Hadron Physics at COMPASS

Rutherford Centennial Conference on Nuclear Physics Manchester, UK, 2011

Karin Schönning, European Organization for Nuclear Research (CERN)

Outline

- Introduction
- The COMPASS experiment
- Diffractive Dissociation of pions
- Coulomb production of pions
- Final states with strangeness
- More hadron physics with COMPASS

Introduction

Meson Spectroscopy:

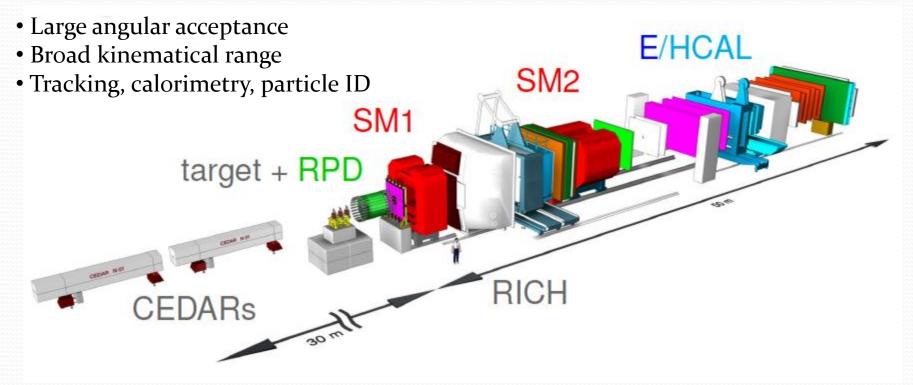
Study the meson spectrum and search for states other than conventional quark-antiquark pairs. For example *multiquarks*, *glueballs* and *hybrids*.

=
● − ● +
+
+
+

Introduction

The light meson spectrum

Hybrids:

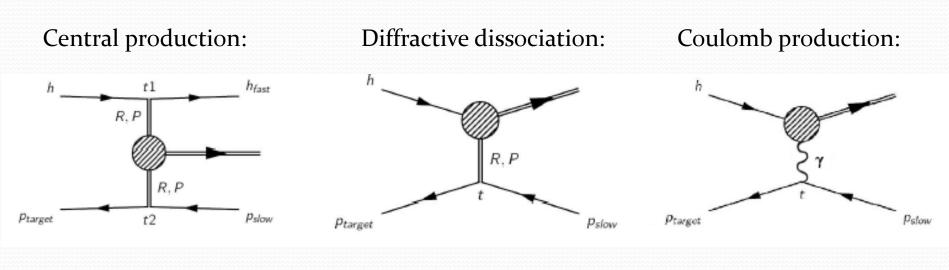

- Low mass states with spin exotic quantum numbers $J^{PC} = 1^{-+}$ predicted
- Reported candidates:
 - $\pi_1(1400)$: VES, E852, Chrystal Barrel
 - $\pi_1(1600)$: E852, VES
 - $\pi_{I}(2000)$: E852
- Resonance interpretations still disputed

Glueballs:

- Lowest predicted states have the same quantum numbers as ordinary mesons → mixing.
- Candidates: $f_o(1370)$, $f_o(1500)$, $f_o(1700)$ with $J^{PC} = 0^{++}$ and $\eta(1405)$ with $J^{PC} = 0^{-+}$, but their interpretations are still disputed.

The COMPASS experiment

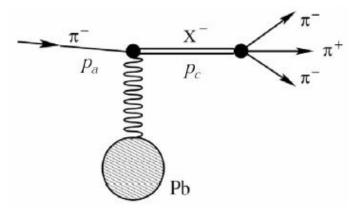
Two-stage magnetic spectrometer:



Beam: 190 GeV positive (p, π^+ , K⁺) or negative (π^- , K⁻) hadron beam **Targets**: Liquid H₂, Nuclear targets (Pb, Ni, W). **Final states**: charged (π^\pm , p, ...), neutral (π° , η , η' , ...), kaonic (K[±], K_S, ...)

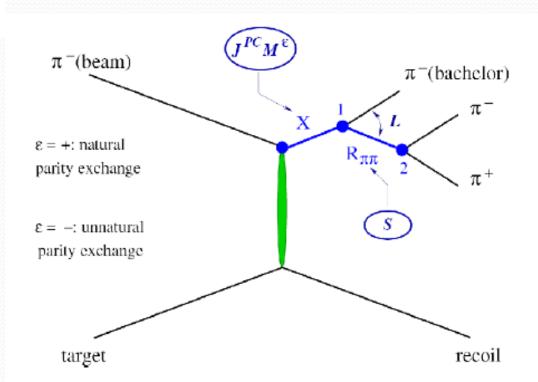
The COMPASS experiment

Production mechanisms:



- Gluon-rich environment
- Rapidity gap

- Spin-exotic mesons
- Forward kinematics

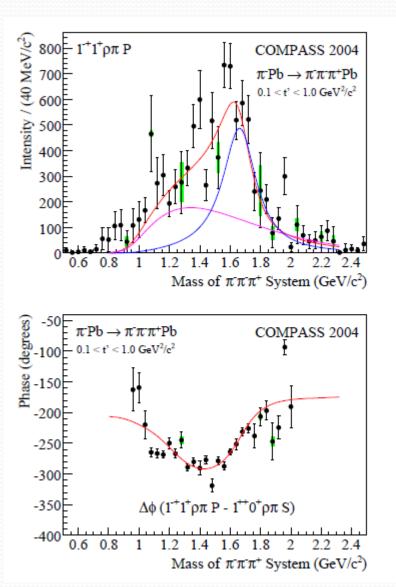

Test of ChPT Radiative widths

Diffractive Dissociation of pions

$\pi^- Pb \rightarrow \pi^-\pi^+\pi^- Pb$

Data from 2004
190 GeV/c π⁻ on Pb
Momentum transfer 0.1 < t' < 1 (GeV/c)² → quasi-free nucleons in Pb

Partial Wave Analysis (PWA) Model:

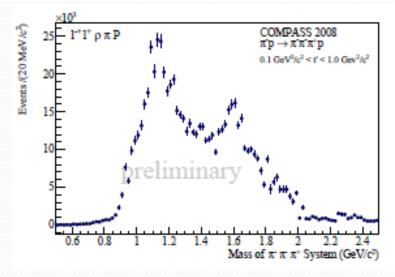

t-channel Reggeon exchange
Isobar model

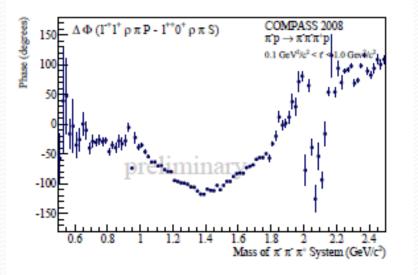
Quantum numbers of X:

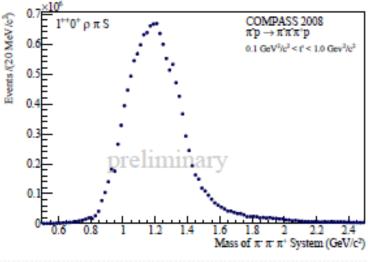
Spin J, parity P, charge conjugation C, spin projection M reflectivity ε

OMPA

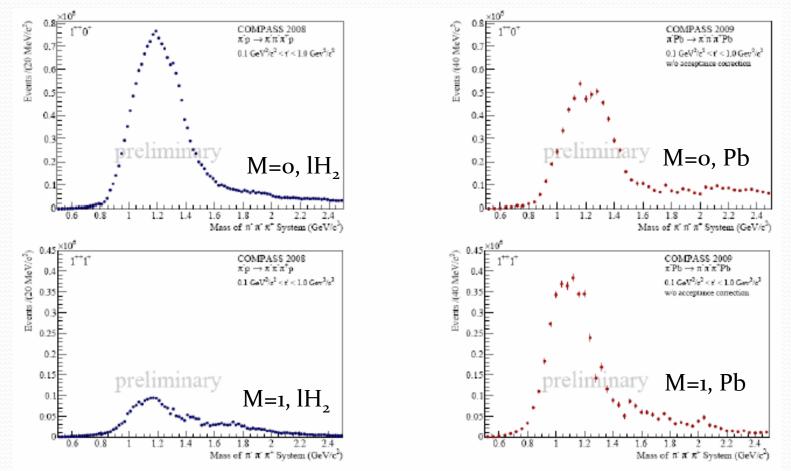
Diffractive dissociation of pions


Significant spin exotic J^{PC} = 1⁻⁺ wave [1]


- $M = 1660 \pm 10^{+0}_{-64} \text{ MeV/c}^2$ $\Gamma = 269 \pm 21^{+42}_{-64} \text{ MeV/c}^2$
- Consistent with $\pi_1(1600)$ seen by E852 and VES
- Negligible leakage from other waves

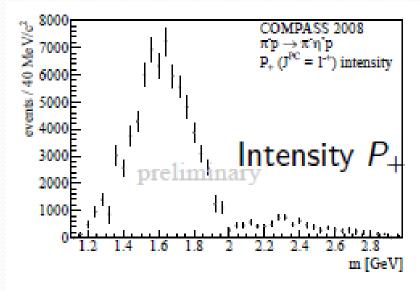

[1] COMPASS, Phys. Rev. Lett. 104 (2010) 241803

Diffractive dissociation of pions

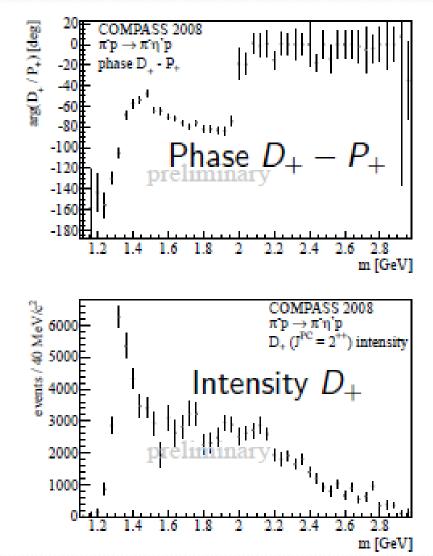


 $\pi^{-} p \rightarrow \pi^{-} \pi^{+} \pi^{-} p$

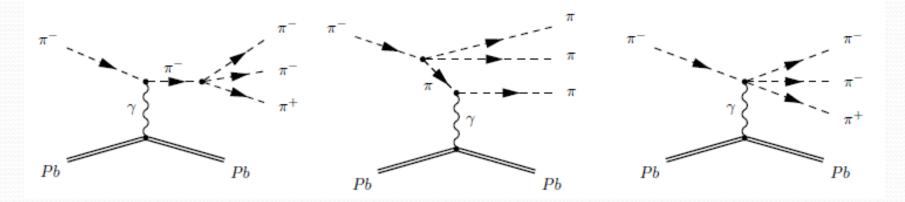
- Data from 2008
- 190 GeV/c π^- on liquid hydrogen
- 24M events (all data from 2008/2009 70 M)
- Enhancement near the π₁(1600) mass in the 1⁻⁺ wave, phase motion w.r.t 1⁺⁺
- Leakage studies and mass dependent fit necessary for definite conclusions.
- Ongoing analysis of the π^oπ^oπ⁻ final state offers a valuable consistency check.


Dependence on M of target material

Pb (2009) vs. H₂ (2008) target
Normalised to a₂(1320)
On Pb: M = 1 enhanced, M = 0 suppressed



Search for exotics in the $\eta'\pi^{-}$ final state



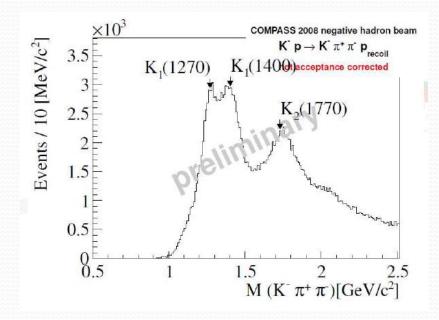
 $\pi^{-} p \rightarrow \pi^{-} \eta' p$

- Data from 2008, 190 GeV/c π on IH_2
- Strong 1⁻⁺ wave
- Ongoing work: to confirm or disprove the resonance interpretation.

Coulomb production of pions

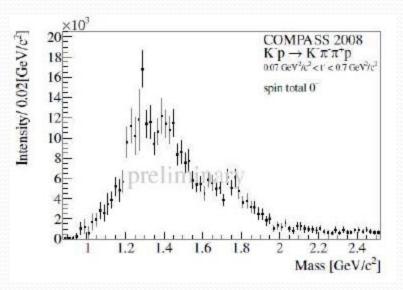
Low momentum transfer:

• Contribution from photon exchange

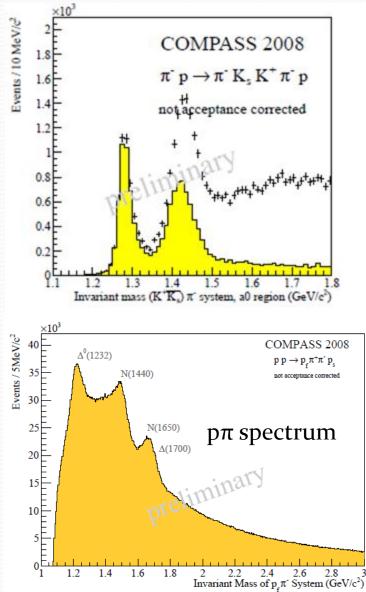

Low masses:

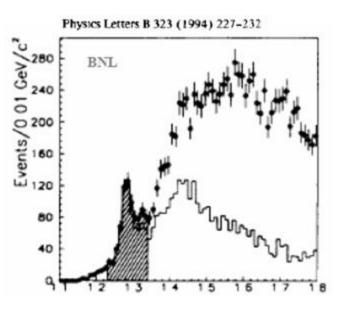
- Only pions produced \rightarrow ChPT test.
- Results compared to LO ChPT predictions [EPJA 36 (2008) 181.]

Kaon diffraction



$\mathrm{K}^{\text{-}}\mathrm{p} \rightarrow \mathrm{K}^{\text{-}} \, \pi^{\text{+}} \, \pi^{\text{-}} \, \mathrm{p}$


- Tagging incoming beam kaon.
- Most results from mass independent PWA agree with WA03.
- States consistent with $q\bar{q}$ with isospin $\frac{1}{2}$.


Observed intensity in the o^{-} wave near the debated K(1460).

Leakage studies and mass dependent fit needed for definite conclusions.

More hadron physics with COMPASS

- Excellent potential for $KK\pi\pi$ final states (high masses, $f_1(1285)\pi$ and $f_1(1420)\pi$ modes accessible).
- Search for glueballs in central *pp* collisions.
- Baryon spectroscopy.
- Precise OZI tests (see separate talk by J. Bernhard).

Summary

- Evidence for QCD allowed states like multiquarks, glueballs and hybrids still not beyond doubt.
- COMPASS has excellent potential to contribute:
 - Already observed the spin exotic wave $\pi_1(1600)$ in data from 2004 pilot run.
 - A large amount of data were collected with hadron beam in 2008/2009 (10 - 100 times the statistics from previous experiments, depending on the channel).
- COMPASS measures charged and neutral channels:
 - Independent consistency check.
- COMPASS measures kaonic final states.
- COMPASS has access to 3 production mechanisms:
 - Diffractive dissociation
 - Central production
 - Coulomb production
- COMPASS low *t*' data provide test of ChPT first results agree with LO predictions
- COMPASS also offers excellent opportunities to study
 - Baryon spectroscopy
 - OZI tests and spin alignment measurements

