COMPASS results on Collins and Sivers asymmetries for charged hadrons

Anna Martin Trieste University & INFN on behalf of the COMPASS Collaboration

SPIN2012 JINR, Dubna

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

fixed target experiment at the CERN SPS

physics programme:

hadron spectroscopy (p, π , K)

- light mesons, glue-balls, exotic mesons
- polarisability of pion and kaon

nucleon structure (µ)

- longitudinal spin structure
- transverse momentum and transverse spin structure

this session

the transverse spin and transverse momentum structure of the nucleon

the structure of the nucleon

three distribution functions are necessary to describe the quark structure of the nucleon at LO in the collinear case

the structure of the nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order other 6 TMD PDFs are needed for a full description of the nucleon structure

SIDIS gives access to all of them

SPIN2012 JINR, Dubna

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xy\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right\} \text{ unpol target} \\ &\left(+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\right) \rightarrow \text{ pol target} \\ &\left(+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right]+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]\right) \\ &\left(|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right] \\ &\left(+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\right) \\ &\left(+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right) \\ &\left(+\sqrt{2\varepsilon(1+\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\right) \\ &\left(+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right) \\ &\left(+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right) \\ &\left(18 \text{ structure functions}\right) \end{aligned}$$

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}} F_{UU}^{\cos\phi_{h}} \right. \\ \left. + \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{UU}^{\sin\phi_{h}} \\ \left. + \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}} F_{UL}^{\sin\phi_{h}} \right\} \\ \left. + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h})} F_{UL}^{\sin\phi_{h}} \right] + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} \right] \\ \left. + \left| S_{\perp} \right| \left[\frac{f_{1T}^{+}D}{\sin(\phi_{h}-\phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})} \right] \\ \left. + \varepsilon\sin(\phi_{h}+\phi_{S}) F_{UT}^{\sin(\phi_{h}+\phi_{S})} + \varepsilon \sin(3\phi_{h}-\phi_{S})} \right] \\ \left. + \left| S_{\perp} \right| \left[\frac{f_{1T}^{+}D}{\sqrt{2\varepsilon(1+\varepsilon)}} \sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_{h}-\phi_{S})} F_{UT}^{\sin(2\phi_{h}-\phi_{S})} \right] \\ \left. + \left| S_{\perp} \right| \left[\sqrt{1-\varepsilon^{2}}\cos\phi_{S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})} \right] \\ \left. + \left| S_{\perp} \right| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})} F_{LT}^{\cos(\phi_{h}-\phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}} \right] \\ \left. + \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})} F_{LT}^{\cos(2\phi_{h}-\phi_{S})} \right] \right\}, \end{split}$$

$$\frac{d\sigma}{dx \, dy \, d\psi \, dz \, d\phi_h \, dP_{h\perp}^2} =$$

$$\frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)\cos\phi_h} r_{UU}^{\cos\phi_h} \right\} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)\sin\phi_h} r_{LU}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos(2\phi_h)} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)\sin\phi_h} r_{LU}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\cos(2\phi_h)} + \varepsilon \cos(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \cos(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin\phi_h} + \varepsilon \sin(\phi_h + \phi_s) F_{UT}^{\sin(\phi_h + \phi_s)} + \varepsilon \left\{ \begin{array}{c} \mathbf{SIDIS} \\ \mathbf{s} \ \text{allows to disentangle the effects related to the different TMD PDFs and to access all of them \\ \mathbf{s} \ \text{by identifying the final state hadrons and using } \\ \mathbf{s} \ \text{very powerful tool} + \sqrt{2\varepsilon(1+\varepsilon)\cos\phi_h} + \sqrt{2\varepsilon(1+\varepsilon)\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)\cos\phi_h} F_{LT}^{\cos(\phi_h - \phi_h)} + \sqrt{2\varepsilon(1-\varepsilon)\cos\phi_h} F_{LT}^{\cos(\phi_h - \phi_h)} \right] \right\},$$

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ &+ \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin2\phi_{h}} \right] + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\ &+ |S_{\perp}| \left[\frac{\sin(\phi_{h} - \phi_{S})}{F_{UT}^{in}} \left(F_{UT,T}^{in} + \varepsilon\sin(2\phi_{h} - \phi_{S})\right) \right] \\ &+ \varepsilon \frac{\sin(\phi_{h} + \phi_{S})}{F_{UT}^{in}} F_{UT,L}^{in(\phi_{h} - \phi_{S})} + \varepsilon\sin(3\phi_{h} - \phi_{S}) F_{UT}^{in(3\phi_{h} - \phi_{S})} \\ & Collins \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{in\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h} - \phi_{S}) F_{UT}^{in(2\phi_{h} - \phi_{S})} \right] \\ &+ |S_{\perp}|\lambda_{e} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{LT}^{\cos\phi_{S}} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \bigg\}, \end{split}$$

Collins asymmetry in SIDIS

amplitude of the $\sin \Phi_C$ modulation $N_h^{\pm}(\Phi_C) = N_h^0 \Big[1 \pm P_T \cdot D_{NN} \cdot A_{Coll} \cdot \sin \Phi_C \Big]$ in the azimuthal distribution of the final state hadrons

transversity "Collins FF"

$$A_{Coll} \approx \frac{\sum_{q} e_{q}^{2} (h_{1q}) \otimes (H_{1q}^{\perp h})}{\sum_{q} e_{q}^{2} (f_{1q} \otimes D_{1q}^{h})}$$
BELLE, BaBar

today the most promising way to access transversity, together with 2h asymmetry (→ C. Braun)

Sivers asymmetry

amplitude of the $\sin \Phi_S$ modulation in the azimuthal distribution of the final state hadrons

$$\Phi_{S} = \phi_{h} - \phi_{s}$$

$$N_{h}^{\pm}(\Phi_{S}) = N_{h}^{0} \left[1 \pm P_{T} \cdot A_{Siv} \cdot \sin \Phi_{S} \right]$$

Sivers PDF
$$A_{Siv} \approx \frac{\sum_{q} e_{q}^{2} \left(f_{1T}^{\perp q} \otimes D_{1q}^{h} \right)}{\sum_{q} e_{q}^{2} \left(f_{1}^{\perp q} \otimes D_{1q}^{h} \right)}$$

the **COMPASS** experiment

COMPASS

with transversely polarised targets

2002, 2003, 2004: 160 GeV μ beam, deuteron (⁶LiD) target

2007, 2010: 160 GeV μ beam, proton (NH₃) target

COMPASS spectrometer

designed to

- use high energy beams
- have large angular acceptance
- cover a broad kinematical range

two stages spectrometer

• Large Angle Spectrometer (SM1)

COMPA

Small Angle Spectrometer (SM2)

COMPASS spectrometer

COMP_{ASS}

SPIN2012 JINR, Dubna

Anna Martin

nuclear effects (160 GeV)

SPIN2012 JINR, Dubna

SIDIS event selection

JINR, Dubna

COMPASS 2010 proton data $\times 10^3$ **DIS cuts:** Q² > 1 (GeV/c)² dN/dW0.1 < y < 0.9800 $W > 5 GeV/c^2$ 600 hadron selection: $p_t^h > 0.1 \text{ GeV/c}$ 400 z > 0.2 200 0 5 10 15 20 0 $W(GeV/c^2)$ COMPASS 2010 proton data COMPASS 2010 proton data $\times 10^{3}$ $z_{N/N}^{2000}$ $dN/dp_{_{T}}^{h}$ 10^{6} 10 10^{4} 10^{3} 5000 10^{2} 10 1 3 2 0 1 0 $p_{t}^{h}(GeV/c)$ 0.2 0.4 0.6 0.8 0 **SPIN2012**

OMPA

Collins and Sivers asymmetries: results

with transversely polarised targets

2002, 2003, 2004:

160 GeV μ beam, deuteron (⁶LiD) target

published results for charged hadrons, kaons and charged pions

NPB765 (2007) 31, PLB 673 (2009) 127

2007, 2010:

160 GeV μ beam, proton (NH₃) target

charged hadrons 2007: published PLB 692 (2010) 240 2010: sent for publication arXiv:1205.5121 / 2

charged pions and charged kaons 2007: preliminary results (G. Pesaro, SPIN2010) 2010: preliminary results NEW

charged hadrons 2010 data

COMPASS

charged hadrons 2010 vs 2007 data

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data

charged hadrons 2010 data

clear evidence for a positive signal for h⁺, which extends to small x

charged hadrons 2010 vs 2007 data

nice confirmation, with much higher precision

charged hadrons, 2010 data - Q² evolution

comparison with

S. M. Aybat, A. Prokudin and T. C. Rogers calculations PRL 108 (2012) 242003

M. Anselmino, M. Boglione, S. Melis PRD86 (2012) 014028

charged hadrons, 2010 data and Q² evolution

M. Anselmino, M. Boglione, S. Melis PRD86 (2012) 014028

Collins and Sivers asymmetries on proton for charged pions and kaons NEW

NEW

charged pions and kaons

2010 data

COMPASS

2010 data, charged pions, x > 0.032

JINR, Dubna

2010 data, charged kaons, x > 0.032

charged pions and kaons

2010 data

SPIN2012 JINR, Dubna

Anna Martin

COMPASS

2010 data

COMPASS

2010 data, charged pions, x > 0.032

2010 data, charged kaons, x > 0.032

more on Collins and Sivers asymmetries

thanks to the high beam momentum, we have enlarged the usual COMPASS phase space still remaining in the DIS CF regime

• low $z \rightarrow (0.1, 0.2)$ (0.2, 0.3) (0.3, 1.0)

for charged and identified hadrons

СОМР

more on Collins and Sivers asymmetries

thanks to the high beam momentum, we have enlarged the usual COMPASS phase still remaining in the DIS CF regime

- low $z \rightarrow (0.1, 0.2)$ (0.2, 0.3) (0.3, 1.0)
- low $y \rightarrow (0.05, 0.1) (0.1, 0.2) (0.2, 0.9)$ for charged and identified hadrons

COMPAS

conclusion

COMPASS has produced results on the Collins and Sivers asymmtries on d and on p for charged and identified hadrons using a 160 GeV muon beam

clear signals on p have been measured, with interesting kinematical dependences

new inputs to study Q^2 evolution for the extraction of transversity and Sivers PDFs

next: multidimensional analysis (x, Q^2, z, p_t) using p data

on a longer time scale:

possible measurements with transversely polarised p at 100 GeV to further investigate Q^2 evolution possible measurements with transversely polarised d to improve the extraction of u and d quarks PDFs (EPSG)

