Measurement of TMD observables at COMPASS

Anna Martin

Trieste University & INFN on behalf of the COMPASS Collaboration

QCD Evolution Workshop Jefferson Lab, May 2012

OUTLINE

- the COMPASS experiment
- COMPASS results on TMDs from SIDIS
 - unpolarised d target
 - longitudinally polarised d target
 - transversely polarised d and p targets
 - Collins and Sivers asymmetries
- conclusions and outlook

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

COMPASS spectrometer

- high energy beams
- large angular acceptance
- broad kinematical range

two stages spectrometer Large Angle Spectrometer (SM1) Small Angle Spectrometer (SM2)

COMPA

COMPASS spectrometer

- high energy beams •
- large angular acceptance •
- broad kinematical range •

two stages spectrometer Large Angle Spectrometer (SM1) Small Angle Spectrometer (SM2)

COMPA

COMPASS spectrometer

COMP_ASS

nuclear effects (160 GeV)

COMPASS data taking

2006	SIDIS with L	polarised deuteron target	160 GeV μ	
	2005	CERN shutdown		
2002 2003 2004	SIDIS with L&T	polarised deuteron target	160 GeV μ	ΔG

2007	SIDIS with L & T	polarised proton target	160 GeV μ
	2008 / 2009	hadron spectroscopy	
2010	SIDIS with T	polarised proton target	160 GeV μ
2011	SIDIS with L	polarised proton target	190 GeV μ

2012 Primakoff / DVCS test

COMPAS

The Structure of the Nucleon

three distribution functions are necessary to describe the quark structure of the nucleon at LO in the collinear case

transversity PDF

chiral odd

can be measured in SIDIS off transversely polarised nucleons Collins effect: LR asymmetry in the hadronisation of transversely polarised quarks

The Structure of the Nucleon

taking into account the quark intrinsic transverse momentum k_T , at leading order 8 TMD PDFs are needed for a full description of the nucleon structure

SIDIS gives access to all of them

s' | /

↑^µ

SIDIS cross-section - unpolarised targets

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)\cos\phi_h}F_{UU}^{\cos\phi_h} + \varepsilon \overline{\cos(2\phi_h)}F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\overline{\sin\phi_h}F_{LU}^{\sin\phi_h} \right\}$$

$$\frac{1}{1} \frac{1}{W} \frac{1}{W}$$

Boer-Mulders DF x Collins FF + Cahn effect (twist 4, 1/Q²)

$$F_{UU}^{\cos\phi_{h}} = \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot k_{T}}{M_{h}} \left(\underbrace{rhH_{1}^{\perp}}_{M} + \frac{M_{h}}{M} f_{1} \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{h} \cdot p_{T}}{M} \left(xf^{\perp}D_{1} + \frac{M_{h}}{M} h_{1}^{\perp} \frac{\tilde{H}}{z} \right) \right]$$

$$xh = x\tilde{h} + \frac{p_{T}^{2}}{M^{2}} h_{1}^{\perp} \qquad xf^{\perp} = x\tilde{f}^{\perp} + f_{1} F_{UU}^{\cos\phi_{h}} \approx \frac{2M}{Q} C \left[-\frac{\hat{h} \cdot p_{T}}{M} f_{1}D_{1} \right]$$

$$\Rightarrow < k_{T}^{2} >$$

Jefferson Lab, May 15, 2012

multidimensional analysis

new: QNP2012

x	P_T^h	z
0.003 - 0.012	0.1 - 0.3	0.2 - 0.25
0.012 - 0.02	0.3 - 0.5	0.25 - 0.32
0.02 - 0.038	0.5 - 0.64	0.32 - 0.40
0.038 - 0.13	0.64 - 1.0	0.40 - 0.55

different for h⁺ and h⁻

strong dependence on x, z, P_T^h

$\cos\phi$ modulation

$\cos 2\phi$ modulation

hadron multiplicity vs transverse momentum of the final state hadrons

as well as the $\cos \phi_h$ asymmetry, these data can be used to extract the intrinsic transverse momentum

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ &+ h_{I}^{\perp} H_{I}^{\perp} \\ + \varepsilon \cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{e} \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}(\sin\phi_{h})F_{UL}^{\sin\phi_{h}} + \varepsilon (\sin(2\phi_{h}))F_{UL}^{\sin2\phi_{h}} \right] + S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}(\cos\phi_{h})F_{LL}^{\cos\phi_{h}} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \\ &+ \varepsilon \sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right] \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_{S} F_{UT}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} \cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \bigg\}, \end{split}$$

longitudinally polarised target

 $F_{UL}^{sin2\phi_h} \propto h_{1L}^{\perp} \otimes H_1^{\perp}$

published results from 2002-2004 deuteron data

"worm gear" PDF ⊗ Collins FF

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{a^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ h_{L}^{T}H_{L}^{+} \\ + \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{\epsilon}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin2\phi_{h}} \right] + S_{\parallel}\lambda_{\epsilon} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\ &+ \left| S_{\perp} \right| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \\ &+ \varepsilon\sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon\sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \\ &+ \left| S_{\perp} \right| \lambda_{\epsilon} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \right] \\ &+ \left| S_{\perp} \right| \lambda_{\epsilon} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \right] \\ &+ \left| S_{\perp} \right| \lambda_{\epsilon} \left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} \right] \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| 2\varepsilon(1-\varepsilon)\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right|$$

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+\lambda_{e}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{LU}^{\sin\phi_{h}}\\ &+S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}}+\varepsilon\sin(2\phi_{h})F_{UL}^{\sin2\phi_{h}}\right]+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}F_{LL}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]\\ &+\left|S_{\perp}\right|\left[\frac{\sin(\phi_{h}-\phi_{S})}{UTT}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT}^{\sin(\phi_{h}-\phi_{S})}\right)\\ &+\varepsilon(\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\\ &+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\\ &+\left|S_{\perp}\right|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h}-\phi_{S})F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S}F_{LT}^{\cos\phi_{S}}\\ &+\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h}-\phi_{S})F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\right\}, \end{split}$$

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ &+ \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{\varepsilon}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin2\phi_{h}} \right] + S_{\parallel}\lambda_{c} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\ &+ \left| S_{\perp} \right| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \\ &+ \varepsilon\sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \sin(3\phi_{h} - \phi_{S}) \right] \\ &+ \left| \sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_{S} F_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_{h} - \phi_{S})} F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \right| \\ &+ \left| S_{\perp} \right| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}} (\cos(\phi_{h} - \phi_{S})) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)} (\cos\phi_{S}) F_{UT}^{\cos\phi_{S}} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)} (\cos(2\phi_{h} - \phi_{S})) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \Big\}, \end{split}$$

transversely polarised target

Jefferson Lab, May 15, 2012

Anna Martin

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} \\ &+ \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} + \lambda_{\varepsilon}\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin2\phi_{h}} \right] + S_{\parallel}\lambda_{c} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_{h} - \phi_{S}) \left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})} \right) \\ &+ \varepsilon\sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} + \varepsilon \left(\sin(3\phi_{h} - \phi_{S}) \right) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \right] \\ &+ \sqrt{2\varepsilon(1+\varepsilon)} \left[\sin\phi_{S} r_{UT}^{\sin\phi_{S}} + \sqrt{2\varepsilon(1+\varepsilon)} \left(\sin(2\phi_{h} - \phi_{S}) \right) F_{UT}^{\sin(2\phi_{h} - \phi_{S})} \right] \\ &+ \left| S_{\perp} \right| \lambda_{e} \left[\sqrt{1-\varepsilon^{2}} \cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_{S} F_{LT}^{\cos\phi_{S}} \right] \\ &+ \left| \sqrt{2\varepsilon(1-\varepsilon)} \left(\cos(2\phi_{h} - \phi_{S}) \right) F_{LT}^{\cos(2\phi_{h} - \phi_{S})} \right] \right\}, \end{aligned}$$

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} \\ &+ \varepsilon\cos(2\phi_h) F_{UU}^{\cos2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h) F_{UL}^{\sin2\phi_h} \right] + S_{\parallel}\lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ \left| S_{\perp} \right| \left[\frac{\sin(\phi_h - \phi_S)}{\log(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \\ &+ \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \right\}, \end{aligned}$$

Collins and Sivers asymmetries on deuteron

first results in 2005 compatible with zero

final results on deuteron 2002-2004 data NPB 765 (2007) 31, PLB 673 (2009) 127

COMPASS

2007 data: final results published

2010 data: results shown at Transversity2011

2 papers with all the Collins and Sivers results from 2010 data and the correlation between Collins and Sivers asymmetries and asymmetries measured vs x, z, P_T^h being sent for publication

SIDIS event selection

DIS cuts: Q² > 1 (GeV/c)² 0.1 < y < 0.9 W > 5 GeV/c²

hadron selection: $p_t^h > 0.1 \text{ GeV/c}$ z > 0.2

Collins asymmetry 2010 data

 $\sigma_{\text{syst}} \sim 0.5 \sigma_{\text{stat}}$

nice confirmation of the 2007 results, with better statistics

Jefferson Lab, May 15, 2012

OMPASS

COMPASS

x > 0.032 region

Collins asymmetry 2010 data

x > 0.032 region - comparison with HERMES results

nice agreement

Jefferson Lab, May 15, 2012

Collins asymmetry 2010 data

- comparison with HERMES results

nice agreement

Jefferson Lab, May 15, 2012

x > 0.032 region

same strength: a very important, not obvious result!

indication for not a higher twist effect, no strong Q² dependence of the Collins FF

Collins asymmetry

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data

Collins asymmetry

M. Anselmino et al., Nucl. Phys. Proc. Suppl. 2009

fit to HERMES p, COMPASS d, Belle e+e- data

Two hadron asymmetries

arXiv:1202.6150v1 [hep-ex] 28 Feb 2012

accepted for publication on Phys. Lett. B

Jefferson Lab, May 15, 2012

new results from 2010 run

these data and the deuteron data have been used for a first extraction of the u and d quark transversity PDF [C. Elia, PhD th., Trieste Univ.]

х

Phys.Rev.Lett.107:012001,2011

102

 10^{1}

х

10⁻²

 10^{1}

0.4

0.2

0

-0.2

Sivers asymmetry

final COMPASS results from 2007 proton data

evidence for a positive signal for h⁺, which extends to small x, in the region not measured before

systematic errors $h^- \sim 0.5 \sigma_{stat}$ $h^+ \sim 0.8 \sigma_{stat}$ plus a scale (abs) uncertainty of ± 0.01

Sivers asymmetry

good agreements

- same sign
- COMPASS results in the overlap region smaller by a factor ~ 2

higher precision measurements needed soon → 2010 run

the Sivers asymmetry 2010 vs 2007 data

2010 systematic errors

 $h^- \sim 0.5 \sigma_{stat}$ $h^+ \sim 0.5 \sigma_{stat}$

the Sivers asymmetry 2010 data

x > 0.032 region - comparison with HERMES results

comparison with

S. M. Aybat, A. Prokudin and T. C. Rogers calculations arXiv:1112.4423

→ M. Anselmino, M. Boglione, S. Melis arXiv:1204.1239

thanks to the high beam momentum, we have enlarged the usual COMPASS phase space still remaining in the DIS CF regime

- low z
- low y

Transversity2011

thanks to the high beam momentum, we have enlarged the usual COMPASS phase space still remaining in the DIS CF regime

0.1 < z < 0.2 - Collins asymmetry

COMPASS 2010 p data

asymmetries somewhat smaller for 0.1<z<0.2 sample

COMPASS 2010 p data

clear decrease of the asymmetries for the 0.1<z<0.2 sample

COMPASS 2010 proton data

low y

0.05 < y < 0.10 sample

COMPASS 2010 proton data $Q^2 (GeV/c)^2$ 10^2 10 preliminar 10-2 10-1 1 **COMPASS** х

0.05 < y < 0.10 - Collins asymmetry

COMPASS 2010 p data

a small effect is visible for h+

0.05 < y < 0.10 - Sivers asymmetry

a clear enhancement of the asymmetry for h+ is observed

in agreement with Q² evolution?

Anna Martin

COMPASS

summary

COMPASS has produced many important results on SIDIS transverse momentum and transverse spin asymmetries

• for unpolarised deuteron,

the $\cos\phi$ and the $\cos2\phi$ have been measured to be different from zero and have a strong dependence on kinematic variables

polarised deuteron:

all the azimuthal spin asymmetries have been found to be compatible with zero

transversely polarised proton:

all the azimuthal spin asymmetries have been found to be compatible with zero, but:

h⁺ and h⁻ Collins asymmetry in the valence region (opposite sign)

no strong dependence on Q^2 / y (LT)

- di-hadron asymmetry ~ Collins asymmetry
- h⁺ Sivers asymmetry over all the x range

dependence on Q^2 / y (Q^2 evolution?)

high precision measurements exist

future

from existing data COMPASS will produced new results on SIDIS transverse momentum and transverse spin asymmetries

unpolarised deuteron: dependence on the kinematical variables of cosφ and cos2φ asymmetries multiplicities

Iongitudinally polarised proton and deuteron:

• precise measurement of all the azimuthal asymmetries

• transversely polarised proton:

- precise measurement of all the other azimuthal asymmetries
- further studies of the dependence on the different kinematical variables of Collins and Sivers asymmetries (multidimensional analysis)
- particle identification

future

on a longer scale, new measurements:

COMPASS phase 2

• Drell-Yan in π - \mathbf{p}^{\uparrow}

2014

- Deeply Virtual Compton Scattering with
 - LH target

2015-2016

- 160 GeV muons
- to access GPDs

in parallel: precise measurements of SIDIS off unpolarised protons

in waiting for the collider, CERN is the only lab where to measure high energy SIDIS, in a phase space complementary to that of JLab12 experiments:

it would be important to make a few urgent measurements e.g. SIDIS off transversely polarized deuterons