

Partial-Wave Analysis of Centrally Produced Two-Pseudoscalar Final States in *pp* Reactions at COMPASS

Alexander Austregesilo for the COMPASS Collaboration Physik Department E18, Technische Universität München, 85748 Garching, Germany

COMPASS

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

- Fixed target experiment
- Located at CERN SPS
- Data taking since 2002
- Physics objectives:
- Hadron spectroscopy
- Test of chiral perturbation theory
- Nucleon spin structure
- 2 types of beam
- $-190 \,\text{GeV/c}$ secondary hadron beams $(p, \pi^+ \text{ or } \pi^-, K^-)$
- $-160\,\text{GeV/c}$ tertiary muon beams (μ^+ or μ^-)

Exotic Mesons

0-0 0-0

 \bigcirc

+ ...

1.5

0.5

- Quark model: Meson described as $q\bar{q}$ bound state with quantum numbers $I^G J^{PC}$
- Quantum Chromo-Dynamics: other colour neutral configurations allowed (multi-quark states, hybrids, glueballs) \Rightarrow Identify additional states in meson spectrum • Predictions from quenched LQCD: lightest glueball has $J^{PC} = 0^{++}$ and $M \approx 1.6 \text{GeV}/c^2$ [2]

Hadron Spectroscopy

- Proton beam impinging on liquid hydrogen target
- Double-Pomeron-exchange as glue-rich environment
- \Rightarrow Production of non- $q\bar{q}$ -mesons (glueballs, hybrids) enhanced at central rapidities

Reference Frame

- Assumption: central $\pi^+\pi^-$ system produced by the collision of two objects
- Space-like exchange particles define z-axis and production plane
- Decay fully described by $M(\pi^+\pi^-)$, θ and ϕ
- Linear combination of spherical harmonics as eigenstates of reflectivity $\varepsilon = \pm 1$

 $Y_m^{\varepsilon\ell}(\theta,\phi) = c(m) \left[Y_m^{\ell}(\theta,\phi) - \varepsilon(-1)^m Y_{-m}^{\ell}(\theta,\phi) \right]$

• $\rho(770)$ and $f_2(1270)$ peaks, sharp drop at $1 \text{ GeV}/c^2$ due to $f_0(980)$ • Production of $\rho(770)$ disappears rapidly with increasing \sqrt{s} • Enhancement at low mass (σ) and $f_0(980)$ remain unchanged \rightarrow characteristic for *s*-independent Pomeron-Pomeron scattering

Ambiguities in the Two-Pseudoscalar System

• Intensity expansion can be transformed into a 4th-order polynomial in the variable $u = \tan(\theta/2)$ [4] • Complex conjugation of the roots ('Barrelet zeros') results in the same angular distribution

COMPASS 2009

 $p p \rightarrow p_f \pi^+ \pi^- p_g$

COMPASS 2009 $p p \rightarrow p_f \pi^+ \pi^- p_s$

1.6

Conclusion and Outlook

Centrally produced sample orders of magnitude larger than that of previous experiments Partial-wave analysis of two-pseudoscalar system successfully performed \Rightarrow High potential to study light glueball spectrum, combining all accessible decay channels (K^+K^- , K_SK_S , $\pi^0\pi^0$, $\eta\eta$, ...)

