

Quark Helicity Distributions from Longitudinal Spin Asymmetries in Muon-Proton and Muon-Deuteron Scattering measured by COMPASS at CERN

R. Windmolders

University of Bonn

On behalf of the COMPASS Collaboration

Contents

- COMPASS longitudinal DIS and SIDIS proton data (2007)
- LO extraction of polarised parton densities (PDFs) Δq , $\Delta \overline{q}$ from COMPASS proton and deuteron (2002-2006) asymmetries
- New Results
 - $-\Delta s(x)$ and $\Delta \overline{s}(x)$
 - Flavour asymmetry of the sea $\Delta \overline{u} \Delta \overline{d}$
 - Moments of polarised PDFs
 - * Measured range $\Rightarrow 0 < x < 1$
 - * Dependence on fragmentation functions
 - * Consistency with previous COMPASS results
- The Δs puzzle (DIS vs. SIDIS)
- Conclusions and prospects
- Reference arXiv:1007.4061v1/hep-ex/ (to be published in Phys.Lett.B)

A short review of COMPASS DIS and SIDIS results

2007	$g_1^d(x), \int g_1^d(x)dx$	$\Delta \Sigma = \sum (\Delta q + \Delta \overline{q})$
2008	$A_{1,d}^{h^+-h^-}$	$\Delta u_v + \Delta d_v$
2009	$A_{1,d}, A_{1,d}^{\pi^{+,-}}, A_{1,d}^{K+,-}$	$\Delta u_v + \Delta d_v, \Delta \overline{u} + \Delta \overline{d}, \Delta s (= \Delta \overline{s})$
2010	$g_1^p(x), \int g_1^{NS}(x)dx$	$ g_A/g_V $
2010	$A_{1,d}, A_{1,d}^{\pi^{+,-}}, A_{1,d}^{K+,-},$	$\Delta u, \Delta d, \Delta \overline{u}, \Delta \overline{d},$
	$A_{1,p}, A_{1,p}^{\pi^{+,-}}, A_{1,p}^{K+,-}$	$\Delta s, \Delta \overline{s}$

COMPASS longitudinal SIDIS data

	2002 - 2006 ⁶ LiD target	2007 NH ₃ target
E_{μ}	$160 \mathrm{GeV}$	$160 \mathrm{GeV}$
P_{μ}	≈ -0.80	≈ -0.80
$ \mathrm{P}_T $	≈ 0.50	≈ 0.90
Dilution factor f	≈ 0.37	≈ 0.14
$f\left \mathrm{P}_{T}\right $	pprox 0.20	pprox 0.13

Selection criteria

Events	Hadrons
$Q^2 > 1 (GeV/c)^2$	0.2 < z < 0.85
0.1 < y < 0.9	10 < P < 50 GeV/c
0.004 < x < 0.7	(RICH IDENT)

COMPASS longitudinal SIDIS data

Purity of hadron samples

	⁶ LiD target	NH ₃ target
π^+	≥ 0.98	≥ 0.98
π^-	≥ 0.98	≥ 0.98
K ⁺	$0.80 \Rightarrow 0.93$	$0.73 \Rightarrow 0.93$
K^-	$0.80 \Rightarrow 0.91$	$0.73 \Rightarrow 0.91$

COMPASS asymmetries on deuteron (2009) Curves = DSSV fit

COMPASS asymmetries on proton Comparison with HERMES and DSSV fit

• Correlated statistical errors in a given x interval:

$$\Rightarrow \rho(A_{1,p}^{\pi+}, A_{1,p}) \approx (0.30 - 0.45).$$

• Unfolding of A^K, A^{π} $\Rightarrow \rho < 0$ if same sign $(\approx -0.16 \text{ at small } x).$

Systematic errors on COMPASS asymmetries

	⁶ LiD target	NH ₃ target
P_B	5%	5%
P_T	5%	2%
f	2%	1%
$R = \sigma_L/\sigma_T$	2 - 3%	$\leq 3\%$
"False asym."	$\leq 0.4 \sigma_{\mathrm{stat.}}$	$\leq 0.56 \sigma_{\mathrm{stat.}}$

Corrections to asymmetries

- **QED** radiative corrections applied to all asymmetries (≤ 0.019).
- **Proton** asymmetries corrected for 14 N polarisation (≤ 0.015).
- **Deuteron** asymmetries corrected for ${}^{7}\text{Li}$ and ${}^{1}\text{H}$ admixture in target material (≤ 0.020). **NOT applied in the 2008 analysis.**

LO extraction of polarised PDFs

$$A^h(x,z) = \frac{\sum_q e_q^2 \left[\Delta q(x) D_q^h(z) + \Delta \overline{q}(x) D_{\overline{q}}^h(z) \right]}{\sum_q e_q^2 \left[q(x) D_q^h(z) + \overline{q}(x) D_{\overline{q}}^h(z) \right]}$$

• Inputs: 10 asymmetries for each interval of x

$$A_{1,p}$$
 $A_{1,p}^{\pi+}$ $A_{1,p}^{\pi-}$ $A_{1,p}^{K+}$ $A_{1,p}^{K-}$ $A_{1,d}^{K-}$ $A_{1,d}^{\pi+}$ $A_{1,d}^{\pi-}$ $A_{1,d}^{K+}$ $A_{1,d}^{K-}$

- Unknowns: 6 polarised PDFs Δu , Δd , $\Delta \overline{u}$, $\Delta \overline{d}$, Δs , $\Delta \overline{s}$ =====> (reduced to 5 if $\Delta s = \Delta \overline{s}$ is assumed)
- Q^2 dependence of asymmetries neglected $\Rightarrow Q^2 = 3 \; (\text{GeV/c})^2$
- $q(x), \overline{q}(x)$ from MRST2004LO, corrected by $(1 + R(x, Q^2))$
- $D_q^h, D_{\overline{q}}^h$ fragmentation functions (FF) from DSS fit at LO

Δs and $\Delta \overline{s}$ from COMPASS asymmetries and the Difference $\Delta s - \Delta \overline{s}$

- Fixed $Q^2 = 3 (\text{GeV}/c)^2$
- FF from DSS
- No significant difference: one point at 2.7σ
- Stable for changes in s(x), $\overline{s}(x)$ or FFs
- $\Delta s = \Delta \overline{s}$ assumed for subsequent analysis

Extraction of PDFs assuming $\Delta s = \Delta \overline{s}$

- Least square fit in each interval of x (0.004 < x < 0.3): 10 asymmetries, 5 unknowns
- Data compatible with LO formula: $1.8/5 < (\chi^2/ND) < 8.5/5$
- Errors reduced at least by factor 1.5

LO PDFs at $Q^2 = 3$ (GeV/c)² from COMPASS asymmetries Curves = DSSV fit (NLO)

• Valence quarks

- $-\Delta u > 0, \, \Delta d < 0 \Rightarrow \text{dominant}$
- 3 points at x > 0.3 derived assuming $\Delta \overline{q} = 0$
- shapes \approx DSSV curves
- Syst.error mainly from P_{μ} (5%)

• Sea quarks

- All compatible with zero
- Slight indication for $\Delta \overline{d} < 0$
- No indication for $\Delta s < 0$ or changing sign
- Syst.error mainly from "false asymmetries"

The flavour asymmetry of the sea $\Delta \overline{u}$ - $\Delta \overline{d}$

- $\Delta \overline{u} \Delta \overline{d} \ge 0$ and $\Delta \overline{u} \Delta \overline{d} \le \overline{d} \overline{u}$
- First moment: $\Gamma_{0.004}^{0.7} = 0.06 \pm 0.04 \pm 0.02$
- Consistent with statistical model (BSB) and CQSM (Wakamatsu) (≥ 0)
- Within errors also consistent with meson cloud model (KM) (<0)
- Need reduction of error by factor ≥ 2 to discriminate between models

First moments of polarised PDFs

at
$$Q^2 = 3 \; (\text{GeV}/c)^2$$

•
$$0.004 < x < 0.3$$

COMPASS, LO fit of asymmetries

•
$$0.3 < x < 0.7$$

COMPASS, $g_1^d(x)$, $g_1^p(x)$, $\Delta \overline{q} = 0$ assumed

•
$$0.7 < x < 1$$

Data extrapolation (negligible)

•
$$0 < x < 0.004$$

2 options:

$$\Delta \overline{q} \approx 0$$

$$\Delta \overline{d} < 0, \ \Delta \overline{s} < 0$$

First moments (continued)

$$Q^2 = 3 \, \left(\mathbf{GeV}/c \right)^2$$

	0.004 < x < 0.7	0 < x < 1 (Extrap.)	0 < x < 1 (DSSV)
Δu	$0.69 \pm 0.02 \pm 0.03$	$0.71 \pm 0.02 \pm 0.03$	$0.71 \pm 0.02 \pm 0.03$
Δd	$-0.33 \pm 0.04 \pm 0.03$	$-0.34 \pm 0.04 \pm 0.03$	$-0.35 \pm 0.04 \pm 0.03$
$\Delta \overline{u}$	$0.02 \pm 0.02 \pm 0.01$	$0.02 \pm 0.02 \pm 0.01$	$0.03 \pm 0.02 \pm 0.01$
$\Delta \overline{d}$	$-0.05 \pm 0.03 \pm 0.02$	$-0.05 \pm 0.03 \pm 0.02$	$-0.07 \pm 0.03 \pm 0.02$
$\Delta s(\Delta \overline{s})$	$-0.01 \pm 0.01 \pm 0.01$	$-0.01 \pm 0.01 \pm 0.01$	$-0.05 \pm 0.01 \pm 0.01$
Δu_v	$0.67 \pm 0.03 \pm 0.03$	$0.68 \pm 0.03 \pm 0.03$	$0.68 \pm 0.03 \pm 0.03$
Δd_v	$-0.28 \pm 0.06 \pm 0.03$	$-0.29 \pm 0.06 \pm 0.03$	$-0.28 \pm 0.06 \pm 0.03$
$\Delta\Sigma$	$0.31 \pm 0.03 \pm 0.03$	$0.32 \pm 0.03 \pm 0.03$	$0.22 \pm 0.03 \pm 0.03$

First Moments (continued)

$$Q^2 = 3 \ (\text{GeV}/c)^2$$

Consistency with previous COMPASS results

• $\Delta \Sigma = 0.32 \pm 0.03 \pm 0.03$

$$a_0 = 0.33 \pm 0.03 \pm 0.05 \text{ (NLO)}$$

from $\int g_1^d(x)dx$, with a_8 from hyperon decays (= 0.585 ± 0.025)

COMPASS, Phys. Lett. B647 (2007) 8

• $\Delta u_v + \Delta d_v = 0.39 \pm 0.03 \pm 0.04$

$$\Delta u_v + \Delta d_v = 0.41 \pm 0.07 \pm 0.06$$

from
$$A^{h^+-h^-}$$
 (at $Q^2 = 10 \; (\text{GeV}/c)^2$)

COMPASS, Phys. Lett.B660 (2008) 458

Dependence of moments of PDFs on fragmentation functions

- $D_{q,\overline{q}}^{\pi}$ better constrained by data than $D_{q,\overline{q}}^{K}$
- Relation asymmetries \Leftrightarrow PDFs depends on two ratios of FFs into kaons: "unfavoured to favoured" R_{UF} and "strange to favoured" R_{SF}

$$R_{UF} = \frac{\int D_d^{K^+}(z)dz}{\int D_u^{K^+}(z)dz}$$

$$\Leftrightarrow$$

$$R_{SF} = \frac{\int D_{\overline{s}}^{K^+}(z)dz}{\int D_u^{K^+}(z)dz}$$

• At
$$Q^2 = 3 (\text{GeV}/c)^2$$
:

	DSS	EMC
R_{UF}	0.14	0.35
R_{SF}	6.6	3.4

• Move simultaneously R_{SF} and R_{UF} from DSS to EMC values and check variation of moments Δq , $\Delta \overline{q}$

Moments of PDFs vs. fragmentation functions (decrease of R_{SF} and increase of R_{UF} from DSS to EMC values)

- Increase of Δu by $\approx 1.0 \,\sigma_{\rm stat.}$
- Decrease of $\Delta \overline{u}$ by $\approx 1.0 \,\sigma_{\rm stat.}$
- Negligible effect on Δd and $\Delta \overline{d}$
- Decrease of $\Delta \overline{u} \Delta \overline{d}$ by $0.5 \sigma_{\text{stat.}}$
- Decrease of Δs to -0.04 with two times larger statistical error
- Limited effect on K⁺ and K⁻ rates

The Δs puzzle (DIS vs. SIDIS)

- Δs from DIS: $\Gamma_1^N = \frac{1}{2} \int (g_1^p(x) + g_1^n(x)) dx$
 - LO relations

$$\Gamma_1^N = \frac{1}{9}(a_0 + \frac{1}{4}a_8)$$

$$\Delta s + \Delta \overline{s} = \frac{1}{3}(a_0 - a_8)$$

$$\Delta s + \Delta \overline{s} = 3\Gamma_1^N - \frac{5}{12}a_8$$

- $\Gamma_1^N \approx 0.05$ (COMPASS, $Q^2 = 3$ (GeV/c)²) $a_8 = 0.585 \pm 0.025$ (Hyperon decays, assuming SU(3)_f symmetry)
- Hence $\Delta s + \Delta \overline{s} < 0 \ (\approx -0.09)$
- Δs from SIDIS: $\Delta s(x)$ measured in limited range of x
 - HERMES (x > 0.02): No indication for $\Delta s(x) < 0$
 - COMPASS (x > 0.004): No indication for $\Delta s(x) < 0$
- νp elastic data and PV $\vec{e}p$ asymmetries $\Rightarrow \Delta s < 0$ (S. Pate, this conference)

The Δs puzzle (DIS vs. SIDIS) Possible ways out

- (1) Uncertainty on FFs \Rightarrow SIDIS results questionable (?) Would need strong reduction of R_{SF} (to ≈ 3 vs. 6.6 in DSS fit)
- (2) SIDIS data cover a limited range in xLarge negative contribution to Δs in unmeasured region at low $x \Rightarrow \int_{\text{SIDIS}} \Delta s(x) dx = \int_{\text{DIS}} \Delta s(x) dx$
 - DSSV fit (2008)
 - LSS10 fit, including COMPASS data (cf. A. Sidorov, this conference)
- (3) Assume $a_8 < 0.585$ due to $SU(3)_f$ violation $a_8 \to (a_8 \epsilon)$ implies $a_0 \to (a_0 + \epsilon/4)$ to keep Γ_1^N constant and $\Delta s + \Delta \overline{s} \to \Delta s + \Delta \overline{s} + (5/12)\epsilon$ Cloudy bag model calculations $\Rightarrow a_8 \approx 0.42$ and $\Delta s + \Delta \overline{s} \approx -0.02$ cf. S.D.Bass and A.W.Thomas, Phys.Lett. B684(2010)216

Present fixed target data may improve on (1) but cannot discriminate (2) vs.(3).

Conclusions and prospects

• New evaluation of polarised PDFs at LO

- Δq , $\Delta \overline{q}$ from COMPASS DIS and SIDIS K^{+,-} and $\pi^{+,-}$ asymmetries on ⁶LiD and NH₃ targets
- $-\Delta \overline{q}$ distributions are small over measured range of x (0.004 < x < 0.3)
- No significant difference between $\Delta s(x)$ and $\Delta \overline{s}(x)$
- $-(\Delta \overline{u} \Delta \overline{d}) > 0$ (at 1.5 $\sigma_{\rm stat}$ but not larger than $\overline{d} \overline{u}$)
- Moments of Δu , $\Delta \overline{u}$ and Δs found to vary with choice of kaon FFs. Variation is critical for Δs (becomes negative with large error for $R_{SF} \leq 4$)

• Future

- 2011 COMPASS data on NH₃ target will improve precision on $(\Delta \overline{u} \Delta \overline{d})$ and help discriminate between models
- Ongoing investigations on FFs from COMPASS K^+ and K^- rates will at least clarify (if not solve) the Δs puzzle