Hadron production from µ-*d* scattering at √s =17GeV at Compass

 $\mu^{+}d \rightarrow \mu^{+}h^{\pm}X$

Astrid Morréale. Hadron Structure 2011 27 June 2011

OMPAS

The **QCD** Proton Picture

That nucleon has a large anomalous magnetic moment proves that this is not *fundamental* spin1/2 Dirac particle.

The **QCD** Proton Picture

That nucleon has a large anomalous magnetic moment proves that this is not

fundamental spin1/2 Dirac particle. Nucleon Spin is Subtle: Quarks, gluons and their angular momentum caused by their high speed motion within the nucleon are contributors to the Nucleon's spin.

The **QCD** Proton Picture

That nucleon has a large anomalous magnetic moment proves that this is not *fundamental* spin1/2 Dirac particle.

Nucleon Spin is Subtle: Quarks, gluons and their angular momentum caused by their high speed motion within the nucleon are contributors to the Nucleon's spin.

Spin physics has open a box full of questions about matter, and it has also laid the groundwork to a plethora of scientific advancements: from the medical field, to astronomy research.

How can we access polarized parton information?

How can we access polarized parton information?

How can we access polarized parton information?

Spin Asymmetries give us access to polarized parton distribution functions

What motivates the Measurement of an Unpolarized Cross-section?

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{i=q,\bar{q},g} \Delta f_{\gamma} \otimes \Delta f_i \otimes \Delta \hat{\sigma} \otimes FF_{h/i}}{\sum_{i=q,\bar{q},g} f_{\gamma} \otimes f_i \otimes \hat{\sigma} \otimes FF_{h/i}}$$

1. Measure the unpolarized differential Cross Section to confirm that the pQCD framework is applicable to data.

What motivates the Measurement of an Unpolarized Cross-section?

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{i=q,\bar{q},g} \Delta f_{\gamma} \otimes \Delta f_i \otimes \Delta \hat{\sigma} \otimes FF_{h/i}}{\sum_{i=q,\bar{q},g} f_{\gamma} \otimes f_i \otimes \hat{\sigma} \otimes FF_{h/i}}$$

1. Measure the unpolarized differential Cross Section to confirm that the pQCD framework is applicable to data.

2. Measure double spin asymmetries (A_{LL}) to extract ΔG using a global analysis.

What motivates the Measurement of an Unpolarized Cross-section?

$$A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}} = \frac{\sum_{i=q,\bar{q},g} \Delta f_{\gamma} \otimes \Delta f_i \otimes \Delta \hat{\sigma} \otimes FF_{h/i}}{\sum_{i=q,\bar{q},g} f_{\gamma} \otimes f_i \otimes \hat{\sigma} \otimes FF_{h/i}}$$

1. Measure the unpolarized differential Cross Section to confirm that the pQCD framework is applicable to data.

2. Measure double spin asymmetries (A_{LL}) to extract ΔG using a global analysis.

\rightarrow The pQCD unpolarized cross section

 π^{0} Cross-Sections at $\eta_{cm} = 0$ Experiment vs Theory in p+p

→ \sqrt{s} =200 GeV (RHIC) Agreementgies?

 π^{0} Cross-Sections at $\eta_{cm} = 0$ Experiment vs Theory in p+p

→ √s=200 GeV (RHIC) Agreement
 → √s=52.8 GeV (ISR) Factor 2 disagreement

 π^{0} Cross-Sections at $\eta_{cm} = 0$ Experiment vs Theory in p+p

→ √s=200 GeV (RHIC) Agreement
→ √s=52.8 GeV (ISR) Factor 2 disagreement
→ √s=38.8 GeV (E706) Disagreement

 π^{0} Cross-Sections at $\eta_{cm} = 0$ Experiment vs Theory in p+p

→ √s=200 GeV (RHIC) Agreement
→ √s=52.8 GeV (ISR) Factor 2 disagreement
→ √s=38.8 GeV (E706) Disagreement
→√s=19.4 GeV (FNAL/E704) Disagreement

Disagreement at lower center of mass energies observed in p+p data

Work needed to understand lower energies?

 π^{0} Cross-Sections at $\eta_{cm} = 0$ Experiment vs Theory in p+p

→ √s=200 GeV (RHIC) Agreement
→ √s=52.8 GeV (ISR) Factor 2 disagreement
→ √s=38.8 GeV (E706) Disagreement
→√s=19.4 GeV (FNAL/E704) Disagreement

Disagreement at lower center of mass energies observed in p+p data

Work needed to understand lower energies?

What about μ +d $\rightarrow \mu$ 'hX? \rightarrow Quasi-real Photo Production

The quasi-real photo production case: NLO pQCD.

Eur. Phys. J. C 36, 371-374 (2004)

 $\rightarrow \pi^0$ production prediction: difficult to compare at the time.

→ The updated calculations for charged hadron production at **Compass' full kinematics** have been performed by V. Wogelsang

16

26/06/11

The quasi-real photo production case: NLO pQCD.

Eur. Phys. J. C 36, 371-374 (2004)

 $\rightarrow \pi^0$ production prediction: difficult to compare at the time.

→ The updated calculations for charged hadron production at **Compass' full kinematics** have been performed by V. Wogelsang

 \rightarrow Radiative contributions calculatic however small, has been calculatec **A. Afanasiev.**

B. Jaeger, M. Stratmann, V. Wogelsang

17

Unpolarized Cross sections: The Measurement

$$\frac{1}{2\pi p_T} \cdot \frac{d^2 \sigma}{dp_T dy} \implies \frac{1}{L^*} \cdot \frac{1}{2\pi p_T} \cdot \frac{d^2 N}{dp_T dy} \implies \frac{1}{2\pi p_T} \frac{N_{h^{\pm}}(p_T)}{\int L dt \,\epsilon_{Acc} \Delta p_T \Delta \eta}$$

 $\int Ldt \rightarrow Integrated luminosity: 142.4 pb^{-1}$

$$N_{h\pm}(p_{\tau}) \rightarrow \text{Number of hadrons in a } p_{\tau} \text{ bin.}$$

 ϵ_{Acc} \rightarrow Detector's geometrical acceptance, reconstruction algorithm, detection efficiencies.

- $\Delta p_{T} \rightarrow Bin width (250 MeV)$
- $\Delta \eta \rightarrow$ Rapidity width (w.r.t. to theory calculation)

The Experiment:

COMPASS @CERN (Prevessin): COMMON APPARATUS FOR MUON SPECTROSCOPY:

¹⁹ Tertiary beam of positive muons produced in the M2 beamline at the ¹⁹ CERN SPS.

The COMPASS detector at CERN's SPS

The kinematic cuts:

•Q2 < 0.1 GeV²/c²

The kinematic cuts:

•Y: From 0.2 to 0.8

23

Luminosity

 \rightarrow Luminosity is measured using the beam scalers spill by spill.

→ Each spill corresponds to the beam delivered by SPS. -Every 16.8 seconds (Flattop duration of 4.8 seconds).

 \rightarrow Detector effects which affect the total beam rate are accounted for: Acquisition, veto (beam halo) deadtimes.

For the data sample of interest the luminosity has been determined within 10% accuracy.

Luminosity: Flattop selection

 \rightarrow Evaluate the spill rates as seen by the beam scaler as a function of time.

 \rightarrow Only events within the flattop are considered (red line)

Data/MonteCarlo

 \rightarrow 7% Systematic error

Cross-sections of h[±]

$\mu^+ d \rightarrow \mu^+ h^\pm X$: Cross-sections.

•2004 **µ**⁺-**d** : 4 Weeks of Data.

Systematic error contributions:
Background and multi-dimensional acceptance extraction.

²⁸ Quasi real photo production compared to NLO pQCD

Cross Sections Separated by Rapidity Bins

Slope variations as a function of rapidity

Preliminary updated calculations with resummations. (de Florian, Pfeuffer, Schaeffer, Vogelsang)

COMPASS

de Florian, Pfeuffer, Schäfer, WV (prel.)

Theory paper under preparation

Ratio h⁻/h⁺

More up quarks in the final state: Conservation of charge.

 \rightarrow Flat as a function of p_{T}

 \rightarrow Sensitive to fragmentation functions.

Integrated over all rapidity accessible in the dataset

Ratio h⁻/h⁺

Theory **does not agree** with experimental results. \rightarrow Fragmentation Functions?

Summary

 \to COMPASS has measured the cross sections of the SIDIS process $\mu^+d\to\mu^+h^\pm X\,$ at high p_ and low Q²

- \rightarrow Results show that within the theory's errors, the data is well described. settles the theory framework (ΔG) through that process.
- \rightarrow **Ratio** of negative to positive cross-sections show a discrepancy at low p_T
- \rightarrow Updated **theory calculations** with resummations are under paper preparation.
- \rightarrow **Results** of these work is finished \rightarrow under paper preparation.
- \rightarrow Asymmetries and ΔG . Ongoing work

T hank You

Astrid Morreale, CEA Saclay, Irfu/SPhN, NSF

Xu-> Au xu

η_{cms}

η_{cms} =-log(tan(θ /2))-0.5*log(2P_{beam}/M_p)

Low $\theta \rightarrow Forward \eta_{cm.}$ High $\theta \rightarrow Central \eta_{cm.}$ (Hard Scattering)

Acceptance

Flat as a function of p_{T}

Secondary interactions in the target

- \rightarrow A hadron produced in the primary vertex
- \rightarrow Sometimes it will re-interact with nuclear material in the target
- \rightarrow Kinematics will be modified introducing a smeared spectrum

Background Estimate

Both models were parametrized and compared to data Fluka agreed while GHEISHA failed to reproduce the data \rightarrow GHEISHA discarded

NLO pQCD: Quasi Real Photo-production of high p_T hadrons

- $\rightarrow \ Low \ Q^2$ (<0.1GeV/c) and high $p_{_T}$.
- \rightarrow NLO Calculation exists for Compass Kinematics.
- → This process has an advantage of higher production rates of hadrons than in (DIS) electro-production.
- → The selected hadron H is at high p_T (>1GeV/c) : large momentum transfer, p_T sets the scale

Partonic contributions to the production of high p_T hadrons at low Q² (<0.5GeV²) in lepton nucleon scattering. c.m= 18 GeV

NLO pQCD: Quasi Real Photo-production of high p_{T} hadrons

- $\rightarrow \ Low \ Q^2$ (<0.1GeV/c) and high $p_{_T}$
- \rightarrow NLO Calculation exists for Compass Kinematics.
- → This process has an advantage of higher production rates of hadrons than in (DIS) electro-production.
- → The selected hadron H is at high p_T (>1GeV/c) : large momentum transfer, p_T sets the scale

 \rightarrow **Direct Processes** contribute with different sign (γg , γq)

Partonic contributions to the production of high p_T hadrons at low Q² (<0.5GeV²) in lepton nucleon scattering. c.m= 18 GeV

NLO pQCD: Quasi Real Photo-production of high p_T hadrons

- \rightarrow NLO Calculation exists for Compass Kinematics.
- → This process has an advantage of higher production rates of hadrons than in (DIS) electro-production.
- → The selected hadron H is at high p_T (>1GeV/c) : large momentum transfer, p_T sets the scale
- \rightarrow Direct Processes contribute with different sign ($\gamma g, \gamma q$)
- \rightarrow **Resolved processes** contribute with the same sign for a positive ΔG (qg, gq, qq, gg)

Partonic contributions to the production of high p_T hadrons at low Q² (<0.5GeV²) in lepton nucleon scattering. c.m= 18 GeV

COMPASS Veto System

Hodoscope 2 Veto₁ Hodoscope 1 Veto'₁ Veto₂ Target z=-300 cm ► µa z=4000 cm z=-800 cm z=4700 cm

Bernet et al. NIMA 550(2005) 217-240.

The compass veto system prevents a large fraction of beam halo tracks from contaminating the trigger sample

During high veto signal times no triggers are taken (this includes good events) \rightarrow The "dead time" effect is taken into account in the Luminosity calculation

irfu Institut de Fecherche sur les lois saclay

The NLO pQCD parametrizations: Asymmetries

Max γ and min γ correspond to minimal and maximal saturation of the polarized photon densities.

B. Jäger et al. Eur. Phys J. C 36, 371-374 (2004)

 \rightarrow Additional ongoing effort by A. Afanasiev to produce a parametrization that takes into account higher twist effects.

 \rightarrow We expect to make available the comparisons between these Models with compass measurements soon.

Sources of Systematic Errors

1.Luminosity extraction Dead times, acquisition. 10%

2.**Background Estimate**: MonteCarlo + Data studies. Two different hadronic shower models studied GHEISHA and Fluka, compared to real data. 5%.

3. Acceptance calculation:

Multi-dimensional acceptance studies in terms of y, w, charge, p_{τ} 3%