$	60 - 100	> 2018
FAIR (PAX)	collider, $ar{p}^{\uparrow} p^{\uparrow}$	200	> 2018
NICA	collider, $p^{\uparrow}p^{\uparrow}, D^{\uparrow}D^{\uparrow}$	676, 144	> 2018

COMPASS aims to perform the first polarised DY experiment in the world

- The opportunity to study, in the same experiment, the TMD PDFs from both SIDIS and the DY processes is unique.
- The sign change in Sivers and Boer-Mulders functions when accessed by DY and SIDIS will be checked in 1st year of data taking.
- Joining two years of data taking there will be enough statistics to study the asymmetries in terms of $x_F(x_p)$ and p_T .
- The feasibility of the measurement has been proven after several performed tests.
- Polarised Drell-Yan data taking will start in the end of 2014 and continue during 2015. A second year of DY data taking is planned, possibly in 2018.