The COMPASS Hadron Program

Florian Haas

Physik Department E18 - Technische Universität München

Conference on the Intersections of Particle and Nuclear Physics 2012

supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of the Universe, BMBF

From QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

From QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

Brom QCD to Hadron Physics

[arXiv:hep-ex/0606035v2]

Brom QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?

Brom QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?
- Models and theories
 - Quark model
 - Bag model
 - Flux tube model
 - χ_{PT} for slow pions
 - Lattice QCD

Dudek et al. [arXiv:1106.5515v1]

Brom QCD to Hadron Physics

- Confinement
- Hadrons relevant DOF
- Dynamics of excited states?
- Models and theories
 - Quark model
 - Bag model
 - Flux tube model
 - χ_{PT} for slow pions
 - Lattice QCD

The COMPASS Hadron Setup

20 1

Spectrometer and Hadron Beam

Overview

- COmmon Muon and Proton Apparatus for Structure and Spectroscopy¹
- Located at CERN SPS
- M2-beamline: high intensity π/K/p beam up to 230GeV/c
- data taking since 2002 \rightarrow up to 1 PByte/year

CEDAR NOT

Apparatus

- Two-stage magnetic spectrometer
- Large acceptance charged tracking
- Calorimetry (ECAL/HCAL)
- Kaon PID (CEDARs/RICH)

¹ [Nucl. Instr. and Meth. A 577 (2007) 455]

Light Meson Spectroscopy

 $\pi^{-}\pi^{-}\pi^{+}$ and $\pi^{-}\pi^{0}\pi^{0}$ $\eta\pi^{-}$ and $\eta'\pi^{-}$ $\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ Status of the $J^{PC} = 1^{-+}$ Spin Exotic Partial Wave $\pi\pi$ Production at Central Rapidities

Tests of Chiral Dynamics 3π Primakoff Production

Conclusions and Outlook Pion Polarizability

Light Meson Spectroscopy Isovector Mesons Diffractive Pion Dissociation

- 190 GeV/c hadron beam \rightarrow 96% π^- , 3.5% K^- , 0.5% \overline{p}
- 40cm liquid hydrogen target

- $0.1 \text{GeV}^2/\text{c}^2 < t' < 1.0 \text{GeV}^2/\text{c}^2$
- ~50M exclusive events (2008)

Partial Wave Analysis - Formalism

• Fit in mass bins (Decomposition in Partial Waves)

$$\mathcal{I}(\tau, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f(t') \psi_i^{\epsilon}(\tau) \right|^2$$

- *T*: Transition amplitude $\in \mathbb{C}$ (to be fitted)
- f(t'): t'-dependence $\in \mathbb{R}$ (or t' binned analysis)
- ψ : Decay amplitude $\in \mathbb{C}(\text{Helicity formalism, reflectivity basis})$

Partial Wave Analysis - Formalism

Technische Universität München

• Fit in mass bins (Decomposition in Partial Waves)

$$\mathcal{I}(\tau, t') = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f(t') \psi_i^{\epsilon}(\tau) \right|^2$$

- *T*: Transition amplitude $\in \mathbb{C}$ (to be fitted)
- f(t'): t'-dependence $\in \mathbb{R}$ (or t' binned analysis)
- ψ : Decay amplitude $\in \mathbb{C}(\text{Helicity formalism, reflectivity basis})$

Dalitz Plot $\pi_2(1670)$ region

Partial Wave Analysis - Formalism

• Fit in mass bins (Decomposition in Partial Waves)

$$\mathcal{I}(\tau, t') = \sum_{\epsilon = \pm 1} \sum_{r=1}^{N_r} \left| \sum_i T_{ir}^{\epsilon} f(t') \psi_i^{\epsilon}(\tau) \right|^2$$

- T: Transition amplitude $\in \mathbb{C}$ (to be fitted)
- f(t'): t'-dependence $\in \mathbb{R}$ (or t' binned analysis)
- ψ : Decay amplitude $\in \mathbb{C}(\text{Helicity formalism, reflectivity basis})$
- χ^2 fit of the spin-density matrix (Extraction of Resonance Parameters)
 - Parametrization of spin-density matrix elements, $\sum T_{ir}^{\epsilon} T_{jr}^{\epsilon*}(m_x)$
 - Takes into account interference terms
 - Coherent background for some waves

Partial Wave Analysis - Formalism

Florian

Technische Universität München

Florian Haas - COMPASS Hadron

 $\pi^- p o \pi^- \pi^- \pi^+ p$ (2008) Additional Waves

Technische Universität München

Comparison $\pi^- p \rightarrow \pi^- \pi^- \pi^+ p$ vs $\pi^- p \rightarrow \pi^- \pi^0 \pi^0 p$ (2008)

Technische Universität München

1.2 1.4 1.6 2.2 2.4

1.8 2 Mass (GeV/c²)

0.6 0.8

Comparison $\pi^- \rho \rightarrow \pi^- \pi^- \pi^+ \rho$ vs $\pi^- \rho \rightarrow \pi^- \pi^0 \pi^0 \rho$ (2008)

Technische Universität München

$\pi^- + p \rightarrow \eta \pi + p$ $\pi^- + p \rightarrow \eta' \pi + p$

Comparison
$$\pi^- + p \rightarrow \eta' \pi + p$$
 vs $\pi^- + p \rightarrow \eta \pi + p$ (2008)
Scaling: Adjustment for branching and phase space

Exploring the light Meson Frontier

$\pi^- + Pb \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- + Pb$

$\overline{\langle \! \otimes \! \pi^- Pb \! \! \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- Pb}$ (2004)

 5π Resonances — Extracted Parameters Summary of Resonance Parameters

Exotic Signatures

- Isospin exotics: "forbidden" decays
- Spin exotics: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}...$ forbidden in $q\bar{q}$
- $\bullet\,$ Proof of existence \rightarrow strong hint for physics beyond the quark model

COMPASS (2004): π^{-} Pb $\rightarrow \pi^{-}\pi^{+}\pi^{-}$ Pb \sim 400 000 events

Exotic Signatures

- Isospin exotics: "forbidden" decays
- Spin exotics: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}...$ forbidden in $q\bar{q}$
- $\bullet\,$ Proof of existence \rightarrow strong hint for physics beyond the quark model

COMPASS (2004): π^{-} Pb $\rightarrow \pi^{-}\pi^{+}\pi^{-}$ Pb \sim 400 000 events

Spin Exotic $\pi_1(1600)$

- Significant 1⁻⁺ amplitude consistent with resonance at $\sim 1.7\,{\rm GeV/c^2}$
- No leakage observed (< 5%)
- BW for $\pi_1(1600)$ + background: $M = (1.660 \pm 0.010 \stackrel{+0.000}{_{-0.064}}) \text{ GeV/c}^2$ $\Gamma = (0.269 \pm 0.021 \stackrel{+0.042}{_{-0.064}}) \text{ GeV/c}^2$

Intensity (statistical errors only)

Phase motion vs $1^{++}\rho\pi$ *S*-wave

Comparison
$$\pi^- p \to \pi^- \pi^- \pi^+ p$$
 vs $\pi^- p \to \pi^- \pi^0 \pi^0 p$ (2008)
The spin exotic $J^{PC} = 1^{-+} \rho \pi P$ -wave

m

Comparison
$$\pi^- + p \rightarrow \eta' \pi + p$$
 vs $\pi^- + p \rightarrow \eta \pi + p$ (2008)
Scaling: Adjustment for branching and phase space

Technische Universität München

Systematic Improvements of the Model WORK IN PROGRESS

- Exploit full *t*'-dependence
 - ightarrow 2D partial-wave decomposition in small *m* and *t'* bins
- Model non-resonant contributions (Deck effect)
- Semi-model-independent isobar parameterizations \rightarrow extract $(\pi\pi)_{S-\text{wave}}$ from 3π data
- Improve fitting procedures
 - thresholds
 - objective model selection (genetic algorithm)

- Diffractive production of baryon resonances
- Kinematic overlap between production mechanisms \rightarrow mass dependence

 $pp \rightarrow p_{\text{fast}} \pi^+ \pi^- + p_{\text{slow}}$ (2008) Central Production – $\pi^+ \pi^-$ System

 $x_{\rm Feynman} = 2p_l/\sqrt{s}$

Tests of Chiral Dynamics

Primakoff 3π Spectral Function from $\chi PT_{Technische Universität Münche PRL 108, 192001 (2012)$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, $t' < 0.001 (\text{GeV}/c)^2$)
 - ightarrow fraction of final state events photon produced

Primakoff 3π Spectral Function from $\chi PT_{Technische Universität Minute PRL 108, 192001 (2012)}$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, t' < 0.001(GeV/c)²)
 → fraction of final state events photon produced

Primakoff 3π Spectral Function from $\chi PT_{Technicke Universität Marchever PRL 108, 192001 (2012)}$

- Heavy nucleus acts as a quasi-real photon source
- Chiral regime (low masses, t' < 0.001(GeV/c)²)
 → fraction of final state events photon produced
- Analysis ansatz: χ PT amplitude included in PWA

Conclusion

- COMPASS 2008/2009: large data sets in
 - diffractive $\pi^-/K^-/p$ dissociation (up to 2 orders of magnitude improvement)
 - Primakoff
- Chiral dynamics: 3π–amplitude
- $\pi^{-}\pi^{+}\pi^{-}, \pi^{-}\pi^{0}\pi^{0}, \eta\pi^{-}, \eta'\pi^{-}, K^{-}\pi^{+}\pi^{-}, 5\pi, \pi^{-}\pi^{+}_{central/isobar}$

• Where is the I = 0 partner $\eta_1(1600)$ of the $\pi_1(1600)$? Hybrid Supermultiplet?

Outlook

Dedicated Primakoff run 2012

- Electric polarizability $\alpha_{\pi} = \chi_{\text{Pt}}$ (2.93 ± 0.5) × 10⁻⁴ fm³
- Magnetic polarizability $\beta_{\pi} = \chi_{\text{Pt}} (-2.77 \pm 0.5) \times 10^{-4} \, \text{fm}^3$

• Primakoff Compton reaction:

 $\gamma^{(*)} \pi \longrightarrow \pi \gamma$ [via $\pi Z \to Z \pi \gamma$] tiny extrapolation $\gamma^* \to \gamma \mathcal{O}(10^{-3} m_{\pi}^2)$ fully under theoretical control

Days	π beam,	μ beam,	$\alpha_{\pi} - \beta_{\pi}$	$\alpha_{\pi} + \beta_{\pi}$	$\alpha_2 - \beta_2$
	days	days	σ_{tot}	σ_{tot}	σ_{tot}
120	90	30	±0.27	fixed	fixed
			±0.26	± 0.016	fixed
			± 0.66	±0.025	± 1.94
			ChPT prediction		
			5.70	0.16	4

Outlook

- Dedicated Primakoff run 2012
- Beyond standard analysis:
 - Non-Resonating Production (Deck)
 - Study 2π and 4π systems, Isobar-fits
 - Rescattering

• Further measurements: OZI-violation, Multi-particle final states...

$\bullet\$ Consolidate Data \rightarrow Global Meson Analysis Working Group

Backup

Light Meson Spectrum on the Lattice Dudek et al. [arXiv:1106.5515v1] (@ $m_{\pi} = 400$ MeV)

negative parity positive parity exotics 2.5 0+-2.0 2^{-+} $m/{\rm GeV}$ 1.5 1+- 1^{++} 1.0 $m_{\pi} = 396 \,\mathrm{MeV}$ isoscalar l s 0.5 isovector YM glueball

Technische Universität München

Light Meson Spectrum on the Lattice Dudek et al. [arXiv:1106.5515v1] (@ $m_{\pi} = 400$ MeV)

Technische Universität München

5 π Resonance Parameters Comparison to PDG

Parameter				Fit	PDG
Resonance J ^{PO}		J^{PC}		$({\rm MeV/c^2})$	
	π(1300)	0-+	М Г	1400* 500 [†]	1300 ± 100 200600
	$\pi(1800)$	0-+	Μ	$1781 \pm 5^{+1(+8)}_{-6(-6)}$	1816 ± 14
			Г	$168 \pm 9^{+5(+62)}_{-14(-15)}$	208 ± 12
0	a ₁ (1900)	1++	Μ	$1853\pm7^{+36(+36)}_{-6(-49)}$	1930^{+30}_{-70}
			Г	$443 \pm 14^{+12(+98)}_{-45(-65)}$	155 ± 45
0	a ₁ (2200)	1++	Μ	$2202\pm8^{+15(+53)}_{-8(-11)}$	$2096\pm17\pm121$
			Г	$402 \pm 17^{+41(+125)}_{-52(-51)}$	$451\pm41\pm81$
	π ₂ (1670)	2-+	М Г	1719.0 [†] 251.4 [†]	$\begin{array}{c} 1672.4 \pm 3.2 \\ 259 \pm 9 \end{array}$
	π ₂ (1880)	2-+	Μ	$1854\pm6^{+6(+6)}_{-4(-9)}$	1895 ± 16
			Г	$259 \pm 13^{+7(+7)}_{-17(-31)}$	235 ± 34
0	π ₂ (2100)	2-+	Μ	$2133 \pm 12^{+7(+43)}_{-18(-18)}$	2090 ± 29

	4π Isobars ($G=+$))	3π Isobars ($G = -$)	
Name	Mass / GeV	4π subsystem		
f ₀	1370 / 1500 / 1700	0+(0++)	- ~I03	
η	1405	$0^+(0^{-+})$	COMPASS 2004	
ρ'	1450 / 1700	$1^+(1^{})$	$\begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	
<i>b</i> ₁	1235 / 1800	$1^+(1^{+-})$		
<i>f</i> ₁	1285 / 1420	$0^+(1^{++})$	inary	
f ₂	1270 / 1565	$0^+(2^{++})$	prelimin	
η'_2	1645	$0^+(2^{-+})$		
ρ_3	1690	$1^+(3^{})$	2	
η_1	1600	0+(1-+)		
b_0	1800	$1^+(0^{+-})$	Invariant Mass of $\pi\pi^{\dagger}\pi\pi^{*}$ Subsystem (GeV/c ²)	
<i>b</i> ₂	1800	$2^+(2^{+-})$		

	4π lsobars ($G = +$)	3π Isobars ($G=-$)			
Name	Mass / GeV	$I^G J^{PC}$	Name	Mass / GeV	$I^G J^{PC}$
<i>f</i> ₀	1370 / 1500 / 1700	$0^+(0^{++})$			
η	1405	$0^+(0^{-+})$	<i>a</i> 1	1270	$1^{-}(1^{++})$
ho'	1450 / 1700	$1^{+}(1^{})$	a_2	1320	1-(2++)
b_1	1235 / 1800	$1^{+}(1^{+-})$	π'	1300	$1^{-}(0^{-+})$
<i>f</i> ₁	1285 / 1420	$0^{+}(1^{++})$	π2	1670	1-(2-+)
f ₂	1270 / 1565	$0^+(2^{++})$			
η'_2	1645	$0^{+}(2^{-+})$			
ρ_3	1690	$1^+(3^{})$			
η_1	1600	$0^+(1^{-+})$			
b_0	1800	$1^+(0^{+-})$	π_1	1600	$1^{-}(1^{-+})$
b ₂	1800	$2^{+}(2^{+-})$			-

2π subsystem: $\sigma, \rho(770), f_2(1270)$

Excited Mesons in Parity Doublets?

Technische Universität München

plot from M. Shifman and A. Vainshtein [PRD 77 (2008) 034002]

See also: R. F. Wagenbrunn and L. Ya. Glozman [PRD 75 (2007) 036007] and references therein

Excited Mesons in Parity Doublets?

Technische Universität München

plot from M. Shifman and A. Vainshtein [PRD 77 (2008) 034002]

See also: R. F. Wagenbrunn and L. Ya. Glozman [PRD 75 (2007) 036007] and references therein

Nonresonant Scattering — Deck Effect

Deck Effect $J^{PC} = \mathbf{1}^{++}$ Component Partial-Wave Decomposition in $m_{3\pi}$ and t' Bins

++)0+ rho pl S, t' range [8.100-0.1130GeV²/c²

Mass of 1.4 1.0 1.0 2 Mass of 1.7 1.4 System

1++10+ rho oi S. C range (0.449-1.000)GeV²/c⁴

1.2 1.4 1.6 1.8 2 2.2 2.4 Mass of n' n' n' system (GeV/c²

14.70%

Florian Haas - COMPASS Hadron

\bigotimes

The Quark Model of (light) Mesons

Combining $q\bar{q}$ – there are some forbidden states!

Mesons:

- Color neutral objects,
- made from a fermion-antifermion $(q\bar{q})$ pair
- characterized by $I^{G}(J^{PC})(mass)$

Potential model:

$$V = H_{
m conf} + H_{
m SS} + H_{
m LS} + H_{
m Annih}$$

Godfrey, Isgur, Phys. Rev. D32(1985)189

$$G = (-1)^{l+\ell+s}$$
 $P = (-1)^{\ell+1}$ $C = (-1)^{\ell+s}$

\bigotimes

The Quark Model of (light) Mesons

Combining $q\bar{q}$ – there are some forbidden states!

Mesons:

- Color neutral objects,
- made from a fermion-antifermion $(q\bar{q})$ pair
- characterized by $I^{G}(J^{PC})(mass)$

Potential model:

$$V = H_{
m conf} + H_{
m SS} + H_{
m LS} + H_{
m Annih}$$

Godfrey, Isgur, Phys. Rev. D32(1985)189

$$G = (-1)^{l+\ell+s}$$
 $P = (-1)^{\ell+1}$ $C = (-1)^{\ell+s}$

J^{PC} Multiplets

- $\ell = 0 \Rightarrow$ pseudoscalar 0⁻⁺, vector 1⁻⁻ states
- $\ell = 1 \implies$ scalar 0⁺⁺, axial vector 1⁺⁻, 1⁺⁺ and tensor 2⁺⁺ states
- Same $J^{PC} \Rightarrow$ mixing!
- \bullet Forbidden: $0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, ... \rightarrow$ spin exotic states

Evolutionary Waveset Exploration

Genetic Algorithm - 284 Waves in Pool

Evidence = Goodness of fit

- Bayesian Statistics \rightarrow regularized Log-Likelihood •
- Takes into account model complexity ٠