Probing strangeness in SIDIS at HERMES & COMPASS

F.Kunne - CEA Saclay, France

- Longitudinal spin: Strange quark helicity $\Delta s(x)$
- Unpolarized case: Strange quark distribution s(x)
- Outlook

International Workshop on Probing Strangeness in Hard Processes, Frascati, Italy, Oct. 18-21, 2010

Nucleon spin

Quark spin contribution $\Delta \Sigma = \Delta u + \Delta d + \Delta s$

$$\Delta q = \dot{q} - \dot{q}$$

Parton spin parallel or anti parallel to nucleon spin

Access to integral of $\Delta\Sigma$ and Δs through inclusive DIS Access to x distributions through semi-inclusive DIS (SIDIS) Quark spin contribution $\Delta \Sigma = \Delta u + \Delta d + \Delta s$ from inclusive DIS ...

 μ N Deep Inelastic Scattering DIS $F_1(x) \rightarrow 1/2 \sum_{u,d,s} e^2 q(x)$

Q² > 1 (GeV/c)² x_{Bj} parton momentum fraction

µ N Polarized DIS

Virtual γ couples to opposite helicity quark \rightarrow measure one helicity distribution $\vec{q}(x)$

By reversing nucleon polarization \rightarrow measure other helicity distribution q(x)

$$\Delta q = \overrightarrow{q} - \overrightarrow{q}$$

$$g_1(x) \rightarrow 1/2 \sum_{u,d,s} e_q^2 \Delta q(x)$$

Spin asymmetry $A = \frac{N - N}{N + N} = \frac{g_1}{F_1}$

$$\sum_{u,\underline{d},\underline{s}} e_q^2 \Delta q(x)$$
$$\sum_{u,d,\underline{s}} e_q^2 q(x)$$

g_1 and quark spin contribution $\Delta \Sigma$ from inclusive DIS...

• measure
$$\int_{0}^{1} g_{1}^{p} dx \longrightarrow 4\Delta u + \Delta d + \Delta s$$

neutron decay constant

$$a_3 = \Delta u - \Delta d = g_A = 1.257$$

• hyperon β decay +SU(3) $a_8 = \Delta u + \Delta d - 2\Delta s = 0.585 \pm 0.025$

 \rightarrow Extract Δu , Δd , Δs and the sum $\Delta \Sigma$

HERA e⁺ & e⁻ 27 GeV longitudinaly polarized ~ 54%

Gaseous internal target

Longit. Polar. 85% H, D, He Transv. Polar H Unpol H, D, Ne, Kr

HERMES at DESY

1995 to 2007

COMPASS at CERN

$\Delta \Sigma$ from Spin structure function g_1 from inclusive DIS...

COMPASS

 $\Delta \Sigma = 0.30 \pm 0.01 \text{ (stat)} \pm 0.02 \text{ (evol)}$ COMPASS fit to $g_1^{\text{p,n,d}}$ world data, $\overline{\text{MS}}$ scheme, $Q^2=3 (GeV/c)^2$ PLB 647 (2007) 8

 $\Delta s + \Delta \overline{s} = -0.08 \pm 0.01$ (stat) ± 0.02 (evol) COMPASS data only

HERMES

 $\Delta \Sigma = 0.33 \pm 0.011 \text{ (stat)} \pm 0.025 \text{ (theo)} \pm 0.028 \text{ (evol)}$ HERMES from g_1^d data, MS scheme, Q²=5 (GeV/c)², neglecting x < 0.02contrib., PRD75 (2007)012007

 $\Delta s + \Delta s = -0.085 \pm 0.013$ (th) ± 0.008 (exp) ± 0.009 (evol)

Flavor dependent quark helicity distributions from semi-inclusive DIS...

• Outgoing hadron tags quark flavour • Need to know fragmentation functions of quark q into hadron h: $D_q^h(z)$

z=E_h/(Eμ-Eμ')

at LO:
$$A_1^{h(p/d)}(x) = \frac{\sum_q e_q^2 D_q^h \Delta q(x)}{\sum_q e_q^2 D_q^h q(x)}$$

$$D_q^h = \int_0^1 D_q^h(z) dz$$

all depend also on Q²

With deuteron data alone, can extract $\Delta u_v + \Delta d_v$, $\Delta u + \Delta d$, $\Delta s = \Delta \overline{s}$

With deuteron + proton data, 10 asymmetries, 5 or 6 unknowns: Δu_v , Δd_v , Δu , Δd , Δs and Δs separately

Inputs needed: PDFs q(x) & FFs D_a^h (from fits of e+e-, DIS and hh data)

Data selection and analysis COMPASS HERMES

Events:
$Q^2 > 1 \text{ GeV/c}^2$
$< Q^2 > = 2.5 \text{ GeV/c}^2$
y<0.85
0.023< x < 0.3
Hadrons:
0.2 < z < 0.8
x _F >0.1
10^{2} 10 GeV ²

(2< p <15 GeV/c) 4< p < 13.8 GeV/c

100000 K⁺ + K⁻

Use CTEQ5L for pdf.

For fragm.fct., use 'purities' estimated from simulation with Lund fragm & JETSET, **HERMES** multiplicities

Events	Hadrons		
$Q^2>1~({\rm GeV/c})^2$	0.2 < z < 0.85		
0.1 < y < 0.9	$10 < P < 50~{\rm GeV/c}$		
0.004 < x < 0.7	(RICH IDENT)		

Q² dependence neglected $< Q^2 > = 3 (GeV/c)^2$

RICH efficiency and purity measured using pions from $K^0 \rightarrow \pi\pi$ and kaons from $\phi \rightarrow KK$

Use MRST pdf

DSS fragm. fct.

Inclusive & Semi-inclusive Spin Asymmetries

Proton

Deuteron

<u>HERMES - Quark heli</u>cities from SIDIS

Δs and $\Delta \bar{s}$ separately

No significant difference; one point at 2.7 sigma Assume $\Delta s = \Delta \overline{s}$ in subsequent analysis

Quark helicities from SIDIS

COMPASS $\Delta s = -0.01 \pm 0.01 \pm 0.01$ for 0.003 < x < 0.3

Knowledge of Quark Fragmentation Functions

From NLO global analyses of single hadron production in e+ e- , pp collider, DIS lp, mostly high Q², various assumptions

DSS analysis: SIDIS (HERMES), pp (RHIC) $\rightarrow q$ gbar separation

Large discrepancies between various analyses See talk of E. Christova

Lack of data, \rightarrow huge uncertainties on Fragmentation runctions

Dependence on Quark Fragmentation Functions

Result depends on two ratios of FF: 'unfavoured/favoured' & 'strange/favoured'

$$_{F} = \frac{\int D_{d}^{K^{+}}(z)dz}{\int D_{u}^{K^{+}}(z)dz} \qquad R_{SF} = \frac{\int D_{\overline{s}}^{K^{+}}(z)dz}{\int D_{u}^{K^{+}}(z)dz}$$

 R_U

	DSS	EMC
R_{UF}	0.14 -	→0.35
R_{SF}	6.6 -	→ 3.4

Move simultaneously R_{UF} and R_{SF} from DSS to EMC value \rightarrow Change Δs from -0.01 to -0.04 and double error.

Isoscalar extraction of $\Delta s(x)$ (and s(x))

- Use kaon multiplicities (K⁺ + K⁻) from deuteron data only high sensitivity to s(x) $K^+ = u\bar{s}$ $K^- = \bar{u}s$
- From spin asymmetries A_1^d and $A_1^{d} (K^{++K^-})$ extract $\Delta Q = \Delta u + \overline{\Delta u} + \Delta d + \Delta \overline{d}$ and $\Delta S = \Delta s + \overline{\Delta s}$
 - Assume : isospin symmetry p & n charge conjugation invariance in fragmentation $D_q^{K^++K^-}(z) = D_{\overline{q}}^{K^++K^-}(z)$ This FF better measured at e+e-

Isoscalar extraction of $\Delta s(x)$ HERMES

Helicity distributions

Δs puzzle

Inclusive data $(g_1^N \& a_8 \text{ from hyperon decay } +SU(3))$ $\rightarrow \int \Delta s = -0.08$ While semi inclusive data $\rightarrow \Delta s(x) \approx 0$

Uncertainty on quark fragmentation functions (s-quark to K)
 would need a factor of ~2 from DSS value of FF

- Global fits (DSSV, LSS) suggest negative Δs at low x
 - reconciles the two approaches
 - indeed COMPASS SIDIS : $\Delta s=-0.01$ with linear extrap.

 Δs =-0.05 with DSSV extrap.

• Assume SU(3) violation a_8 from 0.58 to 0.42 $\rightarrow \Delta s$ =-0.02 Bass & Thomas, PLB684(2010) 216

Longitudinal spin transfer to Λ & $\bar{\Lambda}$

- \bullet Spin transfer for anti- Λ large and positive
- Alternate way to access s distribution and Δs if polarized target

See talk of A. Kotzinian

Knowledge of s(x)

Need more measurements

Unpolarized PDF s(x) and quark FFs

hadron multiplicities at LO

 \rightarrow Possibility to disentangle PDFs and FFs

 extensive measurement (x, z,...) will provide input to NLO global analyses

• LO analysis of data integrated over z $\rightarrow s(x)$ & Fragmentation Functions (HERMES and COMAPSS)

First extraction of s(x) from SIDIS HERMES

K⁺+K⁻ multiplicity, d target

Assuming s(x) from CTEQ, best fit to D_s^K does not describe shape of multiplicity

Q(x) at large $x \rightarrow$ non strange FF (found in agreement with DSS) Determine $s(x).D_s^K$ at small x,

First extraction of s(x) from SIDIS HERMES

$$S(x) \int \mathcal{D}_{S}^{K}(z) dz \simeq Q(x) \begin{bmatrix} 5 \frac{\mathrm{d}^{2} N^{K}(x)}{\mathrm{d}^{2} N^{DIS}(x)} - \int \mathcal{D}_{Q}^{K}(z) dz \end{bmatrix}$$

=1.27 from DSS Evaluated at large x, found close to DSS

Measurement of unpolarized PDFs COMPASS -II approved by CERN SPSC for initial period 2013-1015 During DVCS program, get (for free) SIDIS data on LH_2 \rightarrow s(x) and quark FF from K multiplicities

Short term goal: LO analysis

Summary

Strange quark polarization

 $\Delta s(x) \sim 0$ from SIDIS in measured region, while $\int \Delta s < 0$ from DIS Still various possible explanations

Strange quark distribution
 Discrepancies between various parameterizations

More SIDIS measurements to come on:

- kaon multiplicities
- kaon spin asymmetries
- \rightarrow Will improve knowledge on FF, $\Delta s(x)$ and s(x)

spares

HERMES quark helicity distributions

- $= 0.02 < x_{Bj} < 0.6$
- $\square \Delta q_8 = \Delta Q 2\Delta S$

• $\Delta q_8 = \int \Delta q_8(x) dx$ =0.586+- 0.031 from hyperon decay and SU(3) symmetry Moments in measured range

- $\Delta Q = 0.359 \pm 0.026 (\text{stat.}) \pm 0.018 (\text{sys.})$
- $\Delta S = 0.037 \pm 0.019 ({
 m stat.}) \pm 0.027 ({
 m sys.})$
- $\Delta q_8 = 0.285 \pm 0.046 (\text{stat.}) \pm 0.057 (\text{sys.})$

NLO QCD analyses of world data

(s+sbar) /(ubar+dbar) CTEQ & MWST08

$$\int_0^1 dx \ \left[s(x,Q^2) - \bar{s}(x,Q^2) \right] = 0$$

 $s = \bar{s} = \frac{\kappa}{2}(\bar{u} + \bar{d})$ was assumption in previous fit with k=0.4-0.5

s+sbar and s-sbar now parameterized separately

Wider error band vs MRST01

Future: COMPASS II

approved by CERN SPSC for initial period 2013-1015

• GPD (Generalized Parton Distributions) $\mu p \rightarrow \mu p \gamma$

by exclusive reactions DVCS (Deep Virtual ComptonScattering) and DVMP (Meson production), 2 year 'beam charge and spin asymmetry' measurement DVCS

• Polarized Drell-Yan $\pi p^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$

Sivers & Boer-Mulders

Transverse Momentum Dependent distributions 1 year with transversely polarised proton target Test of factorization approach : Comparison SIDIS/ Drell-Yan

