TRANSVERSITY 2011 Third International Workshop on TRANSVERSE POLARIZATION PHENOMENA IN HARD SCATTERING

29 August - 2 September 2011 Veli Lošinj, Croatia

Hard Exclusive Processes at COMPASS and COMPASS II DVCS: golden channel for GPD HEMP: ρ⁰, (ρ+,ω,φ,...) or π⁰,...

Nicole d'Hose (CEA-Saclay) On behalf of the COMPASS Collaboration

What makes COMPASS unique for GPD?

What makes COMPASS unique for GPD?

CERN High energy muon beam
 ✓ 100 - 190 GeV
 ✓ µ^{+↓} and µ^{-↑} available
 ✓ 80% Polarisation with opposite polarization

 ✓ 4.6 10⁸ µ⁺
 for 2.7 10¹³ protons / SPS spill (9.6s each 48 s)
 → Lumi= 10³² cm⁻² s⁻¹

with 2.5m LH2 target

Experimental requirement for exclusive measurement DVCS : $\mu p \rightarrow \mu' p \gamma$

Experimental requirement for exclusive measurement DVCS : $\mu p \rightarrow \mu' p \gamma$

Contributions of DVCS and BH at E_u=160 GeV

2009 DVCS test run (10 days, short RPD+target)

+ 22 DVCS

+ about 12 γ from π^0

 \times (0.8)⁴ for SPS + COMPASS avail. + trigger eff + dead time

 $\epsilon_{global} \approx 0.14$ confirmed $\epsilon_{global} = 0.1$ as assumed for COMPASS II predictions Projections for Phase 1 in COMPASS-II (test in autumn 2012 and 2 years 2015-16)

with recoil proton detection and hydrogen target

→ Transverse Imaging : d σ /dt

→Constrains on the GPD H

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu \rho \to \mu \rho \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol}$$
$$+ e_{\mu} a^{BH} Re A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Phase 1: DVCS experiment to study the transverse imaging

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$S_{CS,U} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + K.s_1^{Int} \sin\phi$$
Using S_{CS,U} and BH subtraction
and integration over ϕ

Transverse imaging at COMPASS $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

$$B(x_B) = \frac{1}{2} < r_{\perp}^2 (x_B) >$$

distance between the active quark and the center of momentum of spectators

Transverse size of the nucleon

mainly dominated by $H(x, \xi=x, t)$

related to $\frac{1}{2} < b_{\perp}^{2}(x_{B}) >$

distance between the active quark and the center of momentum of the nucleon

Impact Parameter Representation

 $q(x, b_{\perp}) \iff H(x, \xi=0, t)$

Transverse imaging at COMPASS $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

without any model we can extract $B(x_B)$ $B(x_B) = \frac{1}{2} < r_{\perp}^2 (x_B) >$ r_{\perp} is the transverse size of the nucleon Accuracy > 2.5 σ if $\alpha' = 0.125$ and full ECALS

Transverse imaging at COMPASS $d\sigma^{DVCS}/dt \sim exp(-B|t|)$

2012: we can determine one mean value of B in the COMPASS kinematic range

Transverse imaging at COMPASS $d\sigma^{excl.\rho}/dt \sim exp(-B|t|)$

Transverse imaging at COMPASS $d\sigma^{excl.\rho}/dt \sim exp(-B|t|)$

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Phase 1: DVCS experiment to constrain GPD H

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$\mathcal{D}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \qquad c_0^{Int} + c_1^{Int}\cos\phi \quad \text{and} \quad c_{0,1}^{Int} \sim \mathcal{R}e(\mathcal{F}_1\mathcal{H})$$

$$\mathcal{S}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \qquad d\sigma^{BH} + c_0^{DVCS} + K \cdot s_1^{Int}\sin\phi \quad \text{and} \quad s_1^{Int} \sim Im(\mathcal{F}_1\mathcal{H})$$

Angular decomposition of **sum** and **diff** of the DVCS cross section will provide umambiguous way to separate the *Re* and *Im* of the *Compton Form Factors* from higher twist contributions

Deeply Virtual Compton Scattering

$$d\sigma_{(\mu p \to \mu p \gamma)} = d\sigma^{BH} + d\sigma^{DVCS}_{unpol} + P_{\mu} d\sigma^{DVCS}_{pol} + e_{\mu} a^{BH} \mathcal{R}e A^{DVCS} + e_{\mu} P_{\mu} a^{BH} Im A^{DVCS}$$

Phase 1: DVCS experiment to constrain GPD H

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam + unpolarized 2.5m long LH2 (proton) target

$$\mathcal{D}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) - d\sigma(\mu^{-\uparrow}) \propto \qquad c_0^{Int} + c_1^{Int} \cos\phi \quad \text{and} \quad c_{0,1}^{Int} \sim \mathcal{R}e(\mathcal{F}_1 \mathcal{H})$$

$$\mathcal{S}_{cs,\upsilon} \equiv d\sigma(\mu^{+\downarrow}) + d\sigma(\mu^{-\uparrow}) \propto \qquad d\sigma^{BH} + c_0^{DVCS} + K s_1^{Int} \sin\phi \quad \text{and} \quad s_1^{Int} \sim Im(\mathcal{F}_1 \mathcal{H})$$

$$> Im \mathcal{H}(\xi,t) = \mathbf{H}(x=\xi,\xi,t)$$

$$> \mathcal{R}e \mathcal{H}(\xi,t) = \mathcal{P} \int dx \mathbf{H}(x,\xi,t) / (x-\xi)$$

dominance of H at COMPASS kinematics

Beam Charge and Spin Difference (using **D**_{CS,U})

Comparison to different models

High precision beam flux and acceptance determination Systematic error bands assuming a 3% charge-dependent effect between μ + and μ - (control with inclusive evts, BH...)

Beam Charge and Spin Difference over the kinematic domain

Statistics and Systematics

With ECAL2 + ECAL1 + ECAL0

Constrains on the GPD E

on transversely polarized protons (NH3 target)

1) without recoil detection (2007 & 2010)

2) with recoil detection Phase 2 (in a future addendum)

the GPD **E** allows nucleon helicity flip so it is related to the angular momentum

Ji sum rule:
$$2J_q = \int x (H^q (x,\xi,0) + E^q (x,\xi,0)) dx$$

The GPD E is the 'Holy-Grail' of the GPD quest

Hard Exclusive Vector Meson Production

 $\mathbf{A}_{\mathrm{UT}}(\rho^{0}_{\mathrm{L}}) \propto \sqrt{|\mathbf{t'}|} \operatorname{Im}(\mathbf{\mathcal{E}}^{*} \mathbf{\mathcal{H}}) / |\mathbf{\mathcal{H}}|^{2}$ $\times \sin(\phi - \phi_s)$

Hard Exclusive Vector Meson Production

$$A_{UT}(\rho_{L}^{0}) \propto \sqrt{|-t'|} Im(\mathcal{E}^{*}\mathcal{H}) / |\mathcal{H}|^{2}$$

Goloskokov-Kroll: the most complete model (Q²>3GeV² x<0.2) with H and E for quarks and gluons

and with quark transverse degrees of freedom

the asymptotically dominant (longitudinal) amplitude for $\gamma_{L}^{*} \mathbf{p} \rightarrow \rho_{L} \mathbf{p}$ but also the one for transversely polarized photons and vector mesons $\gamma_{T}^{*} \mathbf{p} \rightarrow \rho_{T} \mathbf{p}$

2007 results for the Transverse Target Asymmetry

 $\mathbf{A}_{\mathrm{UT}}(\rho^{0}) \propto \sqrt{|\mathbf{t'}|} \operatorname{Im}(\mathbf{\mathcal{E}}^{*} \mathbf{\mathcal{H}}) / |\mathbf{\mathcal{H}}|^{2}$

 $A_{UT}(\omega)$ and $A_{UT}(\rho^+)$ should be more promising To be completed with the analysis of 2010 data

Deeply Virtual Compton Scattering

Phase 2 (in future): DVCS experiment to constrain GPD E

with $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ beam and transversely polarized NH3 (proton) target

 $\mathcal{D}_{CS,T} = d\sigma_T (\mu^{+\downarrow}) - d\sigma_T (\mu^{-\uparrow})$ $\propto Im(F_2 \mathcal{H} - F_1 \mathcal{E}) \sin(\phi - \phi_S) \cos \phi$

D_{CS,T} and Transverse Target Asymmetry

2 years of data

160 GeV muon beam

Prediction for phase 2 (in future) With a transversely polarized NH3 (proton) target:

Summary for GPD @ COMPASS

GPDs investigated with Hard Exclusive Photon and Meson Production

 $\mu^{+\downarrow}$, $\mu^{-\uparrow}$ 160 GeV

COMPASS-II 2012-16: with LH₂ target + RPD (phase 1)

- ✓ the t-slope of the DVCS and HEMP cross section
 → transverse distribution of partons
- ✓ the Beam Charge and Spin Sum and Difference → Re T^{DVCS} and Im T^{DVCS} for the GPD H determination
- ✓ Longitudinal contribution of Vector Meson $\rho^0, \rho^*, \omega \rightarrow \text{GPD H}$
- ✓ Total contribution of π^0 → GPDs Etilde and E_T

Using the 2007-10 data: transv. polarized NH₃ target without RPD In a future addendum > 2016: transv. polarised NH₃ target with RPD (phase 2) ✓ the Transverse Target Spin Asymm → GPD E and angular momentum of partons

A very long and beautiful trip

« This desserves the detour »

HERA HERMES COMPASS

And future colliders