Transverse target spin asymmetries at COMPASS

Christoph Adolph
Universität Erlangen-Nürnberg
on behalf of the COMPASS collaboration

Hadron Structure '11, Tatranská Štrba, Slovak Republic
The COMPASS experiment at CERN
The COMPASS spectrometer in 2007

- Two stage spectrometer
- Longitudinal polarized μ-beam
- 2002-2004 polarized 6LiD (deuterium) target
- 2007 & 2010 polarized NH$_3$ (proton) target
- Tracking
- Calorimetry
- Particle identification (RICH)

beam: 160 GeV/c
intensity: $2 \cdot 10^8 \mu^+/$spill
luminosity: $5 \cdot 10^{32}$ cm$^{-2}$ s$^{-1}$
The COMPASS target system

- Upgrade of target system in 2005
- Three cells with opposite polarisation (2002-04 two cells)
- 180 mrad geometrical acceptance
- ^6LiD:
 - polarization: $\sim48\%$
 - dilution factor: ~0.38
- NH_3:
 - polarization: $\sim90\%$
 - dilution factor: ~0.15
- Transverse polarization reversed every week via microwave
Spin structure → Transversity

Three distribution functions are necessary to describe the spin structure of the nucleon in LO:

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$f_1(x)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>$g_1(x)$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>$h_1(x)$</td>
</tr>
</tbody>
</table>

Quark distribution
$q(x) = q^+(x) + q^-(x)$

Helicity distribution
$\Delta q(x) = q^+(x) - q^-(x)$

Transversity distribution
$\Delta_\perp q(x) = q^\perp(x) - q^{\perp}(x)$

- $l N^\uparrow \rightarrow l' hX$ Collins FF
- $l N^\uparrow \rightarrow l' hhX$ Interference FF
- $l N^\uparrow \rightarrow l' \Lambda X$ FF of $q^\perp \rightarrow \Lambda$
Spin structure → Transversity

Three distribution functions are necessary to describe the spin structure of the nucleon in LO:

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$f_1(x)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>$g_1(x)$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td>$h_1(x)$</td>
</tr>
</tbody>
</table>

Quark distribution
\[q(x) = q^+(x) + q^-(x) \]

Helicity distribution
\[\Delta q(x) = q^+(x) - q^-(x) \]

Transversity distribution
\[\Delta \Delta q(x) = q^\perp(x) - q^{\perp\perp}(x) \]

- $l N^\uparrow \rightarrow l' h X$ **Collins FF**
- $l N^\uparrow \rightarrow l' h h X$ **Interference FF**
- $l N^\uparrow \rightarrow l' \Lambda X$ **FF of $q^\perp \rightarrow \Lambda$**
The Collins modulation

For measuring Transversity quark spin must flip:
→ $\Delta_T q(x)$ decouples from inclusive DIS

Product of $\Delta_T q(x)$ and another chiral-odd function needed: Collins FF $\Delta^0_T D^h_q$
→ $\Delta_T q(x)$ can be extracted via SIDIS on a transversely polarized target.

$$A_{Coll} = \frac{A_C^h}{f \cdot P_T \cdot D_{nn}} = \frac{\sum_q e_q^2 \Delta_T q \cdot \Delta^0_T D^h_q}{\sum_q e_q^2 q \cdot D^h_q}$$

with P_T the target polarization, f the dilution factor and D_{NN} the spin transfer coefficient from the initial to the struck quark

Azimuthal distribution of the produced hadrons:

$$N^\pm_h(\Phi_C) = N^0_h(1 \pm A_C^h \sin(\Phi_C))$$

with Collins angle $\Phi_C = \phi_h - \phi_{s'} = \phi_h + \phi_S - \pi$
Hadron statistics

Deuteron data (2002-2004)

Charged hadrons

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h^+</td>
<td>8.5M</td>
<td></td>
</tr>
<tr>
<td>h^-</td>
<td>7.0M</td>
<td></td>
</tr>
</tbody>
</table>

Identified hadrons

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>π^+</td>
<td>5.2M</td>
<td></td>
</tr>
<tr>
<td>π^-</td>
<td>4.5M</td>
<td></td>
</tr>
<tr>
<td>K^+</td>
<td>0.9M</td>
<td></td>
</tr>
<tr>
<td>K^-</td>
<td>0.6M</td>
<td></td>
</tr>
</tbody>
</table>

Proton data (2007)

Charged hadrons

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>h^+</td>
<td>15.1M</td>
<td>10.2M</td>
</tr>
<tr>
<td>h^-</td>
<td>12.0M</td>
<td>8.1M</td>
</tr>
</tbody>
</table>

Identified hadrons

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>π^+</td>
<td>9.6M</td>
<td>6.6M</td>
</tr>
<tr>
<td>π^-</td>
<td>8.4M</td>
<td>5.8M</td>
</tr>
<tr>
<td>K^+</td>
<td>1.7M</td>
<td>1.2M</td>
</tr>
<tr>
<td>K^-</td>
<td>1.1M</td>
<td>0.7M</td>
</tr>
</tbody>
</table>
The Collins modulation – 2007 data

- at small x asymmetries are compatible with zero
- Large signal in the valence region of opposite sign for positive and negative hadrons

$\sigma_{syst} \sim 0.5 \sigma_{stat}$
The Collins modulation

deuteron \leftrightarrow proton

\[A_{Coll}^p \]

proton

Large signal in the valence region

\[A_{Coll}^d \]

deuteron

Asymmetries compatible with zero for deuteron data \rightarrow u-d cancellation

27.6.2011

Christoph Adolph
The Collins modulation
Comparison to model predictions

Comparison with the predictions from the fit to the COMPASS deuteron data, HERMES proton data and BELLE e+e− data (Anselmino et al.):
Hadron identification

RICH

- C_4F_{10} radiator gas
- likelihood-based algorithm
- purity of π sample $> 99\%$

COMPASS 2007 proton data

- $p_{\pi} \sim 3\,\text{GeV}/c$
- $p_{K} \sim 9\,\text{GeV}/c$
- $p_{\pi}^{p} \sim 17\,\text{GeV}/c$
- $p_{\pi}^{2007} \sim 50\,\text{GeV}/c$
The Collins modulation
Identified hadrons 2007

strong signal for π in the valence region

\[K^+, \pi^+: \sigma_{syst} \sim 0.5 \sigma_{stat} \quad ; \quad K^-, \pi^-: \sigma_{syst} \sim 0.7 \sigma_{stat} \]

negative trend for K^+

positive trend for K^-
The Collins modulation
Identified hadrons compared to Hermes

COMPASS 2007 proton data

preliminary

positive K

negative K

preliminary

positive π

negative π
The Collins modulation
Comparison to model predictions of identified pions

COMPASS 2007 proton data

\[A^p_{\text{Coll}} \]

π⁺

π⁻

COMPASS 2007 proton data

M.Anselmino et al.

Transverse spin physics

Taking into account the transverse momentum k_T of the quarks:

<table>
<thead>
<tr>
<th>nucleon</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$f_1(x)$</td>
<td>$g_1(x)$</td>
<td>$h_1(x)$</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transverse spin physics: TMDs

Taking into account the transverse momentum k_T of the quarks:

<table>
<thead>
<tr>
<th>nucleon</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>$f_1(x, k_T)$</td>
<td></td>
<td>$h_{1T}^l(x, k_T)$ Boer-Mulders</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>$g_1(x, k_T)$</td>
<td>$h_{1L}^l(x, k_T)$ Worm-gear 1</td>
</tr>
<tr>
<td>T</td>
<td>$f_{1T}^l(x, k_T)$ Sivers</td>
<td>$g_{1T}^l(x, k_T)$ Worm-gear 2</td>
<td>$h_{1T}^l(x, k_T)$ Transversity $h_{1T}^l(x, k_T)$ Pretzelosity</td>
</tr>
</tbody>
</table>
The Sivers modulation

Sivers function $f_{1T}^I(x,k_T)$: Correlation between the transverse spin of a nucleon and the intrinsic transverse momentum of unpolarized quarks

$$A_{Siv} = \frac{A_S^h}{f \cdot P_T} = \frac{\sum_q e_q^2 \cdot f_{1Tq}^I D_q^h}{\sum_q e_q^2 \cdot f_{1q} D_q^h}$$

Azimuthal distribution of the produced hadrons:

$$N_{h}^{\pm}(\Phi_C) = N_{h}^{0}(1 \pm A_S^h \sin(\Phi_S))$$

With Sivers angle $\Phi_S = \phi_h - \phi_s$
The Sivers modulation - 2007 data

- positive signal for positive hadrons
- h^- asymmetry compatible with zero
The Sivers modulation
deuteron \leftrightarrow proton

proton

![Graph showing A_{Siv}^p vs x and p_T^h](image1)

- Positive signal for positive hadrons

deuteron

![Graph showing A_{Siv}^d vs x and p_T^h](image2)

- Compatible with zero

27.6.2011

Christoph Adolph
The Sivers modulation W dependency?

Hints for a possible W dependence of the h^+ Sivers asymmetry

PLB 692 (2010)

COMPASS 2007 proton data

\begin{align*}
A_S^{p}\text{ (positive hadrons)} & \quad A_S^{n}\text{ (negative hadrons)} \\
\begin{array}{c}
\begin{array}{c}
\text{positive hadrons} \\
\text{negative hadrons}
\end{array}
\end{array}
\end{align*}

\begin{align*}
A_S^{p} & \quad A_S^{n}
\end{align*}

\begin{align*}
\langle Q^2 \rangle & \text{ (GeV/c}^2) \quad W \text{ (GeV/c}^2)
\end{align*}

\begin{align*}
\langle Q^2 \rangle & \text{ (GeV/c}^2) \\
\begin{array}{c}
\begin{array}{c}
W>7.5 \text{ GeV/c}^2 \\
W<7.5 \text{ GeV/c}^2
\end{array}
\end{array}
\end{align*}

27.6.2011

Christoph Adolph
The Sivers modulation
Comparison to model predictions

Comparison with the predictions from the fit to the COMPASS deuteron and HERMES proton data:

A_{Sy} vs. x
A_{Sy} vs. z
A_{Sy} vs. p_T^h
The Sivers modulation
Identified hadrons

\[A_{Siv}^P \]

\(K^+, K^-, \pi^- \sim 0.5\sigma_{\text{stat}}, \pi^+ \sim 0.6\sigma_{\text{stat}}, \pi^+ \text{ scale uncertainty} \pm 0.012 \text{ (abs.)} \)

\[A_{Siv}^P \]

\(K^+, K^-, \pi^- \sim 0.5\sigma_{\text{stat}}, \pi^+ \sim 0.6\sigma_{\text{stat}}, \pi^+ \text{ scale uncertainty} \pm 0.012 \text{ (abs.)} \)
The Sivers modulation
Identified hadrons

COMPASS 2007 proton data

preliminary

COMPASS 2007 transverse proton data

Clear signal for Sivers asymmetry at small values of W
Conclusions

2007 proton data fully analysed:
- large Collins asymmetry
- positive signal for Sivers asymmetry for positive hadrons
- possible W dependence of Sivers asymmetry
- Sivers asymmetry for K^+ larger than for all positive hadrons
- clear signal for Sivers asymmetry for K^+ at small values of W

2010: one year of data taking on a transversely polarized proton target
- higher statistics
- analysis ongoing
SPARES
Data selection
DIS cuts

\[Q^2 > 1 \text{ (GeV}/c)^2 \]
\[0.1 < y < 0.9 \]
\[W > 5 \text{ GeV}/c^2 \]
Data selection
Hadron cuts

\[p_T > 0.1 \text{ GeV}/c \]
\[z > 0.2 \]
Identified hadrons
kinematical values

COMPASS 2007 transverse proton data

dN/dln(x)

charged hadrons
charged π
charged K

COMPASS 2007 transverse proton data

dN/dp_T

COMPASS 2007 transverse proton data

dN/dz

COMPASS 2007 transverse proton data

dN/dy

27.6.2011
Christoph Adolph