Boris Grube
for the COMPASS Collaboration

Physik-Department E18
Technische Universität München,
Garching, Germany

DPG Frühjahrstagung 2012
Mainz, 19.03.2012
Gruppenbericht HK 8.1
The COMPASS Physics Program

Goal
- Study non-perturbative regime of QCD
- Probe structure and dynamics of hadrons

Very low \(Q^2\):
- Chiral dynamics
 - \(\pi\) and \(K\) em. polarizabilities
 - \(\pi\gamma^*\) reactions (Primakoff)

Intermediate \(Q^2\):
- Spectroscopy
 - Mass spectrum of hadrons
 - Gluonic excitations

Large \(Q^2\):
- Nucleon structure
 - Helicity, transversity PDFs
 - Generalized PDFs

HK 23.1 J. M. Friedrich

Plenary Talk: PV III F. Nerling
1. The experimental setup

2. Search for spin-exotic mesons
 - PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
 - PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
 - PWA of $\pi^- \pi^+ \pi^- \pi^+$ from π^- diffraction

3. Search for scalar glueballs
 - PWA of $\pi^+ \pi^-$ from central production
Outline

1 The experimental setup

2 Search for spin-exotic mesons
 - PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
 - PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
 - PWA of $\pi^- \pi^+ \pi^- \pi^+ \pi^-$ from π^- diffraction

3 Search for scalar glueballs
 - PWA of $\pi^+ \pi^-$ from central production
Fixed-target experiment

- Two-stage spectrometer
- Large acceptance over wide kinematic range
- > 1 PByte/year
The COMPASS Experiment at the CERN SPS

Experimental Setup

Fixed-target experiment
- Two-stage spectrometer
- Large acceptance over wide kinematic range
- > 1 PByte/year

Hadron spectroscopy
- 190 GeV/c secondary hadron beams
 - h^{-} beam: 97% π^{-}, 2% K^{-}, 1% \bar{p}
 - h^{+} beam: 75% p, 24% π^{+}, 1% K^{+}
- Various targets: ℓH_{2}, Ni, Pb, W

190 GeV/c secondary hadron beams

190 GeV/c secondary hadron beams
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

The COMPASS Experiment at the CERN SPS
Experimental Setup

NIM A 577, 455 (2007)

Spectrometer upgrades for 2008 run
- Recoil proton detector (RPD)
- Beam particle identification
- Electromagnetic calorimetry
- Tracking at forward angles

Hadron spectroscopy

- 190 GeV/c secondary hadron beams
 - h^- beam: 97% π^-, 2% K^-, 1% \bar{p}
 - h^+ beam: 75% p, 24% π^+, 1% K^+
- Various targets: ℓH$_2$, Ni, Pb, W
Outline

1. The experimental setup

2. Search for spin-exotic mesons
 - PWA of $\pi^-\pi^+\pi^-$ from π^- diffraction
 - PWA of $\pi^-\eta$ and $\pi^-\eta'$ from π^- diffraction
 - PWA of $\pi^-\pi^+\pi^-\pi^+\pi^-$ from π^- diffraction

3. Search for scalar glueballs
 - PWA of $\pi^+\pi^-$ from central production
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^− \pi^+ \pi^−$ from $\pi^−$ diffraction
PWA of $\pi^− \eta$ and $\pi^− \eta'$ from $\pi^−$ diffraction
PWA of $\pi^− \pi^+ \pi^− \pi^+$ from $\pi^−$ diffraction

Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{--}, ...

QCD allows for states beyond the CQM

- Hybrids $|q\bar{g}\rangle$, glueballs $|g\bar{g}\rangle$, multi-quark states $|q^2\bar{q}^2\rangle$, ...
- Physical mesons: superposition of all allowed basis states
- “Exotic” mesons have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Particularly interesting: J^{PC}-exotic states
Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: $0^{--}, 0^{+-}, 1^{--}, 2^{+-}, 3^{--}, \ldots$

QCD allows for states beyond the CQM

- Hybrids $|qqg\rangle$, glueballs $|gg\rangle$, multi-quark states $|q^2\bar{q}^2\rangle$, \ldots
- Physical mesons: superposition of all allowed basis states
- “Exotic” mesons have quantum numbers forbidden for $|qq\rangle$
 - Particularly interesting: J^{PC}-exotic states

The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs
PWA of $\pi^-\pi^+\pi^-$ from π^- diffraction
PWA of $\pi^-\eta$ and $\pi^-\eta'$ from π^- diffraction
PWA of $\pi^-\pi^-\pi^-\pi^+$ from π^- diffraction

Boris Grube, TU München
Hadron Spectroscopy with COMPASS
Mesons in the Constituent Quark Model

Spin-parity rules for bound $q\bar{q}'$ system

- Quark spins couple to total intrinsic spin $S = 0$ (singlet) or 1 (triplet)
- Relative orbital angular Momentum \vec{L} and total spin \vec{S} couple to meson spin $\vec{J} = \vec{L} + \vec{S}$
- Parity $P = (-1)^{L+1}$
- Charge conjugation $C = (-1)^{L+S}$
- Forbidden J^{PC}: 0^{--}, 0^{+-}, 1^{--}, 2^{+-}, 3^{++}, ...

QCD allows for states beyond the CQM

- Hybrids $|q\bar{g}\rangle$, glueballs $|g\bar{g}\rangle$, multi-quark states $|q^2\bar{q}^2\rangle$, ...
- **Physical mesons**: superposition of all allowed basis states
- "Exotic" mesons have quantum numbers forbidden for $|q\bar{q}\rangle$
 - Particularly interesting: J^{PC}-exotic states
Production of Hadrons in Diffractive Dissociation

- Soft scattering of beam hadron off nuclear target (remains intact)
 - Beam particle is excited into some intermediate state X
 - X decays into n-body final state

- High \sqrt{s} and low t: Pomeron exchange dominates strong interactions
- Rich spectrum: large number of overlapping and interfering states
- Goal: use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers

- Method: partial-wave analysis (PWA)
Production of Hadrons in Diffractive Dissociation

- **Soft scattering** of beam hadron off nuclear target (remains intact)
 - Beam particle is excited into some intermediate state X
 - X decays into n-body final state

- **High \sqrt{s} and low t: Pomeron exchange** dominates strong interactions

- **Rich spectrum:** large number of overlapping and interfering states
 - **Goal:** use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
 - **Method:** partial-wave analysis (PWA)
Production of Hadrons in Diffractive Dissociation

- Soft scattering of beam hadron off nuclear target (remains intact)
 - Beam particle is excited into some intermediate state X
 - X decays into n-body final state
- High \sqrt{s} and low t: Pomeron exchange dominates strong interactions
- Rich spectrum: large number of overlapping and interfering states
- **Goal**: use kinematic distribution of final-state particles to
 - Disentangle all resonances X
 - Determine their mass, width, and quantum numbers
- **Method**: partial-wave analysis (PWA)
Diffractive Dissociation of π^- into $\pi^- \pi^+ \pi^-$ Final State

Isobar model: X^- decay is chain of successive two-body decays

- "Wave": unique combination of isobar and quantum numbers
- Full wave specification (in reflectivity basis): $J^{PC} M^\epsilon [\text{isobar}] L$

Fit model: $\sigma(m_X, \tau) = \sigma_0 \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|^2$

- Transition amplitudes $T_{\text{wave}}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects
Diffractive Dissociation of π^- into $\pi^- \pi^+ \pi^-$ Final State

Isobar model: X^- decay is chain of successive two-body decays

- "Wave": unique combination of isobar and quantum numbers
- Full wave specification (in reflectivity basis): $J^{PC}M^\epsilon$ [isobar] L

Fit model:

$$\sigma(m_X, \tau) = \sigma_0 \left| \sum_{\text{waves}} T_{\text{wave}}(m_X) A_{\text{wave}}(m_X, \tau) \right|^2$$

- Transition amplitudes $T_{\text{wave}}(m_X)$ determined from multi-dimensional fit to final-state kinematic distributions taking into account interference effects
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^+ \pi^- \pi^+$ from π^- diffraction

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

- 190 GeV/c negative hadron beam: 97% π^-, 2% K^-, 1% \bar{p}
- Liquid hydrogen target
- Recoil proton measured by RPD
- Kinematic range $0.1 < t' < 1.0 \ (GeV/c)^2$
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

World's largest 3π data set: **96 M events**

- Challenging analysis
 - Needs precise understanding of apparatus
 - Model deficiencies become visible
World’s largest 3π data set: **96 M events**

- Challenging analysis
 - Needs precise understanding of apparatus
 - Model deficiencies become visible

$\pi^- \pi^+ \pi^-$ invariant mass distribution
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

World’s largest 3π data set: **96 M events**

- Challenging analysis
 - Needs precise understanding of apparatus
 - Model deficiencies become visible

$\pi^- \pi^+ \pi^-$ invariant mass distribution

Dalitz plot for $\pi_2(1670)$ region

COMPASS

COMPASS 2008
$\pi^- p \rightarrow \pi^- \pi^+ p$
$0.1 \text{ GeV}^2c^2 < t' < 1.0 \text{ GeV}^2c^2$
w/o acceptance correction

$\text{Im}_3 \pi < 0.130 (\text{GeV}/c^2)$

$\pi^- p \rightarrow \pi^- \pi^+ p$
$0.1 \text{ GeV}^2c^2 < t' < 1.0 \text{ GeV}^2c^2$
w/o acceptance correction

preliminary

preliminary

Boris Grube, TU München
Hadron Spectroscopy with COMPASS
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

\[
\begin{align*}
\pi^-(1260) & \quad \left(a_1(1260) \right) \\
\pi^+(1670) & \quad \left(\rho^- \pi^+ \right)
\end{align*}
\]
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

1$^+ + 0^+ [\rho \pi] S : a_1(1260)$

COMPASS 2008
$\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

Mass of $\pi^- \pi^+ \pi^- System (GeV/c^2)$

Events/(5 MeV/c^2)

$\pi_1(1260)$

$\pi_2(1320)$

$\pi_3(1670)$

COMPASS 2008
$\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

Mass of $\pi^- \pi^+ \pi^- System (GeV/c^2)$

Events/(20 MeV/c^2)

$1^+ + 0^+ [\rho \pi] S$

preliminary
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

1$^{++}$ 0$^+$ $[\rho \pi] S : a_1(1260)$

2$^{++}$ 1$^+$ $[\rho \pi] D : a_2(1320)$
PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

\[\pi^- \pi^+ \pi^-\] invariant mass spectrum

1\(^{++}\) 0\(^{+}\) $[\rho \pi] S : a_1(1260)$

2\(^{-+}\) 0\(^{+}\) $[f_2 \pi] S : \pi_2(1670)$

2\(^{++}\) 1\(^{+}\) $[\rho \pi] D : a_2(1320)$
PWA of \(\pi^- p \rightarrow \pi^- \pi^+ \pi^- p \)

\(\pi^- \pi^+ \pi^- \) invariant mass spectrum

- Data described by **model consisting of 52 waves**
 + **Incoherent isotropic background**
- **Isobars:** \((\pi \pi)_S\)-wave, \(f_0(980), \rho(770), f_2(1270), f_0(1500)\)
 and \(\rho_3(1690)\)

\[2^{-+} 0^+ \ [f_2 \pi] S : \pi_2(1670) \]

\[1^{++} 0^+ \ [\rho \pi] S : a_1(1260) \]

\[2^{++} 1^+ \ [\rho \pi] D : a_2(1320) \]

PWA of \(\pi^- \pi^+ \pi^- \) from \(\pi^- \) diffraction

PWA of \(\pi^- \eta \) and \(\pi^- \eta' \) from \(\pi^- \) diffraction

PWA of \(\pi^- \pi^+ \pi^- \pi^+ \pi^- \) from \(\pi^- \) diffraction

COMPASS Data

Isobars:
- \((\pi \pi)_S\)-wave, \(f_0(980), \rho(770), f_2(1270), f_0(1500)\)
- \(\rho_3(1690)\)

Understanding of small waves is work in progress

Significant contributions from Deck-like processes

\(t' \)-dependence of partial-wave amplitudes important
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^+ \pi^- \pi^+ \pi^-$ from π^- diffraction

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

- Data described by **model consisting of 52 waves**
 + incoherent isotropic background
- **Isobars:** $(\pi \pi)_S$-wave, $f_0(980)$, $\rho(770)$, $f_2(1270)$, $f_0(1500)$ and $\rho_3(1690)$

Understanding of small waves is work in progress

- Significant contributions from **Deck-like processes**
- t'-dependence of partial-wave amplitudes important

Significant contributions from Deck-like processes
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^+ \pi^- \pi^+ \pi^-$ from π^- diffraction

PWA of $\pi^- p \rightarrow \pi^- \pi^+ \pi^- p$

$\pi^- \pi^+ \pi^-$ invariant mass spectrum

$2^{-+} 0^+ [f_2 \pi] S : \pi_2(1670)$

$2^{-+} 0^+ \pi_2(1670)$

COMPASS 2008
$\pi^p \rightarrow \pi^\pi^\pi^p$
$0.1 \text{ GeV}^2/c^2 < t < 1.0 \text{ GeV}^2/c^2$

420 000 events
Pb target
Selection of exclusive events with 3 charged tracks + 2 photons

- η reconstructed from $\eta \rightarrow \pi^+ \pi^- \pi^0$
- η' reconstructed via $\pi^+ \pi^- \eta$ decay with $\eta \rightarrow \gamma \gamma$

$\gamma \gamma$ mass distribution
PWA of $\pi^- p \to \pi^- \eta p$ and $\pi^- \eta' p$

Selection of exclusive events with 3 charged tracks + 2 photons

- η reconstructed from $\eta \to \pi^+ \pi^- \pi^0$
- η' reconstructed via $\pi^+ \pi^- \eta$ decay with $\eta \to \gamma \gamma$

$\gamma\gamma$ mass distribution

$\pi^- \eta$ mass distribution
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs
PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^- \pi^+ \pi^-$ from π^- diffraction

PWA of $\pi^- p \rightarrow \pi^- \eta p$ and $\pi^- \eta' p$

Selection of exclusive events with 3 charged tracks + 2 photons
- η reconstructed from $\eta \rightarrow \pi^+ \pi^- \pi^0$
- η' reconstructed via $\pi^+ \pi^- \eta$ decay with $\eta \rightarrow \gamma \gamma$

$\pi^+ \pi^- \eta$ mass distribution

$\pi^- \eta$ mass distribution

COMPASS 2008
$\pi p \rightarrow \pi \pi \pi^+ \eta p$

w/o acceptance correction

preliminary

COMPASS 2008
$\pi^+ \eta (\pi \pi^+ \pi^0)p$

w/o acceptance correction

preliminary
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- p \rightarrow \pi^- \eta p$ and $\pi^- \eta' p$

Selection of exclusive events with 3 charged tracks + 2 photons

- η reconstructed from $\eta \rightarrow \pi^+ \pi^- \pi^0$
- η' reconstructed via $\pi^+ \pi^- \eta$ decay with $\eta \rightarrow \gamma \gamma$

$\pi^- \eta'$ mass distribution

$\pi^- \eta$ mass distribution

COMPASS 2008
$\pi p \rightarrow \pi^- \eta' (\pi^+ \pi^- \gamma \gamma) p$

COMPASS 2008
$\pi p \rightarrow \pi^- \eta (\pi^+ \pi^- \pi^0) p$

preliminary
PWA of $\pi^- p \rightarrow \pi^- \eta' p$

Spin-exotic $1^{-+} 1^+$

- $1^{-+} 1^+$ is dominant wave
- Slight phase motion w.r.t. $2^{++} 1^+$
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- p \rightarrow \pi^- \eta' p$

Spin-exotic $1^{-+} 1^+$

$2^{++} 1^+ - 1^{-+} 1^+$

- $1^{-+} 1^+$ is dominant wave
- Slight phase motion w.r.t. $2^{++} 1^+$
PWA of $\pi^- p \rightarrow \pi^- \eta p$

Spin-exotic $1^- + 1^+$

- $1^- + 1^+$ much smaller
- $2^{++} 1^+$ is dominant wave
- Slight phase motion of $1^- + 1^+$ w.r.t. $2^{++} 1^+$

COMPASS 2008

$\pi p \rightarrow \pi \eta p$
PWA of $\pi^- p \rightarrow \pi^- \eta p$

Spin-exotic $1^{-+} 1^+$

$2^{++} 1^+ : a_2(1320)$

$1^{-+} 1^+ - 2^{++} 1^+$

- $1^{-+} 1^+$ much smaller
- $2^{++} 1^+$ is dominant wave
- Slight phase motion of $1^{-+} 1^+$ w.r.t. $2^{++} 1^+$
PWA of $\pi^- p \to \pi^- \eta p$ and $\pi^- \eta' p$

Work in progress

- Resonance interpretation of $1^{-+} 1^+$ requires understanding of resonance structure of $2^{++} 1^+$ wave
- First mass-dependent fits (HK 8.2 T. Schlüter)
- Final goal: combined analysis of both channels
PWA of $\pi^- \text{Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \text{Pb}$

First mass-dependent analysis of this channel

- **Light-meson frontier:** access to mesonic states in 2 GeV/c^2 region
- Little information from previous experiments

Data from pilot run

- Pb target
- Recoil not measured
- Kinematic range $t' < 5 \cdot 10^{-3}$ (GeV/c)2
PWA of $\pi^-\text{Pb} \rightarrow \pi^-\pi^+\pi^-\pi^+\pi^-\text{Pb}$

First mass-dependent analysis of this channel

- **Light-meson frontier:** access to mesonic states in 2 GeV/c^2 region
- Little information from previous experiments

Data from pilot run

- Pb target
- Recoil not measured
- Kinematic range $t' < 5 \cdot 10^{-3}\ (\text{GeV/c})^2$
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^- \pi^+ \pi^- \text{Pb}$

Fit model

- Complicated isobar structure
 - Large number of possible waves
 - Data exhibit no dominant waves
- Exploration of model space using evolutionary algorithm based on goodness-of-fit criterion
 - 284 waves tested
 - Also provides estimate for systematic uncertainty from fit model
- Best model: 31 waves + incoherent isotropic background
- Isobars
 - $(2\pi)^0$ isobars: $(\pi\pi)_{S-\text{wave}}, \rho(770)$
 - $(3\pi)^\pm$ isobars: $a_1(1260), a_2(1320)$
 - $(4\pi)^0$ isobars: $f_0(1370, 1500), \rho'(1450, 1700), f_1(1285), f_2(1270)$
 - Only few information available for $(4\pi)^0$ isobars
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^- \pi^+ \pi^-$ from π^- diffraction

PWA of $\pi^- \mathrm{Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \mathrm{Pb}$

Fit model

- Complicated isobar structure
 - Large number of possible waves
 - Data exhibit no dominant waves
- Exploration of model space using evolutionary algorithm based on goodness-of-fit criterion
 - 284 waves tested
 - Also provides estimate for systematic uncertainty from fit model
- Best model: 31 waves + incoherent isotropic background
- Isobars
 - $(2\pi)^0$ isobars: $(\pi \pi)_{S-wave}$, $\rho(770)$
 - $(3\pi)^+ \pm$ isobars: $a_1(1260)$, $a_2(1320)$
 - $(4\pi)^0$ isobars: $f_0(1370, 1500)$, $\rho'(1450, 1700)$, $f_1(1285)$, $f_2(1270)$
 - Only few information available for $(4\pi)^0$ isobars

18 Boris Grube, TU München

Hadron Spectroscopy with COMPASS
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

Fit model

- Complicated isobar structure
 - Large number of possible waves
 - Data exhibit no dominant waves
- Exploration of model space using evolutionary algorithm based on goodness-of-fit criterion
 - 284 waves tested
 - Also provides estimate for systematic uncertainty from fit model
- Best model: 31 waves + incoherent isotropic background
- Isobars
 - $(2\pi)^0$ isobars: $(\pi\pi)_S$-wave, $\rho(770)$
 - $(3\pi)^\pm$ isobars: $a_1(1260), a_2(1320)$
 - $(4\pi)^0$ isobars: $f_0(1370, 1500), \rho'(1450, 1700), f_1(1285), f_2(1270)$
 - Only few information available for $(4\pi)^0$ isobars
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^- \pi^+ \pi^-$ from π^- diffraction

PWA of $\pi^- \text{ Pb } \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \text{ Pb}$

Fit model

- Complicated isobar structure
 - Large number of possible waves
 - Data exhibit no dominant waves
- Exploration of model space using evolutionary algorithm based on goodness-of-fit criterion
 - 284 waves tested
 - Also provides estimate for systematic uncertainty from fit model
- **Best model:** 31 waves + incoherent isotropic background
- **Isobars**
 - $(2\pi)^0$ isobars: $(\pi\pi)_S$-wave, $\rho(770)$
 - $(3\pi)^\pm$ isobars: $a_1(1260), a_2(1320)$
 - $(4\pi)^0$ isobars: $f_0(1370, 1500), \rho'(1450, 1700), f_1(1285), f_2(1270)$
 - Only few information available for $(4\pi)^0$ isobars
PWA of $\pi^- \text{ Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^-$ Pb
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^- \pi^+ \pi^-$ from π^- diffraction
PWA of $\pi^- \eta$ and $\pi^- \eta'$ from π^- diffraction
PWA of $\pi^- \pi^+ \pi^- \pi^+$ from π^- diffraction

PWA of $\pi^- \text{Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \text{Pb}$

COMPASS 2004
$\pi^- \text{Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \text{Pb}$

width (GeV/c²)

mass (MeV/c²)

$\pi(1300)$
$a_1(1900)$
$\pi_2(2100)$
$a_1(2200)$
$\pi_2(1670)$
$\pi_2(1880)$
$\pi(1800)$

HK 8.4 S. Neubert

PRELIMINARY
Proof of Principle: First mass-dependent full five-body PWA

- Rather simplistic fit model
 - Spin-density sub-matrix of 10 waves described using 7 resonances + background terms
 - Parameterization by sum of relativistic constant-width Breit-Wigners
 - Mixing and coupled-channel effects neglected
 - Multi-peripheral processes (Deck-effect) not taken into account
- Good description of data

Work in progress

- Much more data on tape
 - Proton target, kinematic range $0.1 < t' < 1$ (GeV/c)2
- Improvement of fit models
Proof of Principle: First mass-dependent full five-body PWA

- Rather simplistic fit model
 - Spin-density sub-matrix of 10 waves described using 7 resonances + background terms
 - Parameterization by sum of relativistic constant-width Breit-Wigners
 - Mixing and coupled-channel effects neglected
 - Multi-peripheral processes (Deck-effect) not taken into account
- Good description of data

Work in progress

- Much more data on tape
 - Proton target, kinematic range $0.1 < t' < 1$ (GeV/c)2
- Improvement of fit models
PWA of $\pi^- \text{Pb} \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- \text{Pb}$

Proof of Principle: First mass-dependent full five-body PWA

- Rather simplistic fit model
 - Spin-density sub-matrix of 10 waves described using 7 resonances + background terms
 - Parameterization by sum of relativistic constant-width Breit-Wigners
 - Mixing and coupled-channel effects neglected
 - Multi-peripheral processes (Deck-effect) not taken into account
- Good description of data

Work in progress

- Much more data on tape
 - Proton target, kinematic range $0.1 < t' < 1 \text{ (GeV/c)}^2$
- Improvement of fit models
Outline

1. The experimental setup

2. Search for spin-exotic mesons
 - PWA of $\pi^{-}\pi^{+}\pi^{-}$ from π^{-} diffraction
 - PWA of $\pi^{-}\eta$ and $\pi^{-}\eta'$ from π^{-} diffraction
 - PWA of $\pi^{-}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ from π^{-} diffraction

3. Search for scalar glueballs
 - PWA of $\pi^{+}\pi^{-}$ from central production
Search for glueballs

- Mesonic state with no valence quarks
- Lattice QCD simulations predict lightest glueball to be scalars
 - Strong mixing with conventional scalar mesons expected
 - Difficult to disentangle
- Pomeron-Pomeron processes well-suited to study scalar mesons

PWA of \(p p \rightarrow p_{\text{fast}} \pi^+ \pi^- p_{\text{slow}} \)
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $p p \rightarrow p_{\text{fast}} \pi^+ \pi^- p_{\text{slow}}$

Selection of central events:

- Cut $m(p_{\text{fast}} \pi^\pm), m(p_{\text{slow}} \pi^\pm) > 1.5 \text{ GeV/c}^2$

Preliminary

COMPASS 2009
$p p \rightarrow p_1 \pi^+ \pi^- p_2$,
$W33 (~30\% \text{ of 2009})$

Not acceptance corrected
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $pp \rightarrow p_{\text{fast}} \pi^+ \pi^- p_{\text{slow}}$

Selected central events

χ_F distribution

$\pi^+ \pi^-$ invariant mass
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^+\pi^-$ from central production

PWA of $pp \rightarrow p_{\text{fast}}\pi^+\pi^- p_{\text{slow}}$

COMPASS 2009
$pp \rightarrow p_{t}\pi^+\pi^- p_{s}$
Proof of concept

- Analysis similar to previous experiments (WA102)
 - Comparable results
- Simplistic fit model
 - Angular information of the two proton scattering planes not taken into account
- 8 different mathematically ambiguous solutions
 - Additional constraints needed to select physical solution
- Next step: mass-dependent fit
The experimental setup
Search for spin-exotic mesons
Search for scalar glueballs

PWA of $\pi^+ \pi^-$ from central production

PWA of $pp \rightarrow p_{\text{fast}} \pi^+ \pi^- p_{\text{slow}}$

Proof of concept

- Analysis similar to previous experiments (WA102)
 - Comparable results
- Simplistic fit model
 - Angular information of the two proton scattering planes not taken into account
- 8 different mathematically ambiguous solutions
 - Additional constraints needed to select physical solution
- Next step: mass-dependent fit
Proof of concept

- Analysis similar to previous experiments (WA102)
 - Comparable results
- Simplistic fit model
 - Angular information of the two proton scattering planes not taken into account
- 8 different mathematically ambiguous solutions
 - Additional constraints needed to select physical solution
- Next step: mass-dependent fit
COMPASS has acquired world’s largest data sets for many channels

- **Main focus on search for** J^{PC}-exotic mesons
 - Pilot run: significant $J^{PC} = 1^{-+}$ signal consistent with $\pi_1(1600)$ seen in $\pi^-\pi^+\pi^-$ data on Pb target
 - Detailed study of $\pi^-\pi^+\pi^-$ final state
 - Full two-dimensional analysis in $m_{\pi^-\pi^+\pi^-}$ and t'
 - Consistency check with $\pi^-\pi^0\pi^0$
 - $\eta\pi^-$ and $\eta'\pi^-$ data similar to previous experiments
 - Mass-dependent fits underway
 - First full $\pi^-\pi^+\pi^-\pi^+\pi^-$ PWA
 - $\pi(1800)$ and $\pi_2(1670)$ seen
 - Search for scalar glueballs in CP of $\pi^+\pi^-$
 - Results similar to previous experiments
 - Further analyses
 - K^- diffractive into $K^-\pi^+\pi^-$
 - $(\pi\pi K\bar{K})^-$, …
Conclusions and Outlook

COMPASS has acquired world’s largest data sets for many channels

- **Main focus on search for** J^{PC}-exotic mesons
 - Pilot run: significant $J^{PC} = 1^{-+}$ signal consistent with $\pi_1(1600)$
 - seen in $\pi^- \pi^+ \pi^-$ data on Pb target
 - Detailed study of $\pi^- \pi^+ \pi^-$ final state
 - Full two-dimensional analysis in $m_{\pi^- \pi^+ \pi^-}$ and t'
 - Consistency check with $\pi^- \pi^0 \pi^0$
 - $\eta \pi^-$ and $\eta' \pi^-$ data similar to previous experiments
 - Mass-dependent fits underway
 - First full $\pi^- \pi^+ \pi^- \pi^+ \pi^-$ PWA
 - $\pi(1800)$ and $\pi_2(1670)$ seen
 - Search for scalar glueballs in CP of $\pi^+ \pi^-$
 - Results similar to previous experiments
 - Further analyses
 - K^- diffraction into $K^- \pi^+ \pi^-$
 - $(\pi \pi K\bar{K})^-$, …

References

- PRL 104 (2010) 241803
- HK 23.3 F. Haas
- HK 8.3 F. Nerling
- HK 8.2 T. Schlüter
- HK 8.4 S. Neubert
- HK 22.3 A. Austregesilo
- HK 8.5 P. Jasinski
Conclusions and Outlook

COMPASS has acquired **world’s largest data sets for many channels**

- **Main focus on search for \(J^{PC} \)-exotic mesons**
 - Pilot run: significant \(J^{PC} = 1^{--} \) signal consistent with \(\pi_1(1600) \) seen in \(\pi^- \pi^+ \pi^- \) data on Pb target
 - Detailed study of \(\pi^- \pi^+ \pi^- \) final state
 - Full two-dimensional analysis in \(m_{\pi^- \pi^+ \pi^-} \) and \(t' \)
 - Consistency check with \(\pi^- \pi^0 \pi^0 \)
- \(\eta \pi^- \) and \(\eta' \pi^- \) data similar to previous experiments
 - Mass-dependent fits underway
- First full \(\pi^- \pi^+ \pi^- \pi^+ \pi^- \) PWA
 - \(\pi(1800) \) and \(\pi_2(1670) \) seen
- Search for scalar glueballs in CP of \(\pi^+ \pi^- \)
 - Results similar to previous experiments
- Further analyses
 - \(K^- \) diffraction into \(K^- \pi^+ \pi^- \)
 - \((\pi \pi K\bar{K})^- \), …

PRL 104 (2010) 241803

HK 23.3 F. Haas

HK 8.3 F. Nerling

HK 8.2 T. Schlüter

HK 8.4 S. Neubert

HK 22.3 A. Austregesilo

HK 8.5 P. Jasinski
Conclusions and Outlook

COMPASS has acquired world’s largest data sets for many channels

- Main focus on search for J^{PC}-exotic mesons
 - Pilot run: significant $J^{PC} = 1^{-+}$ signal consistent with $\pi_1(1600)$
 seen in $\pi^-\pi^+\pi^-$ data on Pb target
 - Detailed study of $\pi^-\pi^+\pi^-$ final state
 - Full two-dimensional analysis in $m_{\pi^-\pi^+\pi^-}$ and t'
 - Consistency check with $\pi^-\pi^0\pi^0$
 - $\eta\pi^-$ and $\eta'\pi^-$ data similar to previous experiments
 - Mass-dependent fits underway
 - First full $\pi^-\pi^+\pi^-\pi^+\pi^-$ PWA
 - $\pi(1800)$ and $\pi_2(1670)$ seen
- Search for scalar glueballs in CP of $\pi^+\pi^-$
- Results similar to previous experiments
- Further analyses
 - K^- diffraction into $K^-\pi^+\pi^-$
 - $(\pi\pi K\bar{K})^-$, …
Conclusions and Outlook

COMPASS has acquired world’s largest data sets for many channels

- Main focus on search for J^{PC}-exotic mesons
 - Pilot run: significant $J^{PC} = 1^{-+}$ signal consistent with $\pi_1(1600)$ seen in $\pi^-\pi^+\pi^-$ data on Pb target
 - Detailed study of $\pi^-\pi^+\pi^-$ final state
 - Full two-dimensional analysis in $m_{\pi^-\pi^+\pi^-}$ and t'
 - Consistency check with $\pi^-\pi^0\pi^0$
 - $\eta\pi^-$ and $\eta'\pi^-$ data similar to previous experiments
 - Mass-dependent fits underway
 - First full $\pi^-\pi^+\pi^-\pi^+\pi^-$ PWA
 - $\pi(1800)$ and $\pi_2(1670)$ seen
 - Search for scalar glueballs in CP of $\pi^+\pi^-$
 - Results similar to previous experiments
 - Further analyses
 - K^- diffraction into $K^-\pi^+\pi^-$
 - $(\pi\pi K\bar{K})^-$, ...

PRL 104 (2010) 241803
HK 23.3 F. Haas
HK 8.3 F. Nerling
HK 8.2 T. Schlüter
HK 8.4 S. Neubert
HK 22.3 A. Austregesilo
HK 8.5 P. Jasinski
Conclusions and Outlook

COMPASS has acquired world’s largest data sets for many channels

- Main focus on search for J^{PC}-exotic mesons
 - Pilot run: significant $J^{PC} = 1^{-+}$ signal consistent with $\pi_1(1600)$ seen in $\pi^-\pi^+\pi^-$ data on Pb target
 - Detailed study of $\pi^-\pi^+\pi^-$ final state
 - Full two-dimensional analysis in $m_{\pi^-\pi^+\pi^-}$ and t'
 - Consistency check with $\pi^-\pi^0\pi^0$
 - $\eta\pi^-$ and $\eta'\pi^-$ data similar to previous experiments
 - Mass-dependent fits underway
 - First full $\pi^-\pi^+\pi^+\pi^-\pi^-$ PWA
 - $\pi(1800)$ and $\pi_2(1670)$ seen
 - Search for scalar glueballs in CP of $\pi^+\pi^-$
 - Results similar to previous experiments
- Further analyses
 - K^- diffraction into $K^-\pi^+\pi^-$
 - $(\pi\pi K\bar{K})^-$, ...