

New measurements of transverse spin asymmetries at COMPASS

Federica Sozzi INFN Trieste

On behalf of the COMPASS Collaboration

Rencontres de Moriond La Thuile, March 10-17, 2012

MPAS

- Motivation
- COMPASS
- Results on Collins asymmetries
- Results on hadron pair asymmetries
- Conclusions

At leading order, the inner structure of the nucleon can be described with three **Parton Distribution Function** (PDF):

quark structure of the nucleon

Taking into account the intrinsic parton transverse momentum, the nucleon structure description becomes more complex and needs 8 **"Transverse Momentum Dependent" PDF**.

TMDs describe the correlations between the spin and the momentum of quarks and of the parent nucleon

nucleon polarisation

The transversity DF is chiral-odd: can be measured in Semi Inclusive DIS on a transversely polarized target :

$I N^{\uparrow} \rightarrow I' h X$ 1 hadron production

coupled to another chiral-odd function: Collins fragmentation function

Describes the correlation between the fragmenting quark spin and the hadron momentum

 \rightarrow Left right asymmetry

in the distribution of the hadron

$$\mathbf{N}^{\pm}(\Phi_{C}) = N^{0} \cdot (1 \pm A \sin \Phi_{C})$$

$$\Phi_{C} = \phi_{h} \neq \phi_{s} \text{ is the "Collins angle"} Transversity PDF$$

$$A_{Coll} = \frac{\sum_{q} e_{q}^{2} \cdot (\Delta_{T} q \cdot \Delta_{T}^{0} D_{q}^{h})}{\sum_{q} e_{q}^{2} \cdot q \cdot D_{q}^{h}} \text{ Collins FF: accessible also in e^+e^-} hadrons [Belle, Babar]}$$

Assessing transversity:

hadron pair asymmetries

Another channel that can be used to assess transversity is the inclusive production of hadron pairs.

The measurement is based on an azimuthal asymmetry in the angle $\phi_{RS} = \phi_{R\perp} + \phi_s$ in which $\phi_{R\perp}$ is the angle of the plane containing the two hadrons

A. Bacchetta, M. Radici, hep-ph/0407345 X. Artru, hep-ph/0207309

Accessible also in $e^+e^- \rightarrow hadrons$

[Belle, Babar]

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Fixed target experiment at CERN SPS Data taking since 2002

Nucleon spin structure

with high energy muon beams on longitudinally polarized targets: -gluon polarization

-helicity PDF

Transversely polarized targets: transversity PDF TMDs Meson and baryon spectroscopy with high energy hadron beam

The COMPASS spectrometer

longitudinally polarised muon beam beam intensity: 2·10⁸ μ⁺/spill (4.8s/16.2s) beam momentum: 160 GeV/*c*

Muon identification Detection and identification of hadrons for SIDIS measurements

2 stage spectrometer in order to cover a large kinematic range 180 mrad angular acceptance

μ beam

E/HCAL E/HCAL 50 m SM1 MuonWall RICI COMPASS 2010 proton data $Q^2 (GeV/c)^2$ 10 prelimina 10^{-2} 10-1 1 х

COMPASS transverse data taking

2002-4: ⁶LiD target, 20% time transverse data taking.

pT ~ 50% ; f ~ 0.38

PRL 94(2005)202002 PLB 673(2009)127-135 NP B 675 (2007) 31-70

2007: NH₃ target, 50% time transverse data taking; pT ~ 90% ; f ~ 0.15 PLB 692 (2010) 240

2010: NH₃ target, full time to transverse data taking: preliminary results on Collins asymmetries, hadron pair asymmetries

Assessing transversity from Collins asymmetries

Confirm the results from 2007 with improved statistical uncertainties, factor ~2

- At small x (range not covered by Hermes) asymmetries compatible with zero
- agreement with Hermes results in the overlap region → not obvious result, implies a negligible Q2 dependence for the Collins effect
- Valence region: large signal of opposite sign for positive and negative hadrons, (Dunf~-Dfav)

New important input for global fit

Large signal up to 5-10% in the valence region

Statistical uncertainties improved of a factor ~2 wrt 2007 run

agreement with Hermes results

Assessing transversity from hadron pair asymmetries

Extract information on the di hadrons fragmentation functions using Belle data *PRL 107 (2011) 072004*

and:

HERMES proton data (black points) *C JHEP 0806 017 (2008)*

COMPASS 2007 proton data (red points)

→Using the new 2010 data the extraction can be improved

Radici, Transversity 2011 Bacchetta, Courtoy, Radici, PRL 107:012001,2011

A lot of results have been produced by COMPASS from 2005:

-using a deuterium target in 2002-2004; -using a proton target in 2007 and 2010;

The most recent results from the 2010 data taking have been shown:

- They confirm 2007 results with improved statistical uncertainties
- both Collins and hadron pair asymmetries are different from zero and can be used to extract transversity PDFs

Not shown here...more, interesting results on other TMD PDFs (Sivers, Boer-Mulders)

Next future

•Extract the asymmetries for kaons

•Investigation of kinematical dependence of the asymmetries in multidimensional analysis, thanks to the high statistics collected in the 2010 run

Collins asymmetries from 2010 data comparison with Hermes results

x>0.032

Region where the signal is different from zero, overlap with Hermes range

 agreement with Hermes results → not obvious result, since the kinematical range covered by the two experiments is different, implies a negligible Q2 dependence for the Collins effect

Phase space of different experiments

 $0.004 < x < 0.3, 25 < W^2 < 200 GeV^2$

 $0.023 < x < 0.4, 10 < W^2 < 50$

(0.48)

Strong dependence of x, Q2 and W, depending on the lepton beam

The Sivers modulation

Sivers function $f_{1T}^{L}(x,k_{T})$: Correlation between the transverse spin of a nucleon and the intrinsic transverse momentum of unpolarized quarks

Azimuthal distribution of the produced hadrons:

$$\begin{split} & \textit{N}_{h}^{\pm}(\Phi_{c}) = \textit{N}_{h}^{\textit{0}}(1 \pm \textit{A}_{S}^{h} \sin(\Phi_{S})) \\ & \text{with } \Phi_{S} = \pmb{\varphi}_{h} - \pmb{\varphi}_{s} \end{split}$$

Comparison to Hermes data for x > 0.032

difference between COMPASS and HERMES results, but same trend

DIS cuts: $Q^2 > 1 GeV/c^2$ 0.1 < y < 0.9 $W > 5 GeV/c^2$

hadron pair selection: $z_i > 0.1$ $x_{iF} > 0.1$ $R_T > 0.07 \; GeV$ $E_{miss} > 3 GeV$

Hadron pair angle definition

Definitions	
$z_i = \frac{E_i}{E_{Tot}}$	
$z = z_1 + z_2$	
$\xi = \frac{z_1}{z}$	
$R_T = \frac{z_1 P_{2T} - z_2 P_{1T}}{z_1 + z_2}$	
φ_s = azimuthal angle of the spin of the nucleon	
φ_R = azimuthal angle of R_T	
$\varphi_{RS} = \varphi_R + \varphi_S - \pi$	

Moriond 10-17 March 2012

Federica Sozzi

Accessing transversity from two-hadron asymmetries

A Bacchetta, A. Courtoy, M Radici Phys.Rev.Lett.107:012001,2011

$$xh_1^{\boldsymbol{u_v}}(x) - \frac{1}{4}xh_1^{\boldsymbol{d_v}}(x)$$

$$= \underline{A_{2h}} \frac{n_u(Q^2)}{n_u^{\uparrow}(Q^2)} x (f_1^u(x) + f_1^{\overline{u}}(x) + \frac{1}{4} (f_1^d(x) + f_1^{\overline{d}}(x) + f_1^s(x) + f_1^{\overline{s}}(x)))$$

Transversity Distribution

Function

 $\Delta_{T}q(x)$, $h_{1}^{q}(x)$, $\delta q(x)$, $\delta_{T}q(x)$,

 $q=u_v, d_v, q_{sea}$

recently much interest !

properties:

- $\Delta_T q(x) \neq \Delta q(x)$
- probes the relativistic nature of quark dynamics
- no contribution from the gluons → simple Q² evolution
- positivity (Soffer) bound
- first moments: tensor charge
- sum rule for transverse spin in Parton Model framework
- it is related to GPD's

 $2|\Delta_{\mathsf{T}}\mathbf{q}| \le \mathbf{q} + \Delta \mathbf{q}$ $\Delta_{\mathsf{T}}\mathbf{q} \equiv \int d\mathbf{x} \, \Delta_{\mathsf{T}}\mathbf{q}(\mathbf{x})$

$$\frac{1}{2} = \frac{1}{2} \sum \Delta_{T} \mathbf{q} + \mathbf{L}_{q} + \mathbf{L}_{g}$$

Bakker, Leader, Trueman, PRD 70 (04)

• is chiral-odd: decouples from inclusive DIS