Hadron Physics at COMPASS

Swedish Nuclear Physics Meeting Göteborg, 2012

Karin Schönning, Uppsala University and European Organization for Nuclear Research (CERN)

Outline

- Introduction
- The COMPASS experiment
- Diffractive Dissociation of pions
 - 3π final states
 - $\eta\pi$ and $\eta'\pi$ final states
 - 5π final states
- Physics with proton beam
 - Central production in *pp* collision
 - Vector meson production
- Coulomb production of pions
- Other hadron physics topics with COMPASS

Introduction

Meson Spectroscopy:

Study the meson spectrum and search for states other than conventional quark-antiquark pairs. For example *multiquarks*, *glueballs* and *hybrids*.

Introduction

The light meson spectrum

Hybrids:

- Low mass states with spin exotic quantum numbers $J^{PC} = 1^{-+}$ predicted
- Reported candidates:
 - $\pi_1(1400)$: VES, E852, Chrystal Barrel
 - $\pi_1(1600)$: E852, VES
 - $\pi_{I}(2000)$: E852
- Resonance interpretations still disputed

Glueballs:

- Lowest predicted states have the same quantum numbers as ordinary mesons → mixing.
- Candidates: $f_o(1370)$, $f_o(1500)$, $f_o(1700)$ with $J^{PC} = 0^{++}$ and $\eta(1405)$ with $J^{PC} = 0^{-+}$, but their interpretations are still disputed.

The COMPASS experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy Two-fold physics programme: Spin structure studies with muon beam and hadron spectroscopy with hadron beam (this talk)

Hadron programme history:

2004: pilot run (4 days) with pion beam on Pb target
2008-2009: production run, positive and negative hadron beams, various targets
2012: Start of COMPASS II hadron programme

The COMPASS experiment

Two-stage magnetic spectrometer:

Beam: 190 GeV positive (p, π^+ , K⁺) or negative (π^- , K⁻) hadron beam. **Targets**: Liquid H₂, Nuclear targets (Pb, Ni, W). **Final states**: charged (π^\pm , p, ...), neutral (π° , η , η' , ...), kaonic (K[±], K_S, ...)

The COMPASS experiment

Production mechanisms:

Central production:

Diffractive dissociation:

Coulomb production:

- Gluon-rich environment
- Rapidity gap

- Spin-exotic mesons
- Forward kinematics

Test of ChPT Radiative widths

Diffractive Dissociation of pions: $\pi^- Pb \rightarrow \pi^-\pi^+\pi^- Pb$

Partial Wave Analysis (PWA) Model:

t-channel Reggeon exchange
Isobar model

Quantum numbers of X:

Spin J, parity P, charge conjugation C, spin projection M reflectivity ε

OMPA

Data from 2004
190 GeV/c π⁻ on Pb
Momentum transfer 0.1 < t' < 1 (GeV/c)² → quasi-free nucleons in Pb

$\pi^- Pb \rightarrow \pi^-\pi^+\pi^- Pb$

Significant spin exotic J^{PC} = 1⁻⁺ wave [1]

- $M = 1660 \pm 10^{+0}_{-64} \text{ MeV/c}^2$ $\Gamma = 269 \pm 21^{+42}_{-64} \text{ MeV/c}^2$
- Consistent with $\pi_1(1600)$ seen by E852 and VES
- Negligible leakage from other waves

[1] COMPASS, Phys. Rev. Lett. 104 (2010) 241803

Diffractive dissociation of pions: $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

- •Data from 2008
- 190 GeV/c π on liquid hydrogen
- 24M events
- Enhancement near the π₁(1600) mass in the 1⁻⁺ wave, phase motion w.r.t 1⁺⁺
- Leakage studies, background (Deck) and mass dependent fit necessary for definite conclusions.

Comparison between $\pi^{-} p \rightarrow \pi^{-}\pi^{+}\pi^{-} p$ and $\pi^{-} p \rightarrow \pi^{0}\pi^{0}\pi^{-} p$

I^G J^{PC} M[∈] = 1-(4++)1+ rho pi G

COMPASS 2008

- Data from 2008
- Valuable consistency check
- Relative amplitudes known from symmetry
- Different parts of the detector are used in the two channels.

Diffractive dissociation of pions: $\pi^- p \rightarrow \pi^- \eta$

Mass dependent fit

• a₂(1320) dominating wave
• Difficult to draw conslusions yet about the P-wave (spin exotic 1⁻⁺)

Diffractive dissociation of pions: $\pi^{-} p \rightarrow \pi^{-} \eta'$

Mass dependent fit

Comparison between $\eta'\pi^-$ and $\eta\pi^-$

Remarkable difference in the P-wave case, as expected for $q\overline{q}g$ states.

Diffractive dissociation of pions: $\pi^- Pb \rightarrow \pi^-\pi^+\pi^-\pi^+\pi^- Pb$

The large data sample from COMPASS and the advanced analysis tools developed within COMPASS enables studies of complicated final states, e.g. 5 –body PWA.

Diffractive dissociation of pions: $\pi^- Pb \rightarrow \pi^-\pi^+\pi^-\pi^+\pi^- Pb$

First mass-dependent fit:

- Known states: $\pi_2(1670)$; $\pi(1800)$ observed
- Elusive $\pi_2(1880)$ fitted in $a_1 \rho$ and $a_2 \rho$
- Fit with two 1++ resonances
- Possible $\pi_2(2200)$ signal

Physics with proton beam: central pp collisions

- Two-particle exchange where beam proton and target stays intact
- •Characterised by two rapidity/Feynman x_F gaps
- At the COMPASS beam energy (191 GeV), central production is expected to be dominated by Pomeron-Pomeron exchange
- Pomeron-Pomeron collisions is a glue-rich process where glueballs should have a good chance to be produced

Physics with proton beam: central pp collisions

PWA recently started for the central $pp \rightarrow pp \pi^+ \pi^-$ channel.

Many other channels available.

Physics with proton beam: vector meson production

The OZI (Okubo-Zweig-Iizuka) rule

• states that processes with disconnected quark lines are supressed.

• explains *e.g.* Why certain meson decay channels are preferred to others

- gives a quantitative prediction of how the $\omega\,$ and $\varphi\, cross\, sections$ are related, using their well-known deviation from ideal mixing

$$(AB \rightarrow \phi X)/(AB \rightarrow \omega X) = 4.2 \cdot 10^{-3}$$

where A, B and X are non-strange hadrons.

• By measuring the cross sectio ratio we can learn more about the production mechanism.

Physics with proton beam: vector meson production

- COMPASS has measured the cross section ratio $\sigma(pp\phi)/\sigma(pp\omega)$ in 3 regions of x_F of the fast proton.
- The OZI violation is between a factor of 4.5 and 3.
- When the major part of the $p\omega$ resonant part is removed from the data, the OZI violation factor is between a 9 and 4.5.

Physics with proton beam: vector meson production

The $M(p\omega)$ spectrum show many interesting structures. PWA needed to identify them.

Coulomb production of pions

Low momentum transfer:

Contribution from photon exchange

Low masses:

- Only pions produced \rightarrow ChPT test.
- Results compared to LO ChPT predictions [EPJA 36 (2008) 181.]

Other hadron physics topics in COMPASS

- Baryon spectroscopy
- Meson spectroscopy with kaon beam
- Kaonic final states
- Pion polarizabilities (test of Chiral Perturbation Theory)

Summary

- Evidence for QCD allowed states like multiquarks, glueballs and hybrids still not beyond doubt.
- COMPASS has excellent potential to contribute:
 - Access to 3 different production mechanisms
 - Different beams and targets can be used
 - Measures charged and neutral final states
- Spin exotic wave $\pi_1(1600)$ in Pb target data from 2004 pilot run.
- Similar structure in proton target data from 2008.
- P-wave near the $\pi_1(1600)$ mass also observed in the $\pi\eta$ ' final state.
- The difference in strength of the P-wave in $\pi\eta'$ compared to the $\pi\eta$ final state indicate a possible qqg interpretation.
- First results from the complicated 5π final state PWA.
- Great potential also in *pp* central production data.
- Vector meson production studies provides a test of the OZI rule which gives deeper insight into the production mechanism.
- Interesting structures in the $p\pi$, pK and $p\omega$ spectra.
- COMPASS low t' data provide test of ChPT first results agree with LO prediction.

