

OZI violation and spin alignments at COMPASS

Johannes Bernhard ^(*) on behalf of the COMPASS Collaboration

1. Motivation

OZI rule:

- states processes with disconnected quark lines are forbidden¹
- tool to study production mechanisms by tracing strangeness transfer in vector meson production

Prediction for ratio of φ / ω production²: $R = \sigma(pp \rightarrow X\phi) / \sigma(pp \rightarrow X\omega) = 0.0042$

- Possible explanations for violations:
- flavour-neutral processes (Pomeron/Reggeon) exchange) or gluonic intermediate states³
- polarised hidden strangeness component in the nucleon⁴ / "preformed" mesons

Different production mechanisms:

Quasi-free mechanisms	Diffractive production
Central production	(resonant)

2. The COMPASS experiment • two stage spectrometer high resolution, large acceptance ~250 000 read-out channels, ~1 PByte / year [hep-ex/0703049, NIM A 577, 455 (2007)] **COmmon Muon Proton Apparatus for Structure and Spectroscopy** Selection for ω: (~270 physicists, 25 institutes, 12 countries) **Baryon & meson spectroscopy** Diffractive production Acceptance ω • Central production SN • Primakoff RPD Beam CEDARS Hadron runs: **Signal Extraction:**

3. Event selection and signal extraction

Event selection, common cuts for φ / ω :

- primary vertex in target volume
- three charged tracks, charge conservation
- beam proton (tagged with CEDARs)
- recoil proton (tagged by RPD)
- exclusive events (energy of final state = beam energy)

selected region: $0.6 < x_F < 0.9$

- 3D acceptance correction $(x_F, M(pV), t')$
- Fit corrected mass distributions with Breit-Wigner/ Gaussian convolution + polynomial background

4. Resonances / spin alignment in helicity reference frame

5. OZI violation

cross section ratio $R(\phi/\omega) = 0.0042$

Spin alignment yields additional information on production mechanism

Parameterisation of cross section's angular dependence⁵: $W(\cos\theta) = \frac{3}{4}(1 - \rho_{00} + (3\rho_{00} - 1)\cos^2\theta)$ no alignment at $\rho_{00} = 0.33$

[5] K.Schilling, P.Seyboth, G.Wolf, Nucl.Phys.B 15 (1970) 397

Observations:

 \checkmark resonant structures in pw mass distributions linked to alignment of w in helicity frame ✓ alignment changes with higher masses when resonances are crossed \checkmark no structures and no alignment visible for p ϕ (OZI suppressed)

Reference axis with respect to exchange particle (sensitive to central production) Observations:

- \checkmark strong alignments for both ω and φ
- \checkmark no alignments with tight p_V cut (not shown)

7. Summary & Outlook

OZI rule & spin alignments @ COMPASS:

- ✓ high statistics and precision
- \checkmark measurement of φ / ω with the same setup at the same time
- ✓ measure at higher energies compared to former experiments
- ✓ violation of OZI rule + spin alignments draw picture of interplay between production mechanisms

Outlook: publication in preparation

